想要人手一台互動式穿戴裝置?讓夢想成真的放大器就在這裡!
文/劉奕志、李君毅、翁佳菱|國⽴臺灣⼤學物理學系電⼦學課程學生
還記得當初我們對 google 眼鏡的想像嗎?只要眨眨眼就能拍照,隨著視線的移轉便能任意地縮放視窗、捲動頁面。但,你曾關注過這些功能背後的技術嗎?
如何讓科幻電影中酷炫的互動式穿戴裝置成爲現實,一直是科學家的夢想。圖/pexel
互動式穿戴裝置一直以來都是科幻電影中不可或缺的元素之一,而這些裝置只能存在於大螢幕上的原因,就是因為在現實層面上有許多問題還有待克服,除了成本的考量,還有就是對動作的偵測。由於人體的生物電訊號大多極小,為了偵測這些訊號,目前有效的技術基本上都需要搭配一台昂貴且續航力低的偵測裝置才能達成目的。理想的偵測裝置必須能偵測到極微小的動作,因此,偵測裝置最主要的部份便是放大器 ,但若想實現穿戴式裝置互動裝置的普及,這個放大器最好是低功耗、具有延展性,放大效果好 ,同時耐用且生產成本低 ,才能符合我們長時間配戴及使用的需求。
電子元件中的放大器——電晶體
目前電子元件中的放大器,多半是運用「電晶體」來達到放大效果,而這些「電晶體」,又是從半導體堆疊而來的。
不同導電性質的材料之比較示意圖。圖/維基百科
材料中的電子原本被束縛在價帶中,但如果給電子足夠的能量,它就有機會往上跳到傳導帶,變成可以移動的電子,一般如金屬般的導體,就是價帶跟傳導帶很接近,只要一點能量就可以變成可移動的電子,而絕緣體正好相反,就算給很大的能量,還是沒有幾個電子可以移動。
半導體正如其名,介於可以導電跟不可以導電之間,我們可藉由調整給予能量的大小,來決定材料現在能不能導電,運用此特行,可以讓半導體成為簡單的自動控制裝置,來控制電路的開、關狀態。
那由半導體組成的電晶體(Transistor)又是怎麼做出放大效果的呢?從字根上來了解 Transistor 這個字,可以發現它是由 trans(改變)跟 resistor(電阻)組成,亦即利用一個額外的接點來控制電晶體內的電阻。以電阻為例,它沒有任何的外接控制點,所以假設有 1 安培的電流從一端流入,另一端就會輸出 1 安培的電流;而電晶體多出了一個接點,倘若在這個接點上施加電壓來「通知」電晶體改變輸出端的電阻,那麼我們就能控制輸出的電流大小,這也就是電晶體作為放大器的原理。
電阻 (左)與電晶體 (右)示意圖,可以看出電晶體多了一個接點。圖/維基百科
下文提到的薄膜電晶體(Thin Film Transistors, TFT)是電晶體的一種,常用於顯示器中。藉由電流通過與否,間接控制螢幕上每個畫素產生不同的亮度,使液晶顯示器顯示出各種畫面與顏色,但一般的薄膜電晶體難以塑形,因此較難在穿戴式裝置上應用。
輕薄短小又便宜?「有機」或許就是關鍵
有機薄膜電晶體註 1 (Organic Thin Film Transistors, OTFT)以具有共軛鍵結註 2 的高分子為主要材料。一般常見的有機高分子材料如塑膠與橡膠之所以為絕緣體,是因為其由碳氫化合物所組成的共價單鍵長鏈分子,並不具備可自由移動的電荷。而具有共軛鍵結導電高分子的主鏈,由交替的單鍵─雙鍵共軛鍵結 而成,此時每一個碳原子有一個價電子未配對,這個多出來的電子可以在分子上自由移動,不被鍵結束縛 ,但這個價電子不易沿著整個長鏈移動,因此還需加以摻雜(doping) —— 即增加帶電載子 (carrier,即載有某種物理特性、且可自由移動的粒子)的濃度,則此材料即成為導電體。
左為共軛分子 1,3-丁二烯,右為非共軛分子 1,4-戊二烯。 圖/Tuiuti University of Paraná
與一般的薄膜電晶體比起來,有機薄膜電晶體有以下幾個優勢:低溫製程、製作步驟簡單、成本低廉且容易塑形 ,但由於有機材料中分子與分子間僅僅透過微弱的吸引力束縛在一起,不同於無機半導體中分子間透過化學鍵確實的連接在一起,此種較弱的分子間之相互作用,使它們易於形成缺陷,使得載子在傳輸時容易被缺陷所捕獲,此時需要施加較大的電壓以提供能量來將其釋放。這個未能解決的起始電壓問題,就是為什麼現今產業多使用無機半導體的原因。
而今天這組由 Chen Jiang 團隊發現的蕭特基有機薄膜電晶體放大器 (Schottky barrier organic thin-film transistor amplifier circuit, SB-OTFT amplifier circuit),完美的克服了上述的阻礙。
明明電晶體千百種,為何「它」能勝出?
這組放大器以具有共軛鍵結的高分子材料 C8-BTBT ,作為有機半導體的主要成分,使其可以利用噴墨印刷技術生產(如字面意思可以被「印」出來),製造成本因此較以往常見的薄膜電晶體低上許多,具有大量生產的潛力。而且由於 C8-BTFT 的晶粒(>50μm)相對較大,可有效覆蓋整個通道,大顆晶粒在體積不變的情況下,晶粒數量較少,也可以減少晶粒間的接觸面積,有效覆蓋整個通道並減少晶粒邊界註 4 和堆疊錯誤等晶體缺陷的形成 ,進而使此有機半導體的初始電壓降低,克服以往多數有機半導體因起始電壓高,所以在搭配電池使用時電力消耗快、續航力較差的問題。
Chen Jiang 團隊開發的蕭特基有機薄膜電晶體放大器示意圖。圖/Chen Jiang et al , 2019
除此之外,由於其材料特性,該放大器還具有高跨導率註 5 (38.2 S/A,接近理論極限 ─ 約 38.7 S/A,一般無機電晶體為 20~30 S/A)、極低功耗(<1nW)、具延展性的特質。考慮人體生物電訊號大多十分微弱,這組有機薄膜放大器的特性恰恰符合我們對於生物電訊號偵測的需求,非常適用於在生物醫學、運動科學等相關領域進行監測追蹤。
這組放大器在經過三個月的環境暴露測試後,閾值電壓(即起始電壓,Operating voltage)的偏移小於 1mV 且傳導效率的浮動小於 1%,遠低於其他有機薄膜電晶體元件在相同條件下的表現(>100 mV, >20%),意即其具有優異的穩定性,即使在長時間運作下仍能保持原本良好的特性。
此組 SB-OTFT 與其他電晶體最佳表現的性質比較。圖/Chen Jiang et al , 2019
舉例來說,這個放大器可以大大的改善目前偵測人類眼電圖 (electro-oculogram,EOG) 信號的技術,意即利用偵測角膜視網膜電位來追蹤眼動,以上所述的特性改善了現今偵測器體積大、成本高、需求電源高的問題。另外,高放大功率使其有潛力偵測到極微小的波動訊號,讓我們能了解眼睛在面對虛擬環境(如景深效果)時應對的狀況。在建構虛擬實境 (Virtual Reality) 的技術上為非常重要的資訊。
此組 SB-OTFT 偵測眼電訊號示意圖。
有機薄膜電晶體突破對科技的想像
與傳統無機薄膜電晶體相比,有機薄膜電晶體的優勢在於製作程序簡單多樣、成本低。再者,以有機材料製成使它具有更好的柔韌性,因此物件的尺寸能做得更小、更輕,攜帶起來更方便。
在過去的有機薄膜電晶體研究中多追求載子遷移率註 4 與電流開關比註 5 等作為數位開關的性質提升。而此研究突破過往的窠臼,開啟了嶄新的研究方向。這組放大器能同時滿足低功耗、高放大功率與高穩定性 等理想放大器應具備的性質,不僅如此,它還有優異的環境穩定度 與能夠大量生產的優勢 ,有利於應用在生活中,而這都是其他電晶體無法做到的。
由於目前有愈來愈多科技以互動式穿戴裝置為主軸,或許有機薄膜電晶體的發展會延續此研究發現更多可能性,使互動式穿戴裝置大量應用在生活中,突破現今對科技的想像。
致謝
本文源自於臺灣大學物理學系電子學的課程報告,感謝朱士維教授與程暐瀅助教的建議與協助。
註解:
1. 薄膜電晶體(Thin Film Transistors, TFT):是場效電晶體的種類之一,大略的製作方式是在基板上沉積 各種不同的薄膜,如半導體主動層、介電質和金屬電極層當做通道區。
2. 共軛鍵結(conjugated bonding):指具有單鍵-雙鍵交替的鍵結方式,其中會有一個 p 軌域重疊,連接其中間的單鍵。它可以讓 π 電子游離通過所有相鄰對齊的 p 軌域。此 π 電子不屬於單鍵或原子,但是屬於一組的原子。最大的共軛體系是在石墨烯、石墨、導電聚合物和奈米碳管中被發現的。
3. 跨導率(transconductance efficiency):電晶體中描述跨導與相對應的工作電流比例關係的參數,此數 值越高代表設置到同樣工作環境時,所需要的工作電流越小,並因而減小整體功耗。一般常用的定義方式為 gm /IDS 其中 gm 為跨導、IDS 為汲極電流。
4. 載子遷移率(carrier mobility):指載子受到外在電場的作用下,能移動的多快的指標(常用 cm2 ⋅V-1 ⋅s-1 作為單位)
5. 電流開關比(on/off current ratio):當給予的電壓大於起始電壓時,電晶體為開(on)的狀態,反之則 為關(off)的狀態,開與關兩個狀態的電流比稱為電流開關比,較大的電流開關比代表開關切換速度快,有較明顯的開關器功能。
參考資料
Jiang, C., Choi, H. W., Cheng, X., Ma, H., Hasko, D., & Nathan A. (2019) Printed subthreshold organic transistors operating at high gain and ultralow power . Science , 363(6428), 719–723 (2019) Jia, X., Fuentes-Hernandez, C., Wang, C.-Y., Park, Y., & Kippelen B. (2018) Stable organic thin-film transistors . Science Advances , 4(1), eaao1705.