0

0
0

文字

分享

0
0
0

研究學者發展研究宇宙用的新型擴大器

臺北天文館_96
・2012/07/22 ・694字 ・閱讀時間約 1 分鐘 ・SR值 582 ・九年級

-----廣告,請繼續往下閱讀-----

美國航太總署(NASA)噴射推進實驗室(JPL)和加州理工學院(California Institute of Technology,Caltech)的研究學者,最近開發了一款能將電子訊號放大的新型放大器(amplifier),將可適用於恆星、星系、黑洞等各類天體的研究,甚至可探索量子世界、發展量子電腦等,等於重新定義了可測量的最小極限,是個劃時代的發明。

所謂放大器,是將一個原本很微弱的訊號予以增強的設備,在科學測量或電子學等領域應用廣泛。在大多數任務中,現行的放大器就足以應付;但對於那些得嚴格要求的應用範疇,現行的放大器反倒成了限制發展的絆腳石。

這個新型放大器其中一項關鍵特性,就是它融入超導物質(superconductors-material),當溫度降低到某個程度後,可讓電流在沒有電阻的情況下暢流。這些研究學者使用在這個新型放大器中的超導物質是氮化鈦(titanium nitride)和氮化鈮鈦(niobium titanium nitrid)。如右上圖,是利用氮化鈮鈦製作的放大器,為直徑約16mm的雙螺旋型態。

雖然新型放大器的潛在應用範圍極廣,不過這些研究學者開發這套放大器設備的緣由,卻是為了研究宇宙。這個研究團隊建造的是可以增強微波訊號的放大器,未來這個設計其實還可以應用到從無線電波到X射線的各波段天文觀測中。

-----廣告,請繼續往下閱讀-----

雖然很難說未來放大器將會應用到什麼程度,不過能確定的是,最後一定會設計出相當小巧精緻、近乎完美的放大器。而透過這個新型放大器的發展,這個研究團隊展現了未來必定能達成建造完美放大器的可能性。不過,這款新型放大器仍在初期設計製造階段,還需繼續修飾改善,才能達到所謂的「完美」。

資料來源:Researchers Develop New Amp to Study the Universe[2012.07.17]

轉載自台北天文館之網路天文館網站

文章難易度
臺北天文館_96
482 篇文章 ・ 41 位粉絲
臺北市立天文科學教育館是國內最大的天文社教機構,我們以推廣天文教育為職志,做為天文知識和大眾間的橋梁,期盼和大家一起分享天文的樂趣!

0

3
3

文字

分享

0
3
3
圖形處理單元與人工智慧
賴昭正_96
・2024/06/24 ・6944字 ・閱讀時間約 14 分鐘

  • 作者/賴昭正|前清大化學系教授、系主任、所長;合創科學月刊

我擔心人工智慧可能會完全取代人類。如果人們能設計電腦病毒,那麼就會有人設計出能夠自我改進和複製的人工智慧。 這將是一種超越人類的新生命形式。

——史蒂芬.霍金(Stephen Hawking) 英國理論物理學家

大約在八十年前,當第一台數位計算機出現時,一些電腦科學家便一直致力於讓機器具有像人類一樣的智慧;但七十年後,還是沒有機器能夠可靠地提供人類程度的語言或影像辨識功能。誰又想到「人工智慧」(Artificial Intelligent,簡稱 AI)的能力最近十年突然起飛,在許多(所有?)領域的測試中擊敗了人類,正在改變各個領域——包括假新聞的製造與散佈——的生態。

圖形處理單元(graphic process unit,簡稱 GPU)是這場「人工智慧」革命中的最大助手。它的興起使得九年前還是個小公司的 Nvidia(英偉達)股票從每股不到 $5,上升到今天(5 月 24 日)每股超過 $1000(註一)的全世界第三大公司,其創辦人(之一)兼首席執行官、出生於台南的黃仁勳(Jenson Huang)也一躍成為全世界排名 20 內的大富豪、台灣家喻戶曉的名人!可是多少人了解圖形處理單元是什麼嗎?到底是時勢造英雄,還是英雄造時勢?

黃仁勳出席2016年台北國際電腦展
Nvidia 的崛起究竟是時勢造英雄,還是英雄造時勢?圖/wikimedia

在回答這問題之前,筆者得先聲明筆者不是學電腦的,因此在這裡所能談的只是與電腦設計細節無關的基本原理。筆者認為將原理轉成實用工具是專家的事,不是我們外行人需要了解的;但作為一位現在的知識分子或公民,了解基本原理則是必備的條件:例如了解「能量不滅定律」就可以不用仔細分析,即可判斷永動機是騙人的;又如現在可攜帶型冷氣機充斥市面上,它們不用往室外排廢熱氣,就可以提供屋內冷氣,讀者買嗎?

CPU 與 GPU

不管是大型電腦或個人電腦都需具有「中央處理單元」(central process unit,簡稱 CPU)。CPU 是電腦的「腦」,其電子電路負責處理所有軟體正確運作所需的所有任務,如算術、邏輯、控制、輸入和輸出操作等等。雖然早期的設計即可以讓一個指令同時做兩、三件不同的工作;但為了簡單化,我們在這裡所談的工作將只是執行算術和邏輯運算的工作(arithmetic and logic unit,簡稱 ALU),如將兩個數加在一起。在這一簡化的定義下,CPU 在任何一個時刻均只能執行一件工作而已。

-----廣告,請繼續往下閱讀-----

在個人電腦剛出現只能用於一般事物的處理時,CPU 均能非常勝任地完成任務。但電腦圖形和動畫的出現帶來了第一批運算密集型工作負載後,CPU 開始顯示心有餘而力不足:例如電玩動畫需要應用程式處理數以萬計的像素(pixel),每個像素都有自己的顏色、光強度、和運動等, 使得 CPU 根本沒辦法在短時間內完成這些工作。於是出現了主機板上之「顯示插卡」來支援補助 CPU。

1999 年,英偉達將其一「具有集成變換、照明、三角形設定/裁剪、和透過應用程式從模型產生二維或三維影像的單晶片處理器」(註二)定位為「世界上第一款 GPU」,「GPU」這一名詞於焉誕生。不像 CPU,GPU 可以在同一個時刻執行許多算術和邏輯運算的工作,快速地完成圖形和動畫的變化。

依序計算和平行計算

一部電腦 CPU 如何計算 7×5+6/3 呢?因每一時刻只能做一件事,所以其步驟為:

  • 計算 7×5;
  • 計算 6/3;
  • 將結果相加。

總共需要 3 個運算時間。但如果我們有兩個 CPU 呢?很多工作便可以同時(平行)進行:

-----廣告,請繼續往下閱讀-----
  • 同時計算 7×5 及 6/3;
  • 將結果相加。

只需要 2 個運算時間,比單獨的 CPU 減少了一個。這看起來好像沒節省多少時間,但如果我們有 16 對 a×b 要相加呢?單獨的 CPU 需要 31 個運算的時間(16 個 × 的運算時間及 15 個 + 的運算時間),而有 16 個小 CPU 的 GPU 則只需要 5 個運算的時間(1 個 × 的運算時間及 4 個 + 的運算時間)!

現在就讓我們來看看為什麼稱 GPU 為「圖形」處理單元。圖一左圖《我愛科學》一書擺斜了,如何將它擺正成右圖呢? 一句話:「將整個圖逆時針方向旋轉 θ 即可」。但因為左圖是由上百萬個像素點(座標 x, y)組成的,所以這句簡單的話可讓 CPU 忙得不亦樂乎了:每一點的座標都必須做如下的轉換

x’ = x cosθ + y sinθ

y’ = -x sinθ+ y cosθ

-----廣告,請繼續往下閱讀-----

即每一點均需要做四個 × 及兩個 + 的運算!如果每一運算需要 10-6 秒,那麼讓《我愛科學》一書做個簡單的角度旋轉,便需要 6 秒,這豈是電動玩具畫面變化所能接受的?

圖形處理的例子

人類的許多發明都是基於需要的關係,因此電腦硬件設計家便開始思考:這些點轉換都是獨立的,為什麼我們不讓它們同時進行(平行運算,parallel processing)呢?於是專門用來處理「圖形」的處理單元出現了——就是我們現在所知的 GPU。如果一個 GPU 可以同時處理 106 運算,那上圖的轉換只需 10-6 秒鐘!

GPU 的興起

GPU 可分成兩種:

  • 整合式圖形「卡」(integrated graphics)是內建於 CPU 中的 GPU,所以不是插卡,它與 CPU 共享系統記憶體,沒有單獨的記憶體組來儲存圖形/視訊,主要用於大部分的個人電腦及筆記型電腦上;早期英特爾(Intel)因為不讓插卡 GPU 侵蝕主機的地盤,在這方面的研發佔領先的地位,約佔 68% 的市場。
  • 獨立顯示卡(discrete graphics)有不與 CPU 共享的自己專用內存;由於與處理器晶片分離,它會消耗更多電量並產生大量熱量;然而,也正是因為有自己的記憶體來源和電源,它可以比整合式顯示卡提供更高的效能。

2007 年,英偉達發布了可以在獨立 GPU 上進行平行處理的軟體層後,科學家發現獨立 GPU 不但能夠快速處理圖形變化,在需要大量計算才能實現特定結果的任務上也非常有效,因此開啟了為計算密集型的實用題目編寫 GPU 程式的領域。如今獨立 GPU 的應用範圍已遠遠超出當初圖形處理,不但擴大到醫學影像和地震成像等之複雜圖像和影片編輯及視覺化,也應用於駕駛、導航、天氣預報、大資料庫分析、機器學習、人工智慧、加密貨幣挖礦、及分子動力學模擬(註三)等其它領域。獨立 GPU 已成為人工智慧生態系統中不可或缺的一部分,正在改變我們的生活方式及許多行業的遊戲規則。英特爾在這方面發展較遲,遠遠落在英偉達(80%)及超微半導體公司(Advance Micro Devices Inc.,19%,註四)之後,大約只有 1% 的市場。

-----廣告,請繼續往下閱讀-----
典型的CPU與GPU架構

事實上現在的中央處理單元也不再是真正的「單元」,而是如圖二可含有多個可以同時處理運算的核心(core)單元。GPU 犧牲大量快取和控制單元以獲得更多的處理核心,因此其核心功能不如 CPU 核心強大,但它們能同時高速執行大量相同的指令,在平行運算中發揮強大作用。現在電腦通常具有 2 到 64 個核心;GPU 則具有上千、甚至上萬的核心。

結論

我們一看到《我愛科學》這本書,不需要一點一點地從左上到右下慢慢掃描,即可瞬間知道它上面有書名、出版社等,也知道它擺斜了。這種「平行運作」的能力不僅限於視覺,它也延伸到其它感官和認知功能。例如筆者在清華大學授課時常犯的一個毛病是:嘴巴在講,腦筋思考已經不知往前跑了多少公里,常常為了追趕而越講越快,將不少學生拋到腦後!這不表示筆者聰明,因為研究人員發現我們的大腦具有同時處理和解釋大量感官輸入的能力。

人工智慧是一種讓電腦或機器能夠模擬人類智慧和解決問題能力的科技,因此必須如人腦一樣能同時並行地處理許多資料。學過矩陣(matrix)的讀者應該知道,如果用矩陣和向量(vector)表達,上面所談到之座標轉換將是非常簡潔的(註五)。而矩陣和向量計算正是機器學習(machine learning)演算法的基礎!也正是獨立圖形處理單元最強大的功能所在!因此我們可以了解為什麼 GPU 會成為人工智慧開發的基石:它們的架構就是充分利用並行處理,來快速執行多個操作,進行訓練電腦或機器以人腦之思考與學習的方式處理資料——稱為「深度學習」(deep learning)。

黃仁勳在 5 月 22 日的發布業績新聞上謂:「下一次工業革命已經開始了:企業界和各國正與英偉達合作,將價值數萬億美元的傳統資料中心轉變為加速運算及新型資料中心——人工智慧工廠——以生產新商品『人工智慧』。人工智慧將為每個產業帶來顯著的生產力提升,幫助企業降低成本和提高能源效率,同時擴大收入機會。」

附錄

人工智慧的實用例子:下面一段是微軟的「copilot」代書、谷歌的「translate」代譯之「one paragraph summary of GPU and AI」。讀完後,讀者是不是認為筆者該退休了?

-----廣告,請繼續往下閱讀-----

GPU(圖形處理單元)和 AI(人工智慧)之間的協同作用徹底改變了高效能運算領域。GPU 具有平行處理能力,特別適合人工智慧和機器學習所需的複雜資料密集運算。這導致了影像和視訊處理等領域的重大進步,使自動駕駛和臉部辨識等技術變得更加高效和可靠。NVIDIA 開發的平行運算平台 CUDA 進一步提高了 GPU 的效率,使開發人員能夠透過將人工智慧問題分解為更小的、可管理的、可同時處理的任務來解決這些問題。這不僅加快了人工智慧研究的步伐,而且使其更具成本效益,因為 GPU 可以在很短的時間內執行與多個 CPU 相同的任務。隨著人工智慧的不斷發展,GPU 的角色可能會變得更加不可或缺,推動各產業的創新和新的可能性。大腦透過神經元網路實現這一目標,這些神經元網路可以獨立但有凝聚力地工作,使我們能夠執行複雜的任務,例如駕駛、導航、觀察交通信號、聽音樂並同時規劃我們的路線。此外,研究表明,與非人類動物相比,人類大腦具有更多平行通路,這表明我們的神經處理具有更高的複雜性。這個複雜的系統證明了我們認知功能的卓越適應性和效率。我們可以一邊和朋友聊天一邊走在街上,一邊聽音樂一邊做飯,或一邊聽講座一邊做筆記。人工智慧是模擬人類腦神經網路的科技,因此必須能同時並行地來處理許多資料。研究人員發現了人腦通訊網路具有一個在獼猴或小鼠中未觀察獨特特徵:透過多個並行路徑傳輸訊息,因此具有令人難以置信的多任務處理能力。

註解

(註一)當讀者看到此篇文章時,其股票已一股換十股,現在每一股約在 $100 左右。

(註二)組裝或升級過個人電腦的讀者或許還記得「英偉達精視 256」(GeForce 256)插卡吧?

(註三)筆者於 1984 年離開清華大學到 IBM 時,就是參加了被認為全世界使用電腦時間最多的量子化學家、IBM「院士(fellow)」Enrico Clementi 的團隊:因為當時英偉達還未有可以在 GPU 上進行平行處理的軟體層,我們只能自己寫軟體將 8 台中型電腦(非 IBM 品牌!)與一大型電腦連接來做平行運算,進行分子動力學模擬等的科學研究。如果晚生 30 年或許就不會那麼辛苦了?

-----廣告,請繼續往下閱讀-----

(註四)補助個人電腦用的 GPU 品牌到 2000 年時只剩下兩大主導廠商:英偉達及 ATI(Array Technology Inc.)。後者是出生於香港之四位中國人於 1985 年在加拿大安大略省成立,2006 年被超微半導體公司收購,品牌於 2010 年被淘汰。超微半導體公司於 2014 年 10 月提升台南出生之蘇姿豐(Lisa Tzwu-Fang Su)博士為執行長後,股票從每股 $4 左右,上升到今天每股超過 $160,其市值已經是英特爾的兩倍,完全擺脫了在後者陰影下求生存的小眾玩家角色,正在挑戰英偉達的 GPU 市場。順便一題:超微半導體公司現任總裁(兼 AI 策略負責人)為出生於台北的彭明博(Victor Peng);與黃仁勳及蘇姿豐一樣,也是小時候就隨父母親移居到美國。

(註五)

延伸閱讀

  • 熱力學與能源利用」,《科學月刊》,1982 年 3 月號;收集於《我愛科學》(華騰文化有限公司,2017 年 12 月出版),轉載於「嘉義市政府全球資訊網」。
  • 網路安全技術與比特幣」,《科學月刊》,2020 年 11 月號;轉載於「善科教育基金會」的《科技大補帖》專欄。
文章難易度

討論功能關閉中。

賴昭正_96
43 篇文章 ・ 56 位粉絲
成功大學化學工程系學士,芝加哥大學化學物理博士。在芝大時與一群留學生合創「科學月刊」。一直想回國貢獻所學,因此畢業後不久即回清大化學系任教。自認平易近人,但教學嚴謹,因此穫有「賴大刀」之惡名!於1982年時當選爲 清大化學系新一代的年青首任系主任兼所長;但壯志難酬,兩年後即辭職到美留浪。晚期曾回台蓋工廠及創業,均應「水土不服」而鎩羽而歸。正式退休後,除了開始又爲科學月刊寫文章外,全職帶小孫女(半歲起);現已成七歲之小孫女的BFF(2015)。首先接觸到泛科學是因爲科學月刊將我的一篇文章「愛因斯坦的最大的錯誤一宇宙論常數」推薦到泛科學重登。

0

6
0

文字

分享

0
6
0
想要人手一台互動式穿戴裝置?讓夢想成真的放大器就在這裡!
活躍星系核_96
・2021/02/18 ・4057字 ・閱讀時間約 8 分鐘 ・SR值 595 ・九年級

文/劉奕志、李君毅、翁佳菱|國⽴臺灣⼤學物理學系電⼦學課程學生

還記得當初我們對 google 眼鏡的想像嗎?只要眨眨眼就能拍照,隨著視線的移轉便能任意地縮放視窗、捲動頁面。但,你曾關注過這些功能背後的技術嗎? 

如何讓科幻電影中酷炫的互動式穿戴裝置成爲現實,一直是科學家的夢想。圖/pexel

互動式穿戴裝置一直以來都是科幻電影中不可或缺的元素之一,而這些裝置只能存在於大螢幕上的原因,就是因為在現實層面上有許多問題還有待克服,除了成本的考量,還有就是對動作的偵測。由於人體的生物電訊號大多極小,為了偵測這些訊號,目前有效的技術基本上都需要搭配一台昂貴且續航力低的偵測裝置才能達成目的。理想的偵測裝置必須能偵測到極微小的動作,因此,偵測裝置最主要的部份便是放大器,但若想實現穿戴式裝置互動裝置的普及,這個放大器最好是低功耗、具有延展性,放大效果好,同時耐用且生產成本低,才能符合我們長時間配戴及使用的需求。 

電子元件中的放大器——電晶體

目前電子元件中的放大器,多半是運用「電晶體」來達到放大效果,而這些「電晶體」,又是從半導體堆疊而來的。

不同導電性質的材料之比較示意圖。圖/維基百科

材料中的電子原本被束縛在價帶中,但如果給電子足夠的能量,它就有機會往上跳到傳導帶,變成可以移動的電子,一般如金屬般的導體,就是價帶跟傳導帶很接近,只要一點能量就可以變成可移動的電子,而絕緣體正好相反,就算給很大的能量,還是沒有幾個電子可以移動。

-----廣告,請繼續往下閱讀-----

半導體正如其名,介於可以導電跟不可以導電之間,我們可藉由調整給予能量的大小,來決定材料現在能不能導電,運用此特行,可以讓半導體成為簡單的自動控制裝置,來控制電路的開、關狀態。

那由半導體組成的電晶體(Transistor)又是怎麼做出放大效果的呢?從字根上來了解 Transistor 這個字,可以發現它是由 trans(改變)跟 resistor(電阻)組成,亦即利用一個額外的接點來控制電晶體內的電阻。以電阻為例,它沒有任何的外接控制點,所以假設有 1 安培的電流從一端流入,另一端就會輸出 1 安培的電流;而電晶體多出了一個接點,倘若在這個接點上施加電壓來「通知」電晶體改變輸出端的電阻,那麼我們就能控制輸出的電流大小,這也就是電晶體作為放大器的原理。

下文提到的薄膜電晶體(Thin Film Transistors, TFT)是電晶體的一種,常用於顯示器中。藉由電流通過與否,間接控制螢幕上每個畫素產生不同的亮度,使液晶顯示器顯示出各種畫面與顏色,但一般的薄膜電晶體難以塑形,因此較難在穿戴式裝置上應用。

輕薄短小又便宜?「有機」或許就是關鍵

有機薄膜電晶體註 1(Organic Thin Film Transistors, OTFT)以具有共軛鍵結註 2 的高分子為主要材料。一般常見的有機高分子材料如塑膠與橡膠之所以為絕緣體,是因為其由碳氫化合物所組成的共價單鍵長鏈分子,並不具備可自由移動的電荷。而具有共軛鍵結導電高分子的主鏈,由交替的單鍵─雙鍵共軛鍵結而成,此時每一個碳原子有一個價電子未配對,這個多出來的電子可以在分子上自由移動,不被鍵結束縛,但這個價電子不易沿著整個長鏈移動,因此還需加以摻雜(doping)—— 即增加帶電載子(carrier,即載有某種物理特性、且可自由移動的粒子)的濃度,則此材料即成為導電體。 

-----廣告,請繼續往下閱讀-----
左為共軛分子 1,3-丁二烯,右為非共軛分子 1,4-戊二烯。 
圖/Tuiuti University of Paraná

與一般的薄膜電晶體比起來,有機薄膜電晶體有以下幾個優勢:低溫製程、製作步驟簡單、成本低廉且容易塑形,但由於有機材料中分子與分子間僅僅透過微弱的吸引力束縛在一起,不同於無機半導體中分子間透過化學鍵確實的連接在一起,此種較弱的分子間之相互作用,使它們易於形成缺陷,使得載子在傳輸時容易被缺陷所捕獲,此時需要施加較大的電壓以提供能量來將其釋放。這個未能解決的起始電壓問題,就是為什麼現今產業多使用無機半導體的原因。 

而今天這組由 Chen Jiang 團隊發現的蕭特基有機薄膜電晶體放大器 (Schottky barrier organic thin-film transistor amplifier circuit, SB-OTFT amplifier circuit),完美的克服了上述的阻礙。 

明明電晶體千百種,為何「它」能勝出?

這組放大器以具有共軛鍵結的高分子材料 C8-BTBT ,作為有機半導體的主要成分,使其可以利用噴墨印刷技術生產(如字面意思可以被「印」出來),製造成本因此較以往常見的薄膜電晶體低上許多,具有大量生產的潛力。而且由於 C8-BTFT 的晶粒(>50μm)相對較大,可有效覆蓋整個通道,大顆晶粒在體積不變的情況下,晶粒數量較少,也可以減少晶粒間的接觸面積,有效覆蓋整個通道並減少晶粒邊界註 4 和堆疊錯誤等晶體缺陷的形成,進而使此有機半導體的初始電壓降低,克服以往多數有機半導體因起始電壓高,所以在搭配電池使用時電力消耗快、續航力較差的問題。

Chen Jiang 團隊開發的蕭特基有機薄膜電晶體放大器示意圖。圖/Chen Jiang et al, 2019

除此之外,由於其材料特性,該放大器還具有高跨導率註 5(38.2 S/A,接近理論極限 ─ 約 38.7 S/A,一般無機電晶體為 20~30 S/A)、極低功耗(<1nW)、具延展性的特質。考慮人體生物電訊號大多十分微弱,這組有機薄膜放大器的特性恰恰符合我們對於生物電訊號偵測的需求,非常適用於在生物醫學、運動科學等相關領域進行監測追蹤。 

-----廣告,請繼續往下閱讀-----

這組放大器在經過三個月的環境暴露測試後,閾值電壓(即起始電壓,Operating voltage)的偏移小於 1mV 且傳導效率的浮動小於 1%,遠低於其他有機薄膜電晶體元件在相同條件下的表現(>100 mV, >20%),意即其具有優異的穩定性,即使在長時間運作下仍能保持原本良好的特性。

此組 SB-OTFT 與其他電晶體最佳表現的性質比較。圖/Chen Jiang et al, 2019

舉例來說,這個放大器可以大大的改善目前偵測人類眼電圖 (electro-oculogram,EOG) 信號的技術,意即利用偵測角膜視網膜電位來追蹤眼動,以上所述的特性改善了現今偵測器體積大、成本高、需求電源高的問題。另外,高放大功率使其有潛力偵測到極微小的波動訊號,讓我們能了解眼睛在面對虛擬環境(如景深效果)時應對的狀況。在建構虛擬實境 (Virtual Reality) 的技術上為非常重要的資訊。

此組 SB-OTFT 偵測眼電訊號示意圖。
此眼電訊號放大前後對照圖。圖/Chen Jiang et al, 2019

有機薄膜電晶體突破對科技的想像

與傳統無機薄膜電晶體相比,有機薄膜電晶體的優勢在於製作程序簡單多樣、成本低。再者,以有機材料製成使它具有更好的柔韌性,因此物件的尺寸能做得更小、更輕,攜帶起來更方便。

在過去的有機薄膜電晶體研究中多追求載子遷移率註 4 電流開關比註 5 等作為數位開關的性質提升。而此研究突破過往的窠臼,開啟了嶄新的研究方向。這組放大器能同時滿足低功耗、高放大功率與高穩定性等理想放大器應具備的性質,不僅如此,它還有優異的環境穩定度能夠大量生產的優勢,有利於應用在生活中,而這都是其他電晶體無法做到的。 

-----廣告,請繼續往下閱讀-----

由於目前有愈來愈多科技以互動式穿戴裝置為主軸,或許有機薄膜電晶體的發展會延續此研究發現更多可能性,使互動式穿戴裝置大量應用在生活中,突破現今對科技的想像。

致謝

本文源自於臺灣大學物理學系電子學的課程報告,感謝朱士維教授與程暐瀅助教的建議與協助。 

註解: 

1. 薄膜電晶體(Thin Film Transistors, TFT):是場效電晶體的種類之一,大略的製作方式是在基板上沉積 各種不同的薄膜,如半導體主動層、介電質和金屬電極層當做通道區。 

2. 共軛鍵結(conjugated bonding):指具有單鍵-雙鍵交替的鍵結方式,其中會有一個 p 軌域重疊,連接其中間的單鍵。它可以讓 π 電子游離通過所有相鄰對齊的 p 軌域。此 π 電子不屬於單鍵或原子,但是屬於一組的原子。最大的共軛體系是在石墨烯、石墨、導電聚合物和奈米碳管中被發現的。 

-----廣告,請繼續往下閱讀-----

3. 跨導率(transconductance efficiency):電晶體中描述跨導與相對應的工作電流比例關係的參數,此數 值越高代表設置到同樣工作環境時,所需要的工作電流越小,並因而減小整體功耗。一般常用的定義方式為 gm/IDS 其中 gm 為跨導、IDS為汲極電流。 

4. 載子遷移率(carrier mobility):指載子受到外在電場的作用下,能移動的多快的指標(常用 cm2⋅V-1⋅s-1 作為單位) 

5. 電流開關比(on/off current ratio):當給予的電壓大於起始電壓時,電晶體為開(on)的狀態,反之則 為關(off)的狀態,開與關兩個狀態的電流比稱為電流開關比,較大的電流開關比代表開關切換速度快,有較明顯的開關器功能。 

參考資料 

  1. Jiang, C., Choi, H. W., Cheng, X., Ma, H., Hasko, D., & Nathan A. (2019) Printed subthreshold organic transistors operating at high gain and ultralow  power. Science, 363(6428), 719–723 (2019) 
  2. Jia, X., Fuentes-Hernandez, C., Wang, C.-Y., Park, Y., & Kippelen B. (2018) Stable organic thin-film transistors. Science Advances, 4(1), eaao1705.
活躍星系核_96
752 篇文章 ・ 126 位粉絲
活躍星系核(active galactic nucleus, AGN)是一類中央核區活動性很強的河外星系。這些星系比普通星系活躍,在從無線電波到伽瑪射線的全波段裡都發出很強的電磁輻射。 本帳號發表來自各方的投稿。附有資料出處的科學好文,都歡迎你來投稿喔。 Email: contact@pansci.asia