0

1
1

文字

分享

0
1
1

突破半導體材料限制新契機?二維材料自發磁異向性的新發現

PanSci_96
・2020/07/16 ・1271字 ・閱讀時間約 2 分鐘 ・SR值 585 ・九年級
相關標籤:

國民法官生存指南:用足夠的智識面對法庭裡的一切。

現今的傳統半導體材料正面臨物理瓶頸,隨著半導體製程邁向3奈米,如何跨越電晶體微縮的物理極限,並趕上摩爾定律(Moore’s Law) 每兩年電晶體數目增加一倍的速度,是半導體業亟欲發展的技術關鍵。

因此,厚度僅原子等級的二維材料(2D Material),例如石墨烯(Graphene)以及二硫化鉬(MoS2)等,被視為突破物理極限並取代矽等傳統半導體材料的潛力新星。

二維材料擁有許多優異的特質,例如:導電性佳、高強度、可調電子結構、透光等,因此在電子、光子、感測與能源等領域,具有很大的發展潛力。除了二維材料本身的物理特性可以被單獨應用之外,若再與其他材料結合成「異質結構」,將使得二維材料發展性變得更為廣泛與豐富,能在原子尺度世界中,創造出無限的可能。

由國家同步輻射研究中心魏德新研究員所主導的國際研究團隊,與國立臺灣師範大學藍彥文副教授、呂俊毅博士後研究員,以及德國彼得葛倫伯格研究中心(Peter Grünberg Institute)的Christian Tusche研究員,歷時兩年多,利用「台灣光源」(Taiwan Light Source, TLS)與義大利同步輻射光源(Elettra),對「鈷/二硫化鉬異質結構」進行特徵研究分析:發現了即便是在室溫下,此異質結構間的交互作用仍然可以在非晶相之磁性材料中誘發出常見於晶相結構之「自發磁異向性」,為磁異向性之起源與操控,開闢一個嶄新的視野。

國家同步輻射中心。圖/By Chang.ms - Own work, CC BY-SA 4.0, https://commons.wikimedia.org/w/index.php?curid=41141416
國家同步輻射中心。圖/By Chang.ms – Own work, CC BY-SA 4.0, wikimedia commons.

本研究首度將厚度大約1奈米的鈷(Co)薄膜堆疊在單層二硫化鉬上,形成鈷/二硫化鉬異質結構,並使用同步輻射「X光吸收光譜術(X-ray absorption spectroscopy, XAS)」、「光電子發射顯微術(Photoemission electron microscope, PEEM)」與「光電子能譜術(X-ray photoemission spectroscopy, XPS)」進行分析。 研究結果發現,透過異質結構間的「軌域混成(Orbital hybridization)」,二硫化鉬可以在室溫時將非晶相的鈷薄膜誘導出類似磁晶異向性般的「自發磁異向性」,此發現為磁異向性之起源與操控,增添了一個全新的可能,也為「自旋電子學」的發展搭建了一個新契機。研究成果於7月1日登上國際頂尖期刊《奈米視界》(Nanoscale Horizons),並獲選為期刊封面內頁。

磁異向性指的是磁性材料之磁化方向容易沿某特定方向排列的特性,此性質可以用來定義數位記錄中的0與1。所以如何藉由新穎材料或是人工結構的製備來發現新奇的磁異向性,並加以控制其方向,是目前發展磁儲存與磁感應技術的重要關鍵,像是新穎的磁阻隨機存取記憶體(MRAM)、手機的電子羅盤、陀螺儀,甚至是量子電腦的計算單元,都會用到電子自旋的特性。與傳統電子元件相比,自旋電子元件可以提供更高能源效率和更低功耗,被預測為是下一世代的主流元件,全世界紛紛戮力投入這個領域。

 魏德新研究員表示,這個研究首度發現了增進磁異向性的另一個成因—軌域混成,未來研究團隊將深入探討產生這個現象的關鍵機制,並進一步研究操控自旋電子磁區方向的新方法,有機會為半導體業與光電等產業,帶來突破性的發展。

原始研究:Lu, C. I., Huang, C. H., Yang, K. H. O., Simbulan, K. B., Li, K. S., Li, F., … & Tusche, C. (2020). Spontaneously induced magnetic anisotropy in an ultrathin Co/MoS 2 heterojunction. Nanoscale Horizons.

 

文章難易度
PanSci_96
1013 篇文章 ・ 1231 位粉絲
PanSci的編輯部帳號,會發自產內容跟各種消息喔。

0

0
0

文字

分享

0
0
0
微擾理論:我們有沒有可能遮蔽了新的物理?——《撞出上帝的粒子》
貓頭鷹出版社_96
・2023/01/27 ・2632字 ・閱讀時間約 5 分鐘

國民法官生存指南:用足夠的智識面對法庭裡的一切。

對撞機能夠給出什麼答案?

物理學家想用大型強子對撞機來解答的重要問題,可以總結如下:在大型強子對撞機的能量級下,粒子物理的標準模型是否有效?「對撞機能量級」是個大大的躍進,因為其能量大小超越了電弱對稱破缺尺度;在這個尺度之上,兩種基本作用力相互統一,而 W 和 Z 玻色子、甚至所有其他基本粒子的質量,也許都是起源於此。

從空中鳥瞰大型強子對撞機的地理環境。圖/wikipedia

如果標準模型可以成功描述新能量範疇的現象,希格斯粒子應該就會存在,但看來不會有什麼其他的新發現;反之,如果標準模型失效,也許就沒有希格斯粒子了,不過背後一定會藏著稀奇古怪的事物。其實有個不易察覺的問題會左右這件事:我們究竟有多了解標準模型在此能量級下預測的現象?這並不容易回答。

一般而言我們並沒有能耐百分之百準確地解出標準模型。所有人都是用近似法。而絕大多數的近似方法之所以可行,是因為基本作用力的「耦合」,也就是強度,沒有很大。「耦合」就是在物理過程對應的費曼圖中,每個作用頂點帶有的值。(參見【科學解釋 8】)

微擾理論的應用

作用力的強度可以用一個數值來表示。如果說這個數值是 0.1,那麼兩個粒子交互作用的機率就會和 0.1 乘上 0.1,也就是 0.01 成正比。要是有三個粒子,機率就變成 0.1 的三次方,0.001,四個粒子的話就是 0.0001,如此這般。由此可知,如果耦合值很小,你就可以忽略比方說四個粒子以上的粒子交互作用―超過這個臨界值的項對於主要結果都只是極小的微擾罷了,因為前面至少會乘上 0.1 的五次方,也就是 0.00001。

可見更多粒子的反應項只會些微改變原本的結果而已。這就是「微擾理論」的例子,微擾理論廣泛運用於解決物理界和化學界中許多的問題。只要耦合值很小、也就是作用力很弱,這個理論就十分準確。

然而,這種近似法並不是永遠有效。微擾理論失效的地方大多涉及強核力、也就是量子色動力學。這就是為何大家要把這種作用力稱為強核力。我們不是故意要混淆視聽的,強核力的確和它的名字一樣難以應付。

舉例來說,在我們對撞質子,想一探其內部夸克及膠子的種類分布時,某些方面的資訊其實無法從先前所提的原則計算得到(參見 4.5 節)。除此之外,我們也無法算出夸克和膠子最後是如何結合成新的強子的。雖然大家手上有量子色動力學的限制條件,也有一些基本的能量守恆、及動量守恆定律,以及不少從其他地方得到的數據,卻無法用微擾理論。

由二個上夸克及一個下夸克所構成的質子。圖/wikipedia

原因在於強核力的耦合值非常接近一,不論幾次方都還是一。因此,不管你計算的對象是幾個粒子,得到的結果都不會收斂到某個可信的值。最終我們只好依據自己的經驗來猜測結果、或建立模型。而這樣的結論一直都有調整空間。

因此我們要嚴肅看待一個問題:大家在調整模型的時候,實際上可能會遮蔽了令人興奮的新物理。要避免這個問題,你得拿自己熟悉、以微擾理論計算的結果,連結上自己還不太明白、有調整空間的模型。我想像出一個比較毛骨悚然的情景來譬喻這件事――一具以精準預測架構的骨架,嵌在以最佳猜想組成的濕軟肉體內。

肉體的形狀可以改變。你可以重搥它的肚子,或捏它的臉頰(相對來說比較不痛);但是它有兩隻手兩隻腳,如果你打斷了某根骨頭,自己一定會知道。

用既有的知識探索未知

無論如何,大家利用電腦程式來把可塑的模型、與不易動搖的微擾理論整合在一起,而且絕大部分的工作都已經完成了;這種程式就是蒙地卡羅事件產生器(Monte Carlo event generator)。程式不但能編譯大部分我們擁有的粒子對撞現象的相關知識,同時也是個珍貴的工具,能協助物理學家設計新的實驗,並釐清既有的實驗對不同模擬數據會如何反應與解讀。「蒙地卡羅」這個名字有其典故,因為就和俄羅斯輪盤賭注一樣,這種事件產生器用上了很多隨機的數字。

這一切其實都牽涉到一點有趣的科學社會學。身為一位理論學家,有時你會因為投入某類蒙地卡羅事件產生器相關的研究而吃虧。你的一篇論文可能已經被引用了數千次,大家還是會說:「不過是電腦軟體罷了。」或是「這只是蒙地卡羅那類的玩意兒。」反之,要是你是發表一篇弦論的論文,又被引用這麼多次的話,你就能像個巨人般橫行全世界了。但說到底,弦論努力想預測的現象距離實證還是很遙遠,蒙地卡羅事件產生器卻可以實際解釋數據。

蒙地卡羅事件產生器雖然不是唯一的辦法,大致上仍是物理學家在理解標準模型的意義、與儘量試著利用模型精確預測現象時,所付出的一份心血。

粒子物理標準模型。圖/wikipedia

雖然和大型強子對撞機的學界相比,蒙地卡羅事件產生器的研究社群規模較小,但相對來說,這個領域的成員盡的心力甚至不會比大家建造對撞機的付出還要少。美國物理學會也許是考量到了這一點,將 2011 年的櫻井獎(J.J. Sakurai Prize)頒給在這個領域工作的三位理論學家,分別是韋伯(Bryan Webber)、阿塔瑞利(Guido Altarelli)、斯舍斯特蘭(Torbjörn Sjöstrand)。頒獎典禮的引言如下:

因為三位物理學家的洞見,我們得以縝密驗證粒子物理的標準模型,實現高能物理實驗的目標、並從中學習量子色動力學、電弱交互作用、與可能的新物理的確切知識。

我很開心他們獲獎,因為其中兩位是我很親近的朋友,也更是因為三人所寫的計算方法及程式對大型強子對撞機幾乎所有的研究都十分重要,像是確保大家不會在不知情的情況下遮蔽任何新的物理。當前,我們正在嘗試確認希格斯粒子搜尋實驗的不定變數大小,並縮減其數量;人人都在尋找關鍵的三標準差證據、甚至是五標準差的大發現。為了這個目標,許多人夜以繼日持續比對新的數據和蒙地卡羅事件產生器的結果。

——本文摘自《撞出上帝的粒子:深入史上最大實驗現場》,2022 年 12 月,貓頭鷹出版,未經同意請勿轉載。

貓頭鷹出版社_96
49 篇文章 ・ 20 位粉絲
貓頭鷹是智慧的象徵。1992年創社,以出版工具書為主。經過十多年的耕耘,逐步擴及各大知識領域的開發與深耕。現在貓頭鷹是全台灣最重要的彩色圖解工具書出版社。最富口碑的書系包括「自然珍藏、文學珍藏、台灣珍藏」等圖鑑系列,不但在國內贏得許多圖書獎,市場上也深受讀者喜愛。貓頭鷹的工具書還包括單卷式百科全書,以及「大學辭典」等專業辭典。貓頭鷹還有幾個個性鮮明的小類型,包括《從空中看台灣》等高成本的視覺影像書;純文字類的「貓頭鷹書房」,是得獎連連的知性人文書系;「科幻推進實驗室」則是重新站穩台灣科幻小說市場的新系列,其中艾西莫夫的科幻小說,已經成為台灣讀者的口碑選擇。

0

0
0

文字

分享

0
0
0
精神個案系列:不可愛的兔子症候群
胡中行_96
・2023/01/26 ・1914字 ・閱讀時間約 3 分鐘

修長的雙耳、無辜的眼神、強勁的後肢、柔順的絨毛、蓬鬆的短尾,以及鼓起的腮幫子…他都沒有。但是止不住的口部運動,仍使他像極了嚼草的兔子。[1]他不可愛,應該說現在可愛不起來。這不全然基於中年大叔的外型,更因為那藥物副作用所帶來的無奈。

兔子進食示意圖。圖/Barry Hall on Flickr(CC BY-ND 2.0)

雙極性疾患

還是個 20 歲青春少年兄的時候,他有陣子心情緊張,睡眠需求銳減,出現視聽幻覺以及關係妄想(referential delusions)。[1]深信一些隨機遇上的事物,跟自己有特定關係。[2]當時的醫師診斷他處於雙極性疾患(舊稱「躁鬱症」;bipolar disorder)的躁期(manic episode)。從此他屢次住院,接受各式治療。二十年來,總共經歷 8 次躁期;與 2 次狀況相反,情緒低落的鬱期(depressive episodes),更在墜至谷底時試圖自殺。[1]

40 歲那年,他又陷入躁期:具攻擊性、亢奮少睡、躁動不寧、被害妄想,並且無法控制心中怒火。住進土耳其科尼亞研究暨訓練醫院(Konya Research and Training Hospital)前,他理應每日服用情緒穩定劑lamotrigine和valproic acid,以及抗精神病藥物risperidone。然而最末項,卻被他自行停藥。醫師決定保留前二者,再加上口服的抗精神病藥物aripiprazole,稍後又將其改為同成份的長效型肌肉注射。[1]

土耳其科尼亞市景。圖/Perencal on Wikimedia Commons(CC BY-SA 3.0)

Aripiprazole

Aripiprazole(阿立哌唑;商品名:Abilify、安立復)是第二代抗精神病藥物,主要用於思覺失調症(schizophrenia)與雙極性疾患;也能治療泛自閉症障礙(autistic spectrum disorder)、重度憂鬱症(major depressive disorder)以及妥瑞症(Tourette syndrome)。[3, 4]療效來自對多巴胺和血清素受器的作用,能降低精神科住院機率。比起第一代以及其他第二代的抗精神病藥物,aripiprazole比較不會在運動和代謝方面,造成副作用;[4]也不容易因為阻斷多巴胺受器,而導致肢體不受控制的錐體外症狀(extrapyramidal symptoms,簡稱EPS)。[4, 5]

在採用肌肉注射前,必須先口服同成份的藥物,建立耐受性(tolerability)。[4]確保病患於可容忍的副作用範圍內,安全地獲得療效。這對將來長期使用此藥的成功與否至關重要。[6]從口服轉換至注射的頭14天,仍得持續使用口服藥物。在施打第一劑aripiprazole後,約 5 至 7 日左右,藥物會達到最高血漿濃度。 [4]

兔子症候群

打完那劑aripiprazole的一個月後,男子的嘴巴不由自主,又開又閉,速度之快,猶如忙碌進食的兔子。[1]

兔子症候群(rabbit syndrome)首見於 1972 年,是一種罕見的錐體外症狀。[1, 7]通常是第一代抗精神病藥物所致;不過偶有第二代的案例出現。[1, 8]整體來說,影響約 1.5 至 4.4% 的抗精神病藥物使用者。[9]病患嘴巴的肌肉會以每秒 4 到 6 次,也就是平均 5 赫茲(Hz)的頻率,規律地垂直運動,神似兔子咀嚼。[1, 7, 9, 10]嘴唇開闔時,多少會發出「啵、啵」聲。[10]此症不涉及舌頭,[8, 10]亦不妨礙口語溝通,甚至在講話時會暫時消失。(請見下方影片。)[9]

非本案的兔子症候群病患,照著醫師指令動作和講話。影/參考資料9(CC BY 4.0)

治療雙極性疾患固然重要,也不能放任惱人的副作用不管。醫師逐漸減少男子 aripiprazole 的劑量,直到完全停用。[1]同時,開立對付動作障礙疾病的抗膽鹼藥物 biperiden,以及能鎮靜神經的苯二氮平類藥物 diazepam,讓他每日服用。[1, 11, 12]花了二個月的時間,兔子症候群的症狀才完全消失。

  

參考資料

  1. 11th International Congress on Psychopharmacology & 7th International Symposium on Child and Adolescent Psychopharmacology’. (2019) Psychiatry and Clinical Psychopharmacology, 29:sup1, 129-263.
  2. Startup M, Startup S. (2005) ‘On two kinds of delusion of reference’. Psychiatry Research, 15;137(1-2):87-92.
  3. Aripiprazole’. (15 JAN 2022) MedlinePlus.
  4. Gettu N, Saadabadi A. (21 MAY 2022) ‘Aripiprazole’. In: StatPearls. Treasure Island (FL): StatPearls Publishing.
  5. D’Souza RS, Hooten WM. (01 AUG 2022) ‘Extrapyramidal Symptoms’. In: StatPearls. Treasure Island (FL): StatPearls Publishing.
  6. Stanulović V, Hodolic M, Mitsikostas DD, et al. (2022) ‘Drug tolerability: How much ambiguity can be tolerated? A systematic review of the assessment of tolerability in clinical studies’. British Journal of Clinical Pharmacology, 88(2):551-565.
  7. Rissardo JP, Caprara ALF. (2020) ‘Cinnarizine- and flunarizine-associated movement disorder: a literature review’. The Egyptian Journal of Neurology, Psychiatry and Neurosurgery, 56, 61.
  8. Gundogmus I, Tekin S, Tasdelen Kul A, et al. (2022). ‘Amisulpride-induced late-onset rabbit syndrome: Case report and literature review’. European Psychiatry, 65(S1), S712-S712.
  9. Aniello MS, Altomare S, Difazio P, et al. (2021) ‘Functional Rabbit Syndrome: A Case Report’. Tremor and Other Hyperkinetic Movements, 11(1):56.
  10. Catena Dell’Osso M, Fagiolini A, Ducci F, et al. (2007) ‘Newer antipsychotics and the rabbit syndrome’. Clinical Practice and Epidemiology in Mental Health, 3, 6.
  11. U.S. National Institute of Diabetes and Digestive and Kidney Diseases. (20 JUL 2017) ‘Biperiden’. LiverTox: Clinical and Research Information on Drug-Induced Liver Injury.
  12. Dhaliwal JS, Rosani A, Saadabadi A. (03 SEP 2022) ‘Diazepam’. In: StatPearls. Treasure Island (FL): StatPearls Publishing.
胡中行_96
81 篇文章 ・ 28 位粉絲
曾任澳洲臨床試驗研究護理師,以及臺、澳劇場工作者。 西澳大學護理碩士、國立台北藝術大學戲劇學士(主修編劇)。邀稿請洽臉書「荒誕遊牧」,謝謝。

0

0
0

文字

分享

0
0
0
B 型肝炎產生肝硬化,務必定期追蹤、持續治療,日常照護重點提醒
careonline_96
・2023/01/26 ・2037字 ・閱讀時間約 4 分鐘

「醫師,我的肝不好,想請你幫忙看看這些適不適合吃?」王先生打開手提袋,掏出形形色色的罐子,在桌面擺成一排。

「這些是哪裡買的?」醫師問。

「都是朋友、電台介紹的,聽說很有效喔……」

「你已經有肝硬化,最好不要亂吃藥喔。」醫師誠懇的勸說。

很多宣稱可以保肝的補品、秘方、保肝藥的成份都相當複雜,其中很多成分的效果並不清楚,彼此之間也可能產生交互作用,對人體、對肝臟恐怕沒有好處,甚至會產生更嚴重的危害。

高雄醫學大學附設中和紀念醫院肝膽胰內科梁博程醫師指出,最好是跟專科醫師討論,盡量把藥物單純化,並使用經過臨床研究證明,通過核可的藥物,對肝臟較有幫助。積極治療 B 型肝炎,才有機會逆轉肝硬化。

產生肝硬化,必須持續治療 B 型肝炎

B 型肝炎病毒會讓肝臟反覆發炎,而漸漸產生纖維化、肝硬化。梁博程醫師指出,想要了解肝纖維化的程度可以透過肝臟切片,或是肝纖維化掃描儀;肝纖維化掃描儀是非侵入性檢查,不會疼痛且便利性高。

B 型肝炎帶原者如果有肝硬化的現象,無論血液中的病毒量高低,都會建議使用口服抗病毒藥物治療,降低急性肝炎發作的機會,口服抗病毒藥物已有納入健保給付。

肝硬化務必定期追蹤這幾項

慢性肝炎與肝硬化都會增加肝癌的風險,因此罹患慢性肝病的患者,建議定期回診,抽血檢驗追蹤肝臟功能,而且每半年要做一次肝臟超音波檢查,梁博程醫師說,如果肝病比較嚴重,產生肝硬化的時候,就會建議每三到四個月要做一次肝臟超音波的檢查。

除了肝臟超音波之外,肝硬化患者也要定期追蹤胃鏡,梁博程醫師解釋,因為肝硬化患者可能會出現胃食道靜脈曲張,所以建議一至兩年要做一次胃鏡檢查,看看是否有胃食道靜脈曲張的現象。

胃食道靜脈曲張可能會引發嚴重的出血,患者必須定期做胃鏡追蹤,並適時介入處理,若等到解黑便、大量吐血時才發現,狀況會非常危急。

肝硬化日常照護重點提醒

首先我們要避免肝硬化越來越嚴重,梁博程醫師強調,如果有抽菸、喝酒習慣,必須要戒菸、戒酒;如果有 B 型肝炎、C 型肝炎等病毒性肝炎,需要接受抗病毒藥物的治療。

日常生活中,要避免黃麴毒素(aflatoxin),梁博程醫師提醒,黃麴毒素由黃麴黴菌所產生,具有很強的肝毒性,除了花生製品外,五穀雜糧、豆類、堅果、醃漬類食品如果保存不當,都可能會產生黃麴毒素。平時多吃原形的食物,盡量少吃加工食品,對於肝硬化的照護也會有幫助。

很多人都有脂肪肝的問題,梁博程醫師提醒,「脂肪肝其實也會造成肝臟發炎,導致肝硬化惡化,所以必須做好體重管控。體重降下來之後,脂肪肝能夠漸漸改善,能夠減少肝臟發炎,對肝硬化也有幫助。」

積極治療,逆轉肝硬化!

「根據目前的研究資料顯示,肝硬化有可能逆轉。」梁博程醫師說,「B 型肝炎患者如果長期使用口服抗病毒藥物,避免 B 型肝炎病毒造成肝臟反覆發炎,肝功能可漸漸恢復,也能夠觀察到肝硬化等級有下降的趨勢,所以肝硬化是有機會逆轉。」

肝臟具有許多重要的生理功能,如果放任 B 型肝炎病毒持續破壞肝臟,將漸漸進展為肝硬化,而造成黃疸、腹水、凝血功能異常等許多問題,甚至大幅增加罹患肝癌的風險。

梁博程醫師提醒,如果檢查發現已經有肝硬化的現象,千萬不要擅自服用偏方、草藥、保肝藥,請務必定期追蹤、積極治療病毒性肝炎,並戒菸、戒酒,避免肝臟功能進一步惡化,才有機會漸漸逆轉肝硬化!

搜尋附近的診所:內科
免費註冊,掛號、領藥超方便!