Loading [MathJax]/extensions/tex2jax.js

0

0
0

文字

分享

0
0
0

健康與醫療資料的加值應用(四):政府預計推動的電子化醫療政策?

2012健康與醫療資料加值應用論壇_96
・2012/07/14 ・2728字 ・閱讀時間約 5 分鐘 ・SR值 532 ・七年級

(編註:)延續前篇關於「健康資料加值應用」與協作中心的介紹說明,本篇將再度回到健康與醫療資料議題的基礎上,從「電子病歷」與「智慧醫療」兩個面向的發展,了解當前政府預計推動的電子化醫療政策為何。

電子病歷

由於國內醫院病歷電子化的發展已經相當普及,在落實「全人健康照護」政策目標下,我國政府於 2008 年推動電子病歷實施計畫 。主要是針對協助各醫療院所推動電子病歷,使得醫療院所醫療作業資訊化及病歷電子化,降低管理成本,達到無紙化。

雖然醫療法第 69 條並無規範醫療院所一定要製作電子病歷,但是從下表中,我們可以看出臺灣目前病歷電子化的情況已經達到 8 成,病歷電子化已經是臺灣未來的趨勢。

我國電子病歷實施狀況

不過對衛生署而言,最重要的目標是促進院際電子病歷互通。因此在 2010 年推動加速醫療院所實施電子病歷系統計畫,內容包括鼓勵及輔導醫療院所發展醫療作業資訊化、病歷電子化,更進一步推動院際電子病歷互通,減少病患重複檢驗檢查及用藥,並提升醫療資源運用效能。簡而言之,電子病歷的推行主要是下列三大階段:

-----廣告,請繼續往下閱讀-----
電子病歷推行三大階段

院際電子病歷互通指的是在病患同意下,可以將其在 A 醫院的醫療影像及報告、血液檢驗、門診用藥紀錄或出院病歷摘要開放給 B 醫院使用,不僅節省民眾在申請醫療影像複製上的時間和金錢(一般情況下,要支付給醫院基本費/管理保存費與複製成本)、避免重複性檢查與用藥,且可以加速醫師診療決策時間,能夠盡早做出治療處置。而醫師只有在病患同意下才能調閱資料。

傳統病歷申請過程,民眾必須持身分證、第二證件(健保卡、駕照等),如果是申請病歷紀錄,則必須先看過門診醫師,意思就是必須要經過掛號、候診的時間,於門診時和醫師討論要申請的種類和件數、填寫病歷複本申請單,為申請種類不一,像是中文出院病歷摘多要 650 元,除了要支付當次門診掛號費(依醫療院所規模不一,150-200 元),另外還需要郵寄費。如果只是檢驗報告,可以直接到醫院服務台填寫病歷複本申請單,一份大約是 10 元。那如果是要申請 X 光片,按區域醫院的作法是,先到服務台填寫申請單,於預約時間到放射科申請,一片光碟通常是收 200 元,等候時間 30 分鐘到一小時不等。

電子病歷優於傳統病歷申請的地方則在於節省時間和一部份的金錢,並愛護地球(無紙化)。現行電子病歷主要分成兩種,一種是可攜式電子病歷,另一種是跨院電子病歷交換。可攜式電子病歷與傳統病歷申請類似,只是改成單一窗口,民眾不需要在門診、服務台、放射科或其他專科跑來跑去,只需要出示雙證件向服務台申請,醫院將電子病歷列印出來給民眾。然而還是需要複製病歷的費用,但是就不需要另外支付掛號費,並節省申請時間。

跨院電子病歷交換,現行政策主要指的是醫療影像和報告的交換、血液檢驗及用藥紀錄,民眾只要填寫書面同意單(七天內有效),表示同意乙醫院調閱自己的資料,在民眾健保卡和醫事人員卡雙卡同時插入後,乙醫院的醫師便可以從衛生署影像交換中心下載民眾在甲醫院的醫療報告與影像。或是從衛生署的電子病歷交換中心下載用藥紀錄和出院病歷摘要。

-----廣告,請繼續往下閱讀-----

以下這張圖是闡述病患的醫療影像資料是如何流傳的。各醫院將影像資料放到一個 Gateway,而這個 Gateway 會儲存這些影像資料,如果民眾要申請可攜式電子病歷,醫院服務處的人員就會連線到 Gateway 下載。這些 Gateway 的索引檔(即民眾的醫療影像和報告的索引檔)會上傳到衛生署的影像交換平台,在病患的同意下,乙可以至影像交換平台查詢該病患是否在一年內有做過這些檢查。並可直接透過影像交換平台,至甲醫院進行下載醫療影像報告。

圖片截取自行政院衛生署全國醫療影像交換中心網站
圖片截取自行政院衛生署全國醫療影像交換中心網站

智慧醫療

在邁入 21 世紀之後,電腦科技成為主流,現今電子病歷制度已經運用到部份的雲端科技,我們可以想見未來健康資料庫的應用可能也會雲端化,所有的資料庫資料都會存在所謂的「醫療雲」上。到時候民眾要看診,也不需要帶健保卡,當場做指紋、眼角膜判定便可看診,醫師也不需要向其他醫院調閱你之前在其他醫院的看診病歷,只需要透過網路連線,從網路上的虛擬空間讀取你從小到大的所有醫療診斷記錄、X 光照影、藥物過敏史等等,便可以了解你個人的身體狀況,最近的服藥記錄,或甚至是以後就透過 SKYPE 等電腦視訊系統看診,民眾也不需要大老遠跑回家。或者,以後的老人照護制度,老人家不需要進入老人安養中心以獲得醫療人員、護士的 24 小時的照護和監測(以避免有任何不測),老人家可以待在他最熟悉的家裡或住所,身上穿健康衣或是戴偵測手環,一旦呼吸停止、心跳暫停等危急狀況,該健康衣或手環便可以向附近衛生所或是醫院發出訊號尋求支援。

然而健康與醫療資料庫的加值與應用必然有其相對的風險存在,像是病歷資料可能會外洩、遭受駭客入侵等等,因此本公民論壇的目的便是在於,當了解到健康資料庫現行以及未來可能成果和其所可能帶來的風險,令民眾在衡量孰輕孰重後,能有一更清晰的圖像。【待續】

* 補充:什麼是「雲端運算」(Cloud Computing)?

-----廣告,請繼續往下閱讀-----

「雲端運算」這個詞彙最近蔚為風潮,相關的討論層出不窮。依據美國國家標準與科技局(National Institute of Standard and Technology)的定義,雲端運算指的是一種使用者可以隨時隨地利用載具,透過網絡連線進用各種服務(如網路、伺服器、儲存空間、應用程式)的新運算模式。

資料來源:本文節錄自《健康與醫療資料的加值應用公民論壇議題手冊》
作者與編輯群:呂宗學、邱伊翎、黃柔翡、馮瑜茜、呂家華、李宜卿、孫語辰
審定:呂宗學、林子倫、邱伊翎、徐子涵、陳再晉、黃旭明、滕西華

健康與醫療資料的加值應用公民論壇,希望促成社會公眾對「健康及醫療資料運用及加值」議題進行理性、知情的討論,形成公共意見以作為決策的參考。PanSci將在:

  1. 8/17 的 PM 7:00-8:00
  2. 8/17 的 PM 9:00-10:00
  3. 8/18 的 PM 7:00-8:00
  4. 8/18 的 PM 9:00-10:00

四個時段各舉辦一場線上論壇,歡迎報名參加!

-----廣告,請繼續往下閱讀-----

論壇一:政府現有健康相關資料之加值,是否須先經個人同意或立法授權?
論壇二:健康資料庫加值應用之現況是否侵犯或有未能保護個人資訊自主及隱私之疑慮?
論壇三:健康資料庫加值應用衍生利益之歸屬:公有?共有?私有?
論壇四:總體討論(後續該怎麼監督)

>>前往健康與醫療資料的加值應用公民論壇的【網站】【Facebook】【線上報名表單】

-----廣告,請繼續往下閱讀-----
文章難易度
2012健康與醫療資料加值應用論壇_96
15 篇文章 ・ 0 位粉絲
舉辦公眾論壇,促成社會公眾對「健康及醫療資料運用及加值」進行理性、知情的討論,形成公共意見以作為決策的參考。 一、提出公眾論壇的討論成果:結論報告。 二、統整各界對健康及醫療資料運用及加值」之爭議意見及政策建議。 三、建構論壇準備期間為促成對話的重要程序和原則。

0

1
0

文字

分享

0
1
0
拆解邊緣AI熱潮:伺服器如何提供穩固的運算基石?
鳥苷三磷酸 (PanSci Promo)_96
・2025/05/21 ・5071字 ・閱讀時間約 10 分鐘

本文與 研華科技 合作,泛科學企劃執行。

每次 NVIDIA 執行長黃仁勳公開發言,總能牽動整個 AI 產業的神經。然而,我們不妨設想一個更深層的問題——如今的 AI 幾乎都倚賴網路連線,那如果哪天「網路斷了」,會發生什麼事?

想像你正在自駕車打個盹,系統突然警示:「網路連線中斷」,車輛開始偏離路線,而前方竟是萬丈深谷。又或者家庭機器人被駭,開始暴走跳舞,甚至舉起刀具向你走來。

這會是黃仁勳期待的未來嗎?當然不是!也因為如此,「邊緣 AI」成為業界關注重點。不靠雲端,AI 就能在現場即時反應,不只更安全、低延遲,還能讓數據當場變現,不再淪為沉沒成本。

什麼是邊緣 AI ?

邊緣 AI,乍聽之下,好像是「孤單站在角落的人工智慧」,但事實上,它正是我們身邊最可靠、最即時的親密數位夥伴呀。

當前,像是企業、醫院、學校內部的伺服器,個人電腦,甚至手機等裝置,都可以成為「邊緣節點」。當數據在這些邊緣節點進行運算,稱為邊緣運算;而在邊緣節點上運行 AI ,就被稱為邊緣 AI。簡單來說,就是將原本集中在遠端資料中心的運算能力,「搬家」到更靠近數據源頭的地方。

-----廣告,請繼續往下閱讀-----

那麼,為什麼需要這樣做?資料放在雲端,集中管理不是更方便嗎?對,就是不好。

當數據在這些邊緣節點進行運算,稱為邊緣運算;而在邊緣節點上運行 AI ,就被稱為邊緣 AI。/ 圖片來源:MotionArray

第一個不好是物理限制:「延遲」。
即使光速已經非常快,數據從你家旁邊的路口傳到幾千公里外的雲端機房,再把分析結果傳回來,中間還要經過各種網路節點轉來轉去…這樣一來一回,就算只是幾十毫秒的延遲,對於需要「即刻反應」的 AI 應用,比如說工廠裡要精密控制的機械手臂、或者自駕車要判斷路況時,每一毫秒都攸關安全與精度,這點延遲都是無法接受的!這是物理距離與網路架構先天上的限制,無法繞過去。

第二個挑戰,是資訊科學跟工程上的考量:「頻寬」與「成本」。
你可以想像網路頻寬就像水管的粗細。隨著高解析影像與感測器數據不斷來回傳送,湧入的資料數據量就像超級大的水流,一下子就把水管塞爆!要避免流量爆炸,你就要一直擴充水管,也就是擴增頻寬,然而這樣的基礎建設成本是很驚人的。如果能在邊緣就先處理,把重要資訊「濃縮」過後再傳回雲端,是不是就能減輕頻寬負擔,也能節省大量費用呢?

第三個挑戰:系統「可靠性」與「韌性」。
如果所有運算都仰賴遠端的雲端時,一旦網路不穩、甚至斷線,那怎麼辦?很多關鍵應用,像是公共安全監控或是重要設備的預警系統,可不能這樣「看天吃飯」啊!邊緣處理讓系統更獨立,就算暫時斷線,本地的 AI 還是能繼續運作與即時反應,這在工程上是非常重要的考量。

所以你看,邊緣運算不是科學家們沒事找事做,它是順應數據特性和實際應用需求,一個非常合理的科學與工程上的最佳化選擇,是我們想要抓住即時數據價值,非走不可的一條路!

邊緣 AI 的實戰魅力:從工廠到倉儲,再到你的工作桌

知道要把 AI 算力搬到邊緣了,接下來的問題就是─邊緣 AI 究竟強在哪裡呢?它強就強在能夠做到「深度感知(Deep Perception)」!

-----廣告,請繼續往下閱讀-----

所謂深度感知,並非僅僅是對數據進行簡單的加加減減,而是透過如深度神經網路這類複雜的 AI 模型,從原始數據裡面,去「理解」出更高層次、更具意義的資訊。

研華科技為例,旗下已有多項邊緣 AI 的實戰應用。以工業瑕疵檢測為例,利用物件偵測模型,快速將工業產品中的瑕疵挑出來,而且由於 AI 模型可以使用同一套參數去檢測,因此品管上能達到一致性,減少人為疏漏。尤其在高產能工廠中,檢測速度必須快、狠、準。研華這套 AI 系統每分鐘最高可處理 8,000 件產品,替工廠節省大量人力,同時確保品質穩定。這樣的效能來自於一台僅有膠囊咖啡機大小的邊緣設備—IPC-240。

這樣的效能來自於一台僅有膠囊咖啡機大小的邊緣設備—IPC-240。/ 圖片提供:研華科技

此外,在智慧倉儲場域,研華與威剛合作,研華與威剛聯手合作,在 MIC-732AO 伺服器上搭載輝達的 Nova Orin 開發平台,打造倉儲系統的 AMR(Autonomous Mobile Robot) 自走車。這跟過去在倉儲系統中使用的自動導引車 AGV 技術不一樣,AMR 不需要事先規劃好路線,靠著感測器偵測,就能輕鬆避開障礙物,識別路線,並且將貨物載到指定地點存放。

當然,還有語言模型的應用。例如結合檢索增強生成 ( RAG ) 跟上下文學習 ( in-context learning ),除了可以做備忘錄跟排程規劃以外,還能將實務上碰到的問題記錄下來,等到之後碰到類似的問題時,就能詢問 AI 並得到解答。

你或許會問,那為什麼不直接使用 ChatGPT 就好了?其實,對許多企業來說,內部資料往往具有高度機密性與商業價值,有些場域甚至連手機都禁止員工帶入,自然無法將資料上傳雲端。對於重視資安,又希望運用 AI 提升效率的企業與工廠而言,自行部署大型語言模型(self-hosted LLM)才是理想選擇。而這樣的應用,並不需要龐大的設備。研華的 SKY-602E3 塔式 GPU 伺服器,體積僅如後背包大小,卻能輕鬆支援語言模型的運作,實現高效又安全的 AI 解決方案。

但問題也接著浮現:要在這麼小的設備上跑大型 AI 模型,會不會太吃資源?這正是目前 AI 領域最前沿、最火熱的研究方向之一:如何幫 AI 模型進行「科學瘦身」,又不減智慧。接下來,我們就來看看科學家是怎麼幫 AI 減重的。

-----廣告,請繼續往下閱讀-----

語言模型瘦身術之一:量化(Quantization)—用更精簡的數位方式來表示知識

當硬體資源有限,大模型卻越來越龐大,「幫模型減肥」就成了邊緣 AI 的重要課題。這其實跟圖片壓縮有點像:有些畫面細節我們肉眼根本看不出來,刪掉也不影響整體感覺,卻能大幅減少檔案大小。

模型量化的原理也是如此,只不過對象是模型裡面的參數。這些參數原先通常都是以「浮點數」表示,什麼是浮點數?其實就是你我都熟知的小數。舉例來說,圓周率是個無窮不循環小數,唸下去就會是3.141592653…但實際運算時,我們常常用 3.14 或甚至直接用 3,也能得到夠用的結果。降低模型參數中浮點數的精度就是這個意思! 

然而,量化並不是那麼容易的事情。而且實際上,降低精度多少還是會影響到模型表現的。因此在設計時,工程師會精密調整,確保效能在可接受範圍內,達成「瘦身不減智」的目標。

當硬體資源有限,大模型卻越來越龐大,「幫模型減肥」就成了邊緣 AI 的重要課題。/ 圖片來源:MotionArray

模型剪枝(Model Pruning)—基於重要性的結構精簡

建立一個 AI 模型,其實就是在搭建一整套類神經網路系統,並訓練類神經元中彼此關聯的參數。然而,在這麼多參數中,總會有一些參數明明佔了一個位置,卻對整體模型沒有貢獻。既然如此,不如果斷將這些「冗餘」移除。

這就像種植作物的時候,總會雜草叢生,但這些雜草並不是我們想要的作物,這時候我們就會動手清理雜草。在語言模型中也會有這樣的雜草存在,而動手去清理這些不需要的連結參數或神經元的技術,就稱為 AI 模型的模型剪枝(Model Pruning)。

-----廣告,請繼續往下閱讀-----

模型剪枝的效果,大概能把100變成70這樣的程度,說多也不是太多。雖然這樣的縮減對於提升效率已具幫助,但若我們要的是一個更小幾個數量級的模型,僅靠剪枝仍不足以應對。最後還是需要從源頭著手,採取更治本的方法:一開始就打造一個很小的模型,並讓它去學習大模型的知識。這項技術被稱為「知識蒸餾」,是目前 AI 模型壓縮領域中最具潛力的方法之一。

知識蒸餾(Knowledge Distillation)—讓小模型學習大師的「精髓」

想像一下,一位經驗豐富、見多識廣的老師傅,就是那個龐大而強悍的 AI 模型。現在,他要培養一位年輕學徒—小型 AI 模型。與其只是告訴小型模型正確答案,老師傅 (大模型) 會更直接傳授他做判斷時的「思考過程」跟「眉角」,例如「為什麼我會這樣想?」、「其他選項的可能性有多少?」。這樣一來,小小的學徒模型,用它有限的「腦容量」,也能學到老師傅的「智慧精髓」,表現就能大幅提升!這是一種很高級的訓練技巧,跟遷移學習有關。

舉個例子,當大型語言模型在收到「晚餐:鳳梨」這組輸入時,它下一個會接的詞語跟機率分別為「炒飯:50%,蝦球:30%,披薩:15%,汁:5%」。在知識蒸餾的過程中,它可以把這套機率表一起教給小語言模型,讓小語言模型不必透過自己訓練,也能輕鬆得到這個推理過程。如今,許多高效的小型語言模型正是透過這項技術訓練而成,讓我們得以在資源有限的邊緣設備上,也能部署愈來愈強大的小模型 AI。

但是!即使模型經過了這些科學方法的優化,變得比較「苗條」了,要真正在邊緣環境中處理如潮水般湧現的資料,並且高速、即時、穩定地運作,仍然需要一個夠強的「引擎」來驅動它們。也就是說,要把這些經過科學千錘百鍊、但依然需要大量計算的 AI 模型,真正放到邊緣的現場去發揮作用,就需要一個強大的「硬體平台」來承載。

-----廣告,請繼續往下閱讀-----

邊緣 AI 的強心臟:SKY-602E3 的三大關鍵

像研華的 SKY-602E3 塔式 GPU 伺服器,就是扮演「邊緣 AI 引擎」的關鍵角色!那麼,它到底厲害在哪?

一、核心算力
它最多可安裝 4 張雙寬度 GPU 顯示卡。為什麼 GPU 這麼重要?因為 GPU 的設計,天生就擅長做「平行計算」,這正好就是 AI 模型裡面那種海量數學運算最需要的!

你想想看,那麼多數據要同時處理,就像要請一大堆人同時算數學一樣,GPU 就是那個最有效率的工具人!而且,有多張 GPU,代表可以同時跑更多不同的 AI 任務,或者處理更大流量的數據。這是確保那些科學研究成果,在邊緣能真正「跑起來」、「跑得快」、而且「能同時做更多事」的物理基礎!

二、工程適應性——塔式設計。
邊緣環境通常不是那種恆溫恆濕的標準機房,有時是在工廠角落、辦公室一隅、或某個研究實驗室。這種塔式的機箱設計,體積相對緊湊,散熱空間也比較好(這對高功耗的 GPU 很重要!),部署起來比傳統機架式伺服器更有彈性。這就是把高性能計算,進行「工程化」,讓它能適應台灣多樣化的邊緣應用場景。

三、可靠性
SKY-602E3 用的是伺服器等級的主機板、ECC 糾錯記憶體、還有備援電源供應器等等。這些聽起來很硬的規格,背後代表的是嚴謹的工程可靠性設計。畢竟在邊緣現場,系統穩定壓倒一切!你總不希望 AI 分析跑到一半就掛掉吧?這些設計確保了部署在現場的 AI 系統,能夠長時間、穩定地運作,把實驗室裡的科學成果,可靠地轉化成實際的應用價值。

-----廣告,請繼續往下閱讀-----
研華的 SKY-602E3 塔式 GPU 伺服器,體積僅如後背包大小,卻能輕鬆支援語言模型的運作,實現高效又安全的 AI 解決方案。/ 圖片提供:研華科技

台灣製造 × 在地智慧:打造專屬的邊緣 AI 解決方案

研華科技攜手八維智能,能幫助企業或機構提供客製化的AI解決方案。他們的技術能力涵蓋了自然語言處理、電腦視覺、預測性大數據分析、全端軟體開發與部署,及AI軟硬體整合。

無論是大小型語言模型的微調、工業瑕疵檢測的模型訓練、大數據分析,還是其他 AI 相關的服務,都能交給研華與八維智能來協助完成。他們甚至提供 GPU 與伺服器的租借服務,讓企業在啟動 AI 專案前,大幅降低前期投入門檻,靈活又實用。

台灣有著獨特的產業結構,從精密製造、城市交通管理,到因應高齡化社會的智慧醫療與公共安全,都是邊緣 AI 的理想應用場域。更重要的是,這些情境中許多關鍵資訊都具有高度的「時效性」。像是產線上的一處異常、道路上的突發狀況、醫療設備的即刻警示,這些都需要分秒必爭的即時回應。

如果我們還需要將數據送上雲端分析、再等待回傳結果,往往已經錯失最佳反應時機。這也是為什麼邊緣 AI,不只是一項技術創新,更是一條把尖端 AI 科學落地、真正發揮產業生產力與社會價值的關鍵路徑。讓數據在生成的那一刻、在事件發生的現場,就能被有效的「理解」與「利用」,是將數據垃圾變成數據黃金的賢者之石!

👉 更多研華Edge AI解決方案
👉 立即申請Server租借

-----廣告,請繼續往下閱讀-----
-----廣告,請繼續往下閱讀-----
文章難易度

討論功能關閉中。

0

8
1

文字

分享

0
8
1
雲端是什麼?——《普林斯頓最熱門的電腦通識課》
商業周刊
・2022/03/12 ・3015字 ・閱讀時間約 6 分鐘

-----廣告,請繼續往下閱讀-----

  • 作者/ 布萊恩‧柯尼罕( Brian W. Kernighan)
  • 譯者/ 李芳齡

網路的普及

回想第六章中敘述的電腦運算使用模式,你有一台或好幾台個人電腦,你讓個別應用程式執行不同的工作,例如用 Word 製作文件,用 Quicken 或 Excel 做你的個人財務,用 iPhoto 管理你的相片。這些程式雖可能連結網際網路以取得一些服務,但它們在你的電腦上運轉,你可以不時地去下載一個修補了漏洞的新版本應用程式,偶爾可能得購買一個升級版以取得新功能。

這個模式的本質是,程式和資料都在你自己的電腦上。若你在一台電腦上修改了一個檔案,然後在另一台電腦上需要這檔案,你必須自己做轉移。若你在辦公室或外出旅行途中需要一個儲存於你家中一台電腦上的檔案,那就麻煩了。若你需要在一台視窗個人電腦和一台麥金塔電腦(Mac)上都有 Excel 或 PowerPoint,你必須為兩台電腦各買一個程式。上面說的這些情況,還沒把你的手機包含在內哦。

另一種不同的模式是愈來愈普及:使用瀏覽器或手機去存取及操作儲存於網際網路伺服器上的資訊。Gmail 或 Outlook 之類的郵件服務是最普遍的例子,你可以從任何一台電腦或手機存取你的電子郵件,可以上傳一封在本機上撰寫的郵件訊息,或是下載郵件訊息至本機檔案系統,但多數時候,你把資訊留在提供服務的伺服器上。

你不需要做什麼軟體更新,但不時會有新功能出現。你通常是在臉書上跟朋友保持聯繫或觀看他們的照片,但交談及照片儲存在臉書,不是儲存在你自己的電腦上,這些服務是免費的,唯一可見的「成本」是當你閱讀你的郵件或查看你的朋友在做什麼時,你可能會看到廣告。

-----廣告,請繼續往下閱讀-----

科技未來趨勢——雲端運算

這種模式通常被稱為「雲端運算」(cloud computing),因為網際網路被比喻為「雲」,沒有特定的實體位置,資訊被儲存於「雲端」的某處。

電子郵件和社交網路是最常見的雲端服務,但還有很多其他的雲端服務,例如多寶箱(Dropbox)、推特、領英、YouTube、線上行事曆等等。資料不是儲存於本機,而是儲存於雲端,亦即雲端服務供應商的伺服器上:你的電子郵件及行事曆儲存於谷歌的伺服器,你的相片儲存於多寶箱(Dropbox)或臉書的伺服器,你的履歷表儲存於領英的伺服器等等。

雲端運算示意圖。圖/Pixabay

雲端運算的問世,得力於多個因素的匯聚。個人電腦變得愈來愈強大的同時,瀏覽器也是,瀏覽器現在能夠有效率地執行顯示要求很高的大程式,儘管使用的程式語言是直譯式的 JavaScript。對多數人而言,現在的頻寬及用戶端與伺服器端之間的延遲(等候時間)遠優於十年前,這使得資料的傳送與接收更快,甚至在你輸入搜尋詞時,當即反應你的鍵擊,在你還未輸入完之前,就列出一些建議的搜尋詞。結果是,以往需要一個單獨的程式去處理的絕大多數使用者介面操作,用瀏覽器就能搞定,在此同時,使用一台伺服器去承載大量資料,執行任何複雜運算。這種組織方式也在手機上運作得很好:不需要再下載一款行動應用程式。

以瀏覽器為基礎(browser-based)的系統的反應速度可以媲美以個別電腦為基礎(desktop-based)的系統,並且讓你可以從任何地方存取資料。

-----廣告,請繼續往下閱讀-----

以來自谷歌的雲端「office」工具為例,它提供文書處理器、試算表、以及簡報程式,讓多使用者可以同時存取使用及更新。(譯註:以瀏覽器為基礎的系統又稱為 web-based,或稱「brower-server model」,簡稱 B/S 模式,指的是透過瀏覽器去使用網路上的軟體來執行各種工作;以個別電腦為基礎的系統又稱為 client-based,或稱為「client-server model」,簡稱 C/S 模式,指的是必須在每台電腦上安裝各種軟體來執行各種工作。)

雲端工具的快速崛起

一個受到關心的議題是,這些雲端工具會不會最終運轉得夠好而完全取代以個別電腦為基礎的版本。你大概可以想像得到,微軟非常關心這個,因為 Office 軟體佔該公司營收的相當比重,而 Office 主要在視窗作業系統上執行,微軟的其餘營收大多來自視窗作業系統。以瀏覽器為基礎的文書處理及試算表不需要來自微軟的任何軟體,因此將威脅到微軟的 Offic 及視窗作業系統這兩大核心業務。

目前,谷歌文件(Google Docs)及其他類似的系統還不具備 Word、Excel、及 PowerPoint 的所有功能,但科技進步史中充滿這樣的例子――明顯較差的系統問市,搶走認為此系統已經夠好的新使用者,漸漸侵蝕在位者的市場佔有率,並且持續改進本身的功能。微軟顯然很清楚這問題,實際上,為因應此問題,該公司已經推出雲端版本的 Office 365。

雲端工具的快速崛起。圖/Pixabay

以網路為基礎(web-based,亦即以瀏覽器為基礎)的服務其實對微軟及其他供應商具有吸引力,因為易於採用訂閱收費模式,用戶必須持續付費以取得服務。但是,消費者可能偏好一次性購買軟體,必要時再付費升級。我目前仍然在我的較舊的麥金塔電腦上使用 2008 年版本的 Microsoft Office,它運作得很好(在此應該稱讚微軟),而且,它仍然偶爾獲得安全性更新,因此,我並不急於升級。

-----廣告,請繼續往下閱讀-----

雲端運算仰賴用戶端的快速處理及大量記憶體,以及伺服器端的高頻寬。用戶端的程式是用 JavaScript 語言撰寫的,通常錯綜複雜。JavaScript 程式重度要求瀏覽器更新及快速顯示圖形資料,敏捷反應使用者的動作(例如拖曳)及伺服器的動作(例如更新的內容),這已經是夠難了,難上加難的是,瀏覽器版本與 JavaScript 版本之間的不相容性,需要雲端服務供應商找出傳送程式給用戶端的最佳方法。不過,伴隨電腦運算速度愈來愈快,以及更加遵從標準,這些都在進步中。

雲端運算可以在「於何處執行運算」和「處理過程中把資訊寄存於何處」這兩者之間作出取捨,例如,使 JavaScript 程式與特定瀏覽器脫鉤的方法之一是,在程式本身裡頭包含測試,譬如:「若瀏覽器是 Firefox 75 版,就執行這個;若瀏覽器是 Safari 12 版,就執行那個;若為其他瀏覽器版本,執行別的。」這樣的程式比較大,意味的是,需要更多頻寬來把 JavaScript 程式傳送至用戶端,而且,程式中增加的測試可能使瀏覽器運轉得較慢。另一種方法是,伺服器可以詢問用戶使用的是哪種瀏覽器,然後傳送針對這款瀏覽器撰寫的程式,這程式可能更簡潔,執行得更快,不過,對於原本就小的程式,差異可能不大。

網頁內容可以用不壓縮形式傳送,這樣,用戶端及伺服器端需要的處理工作較少,但需要較多的頻寬來傳輸;或者,用壓縮形式來傳送網頁內容,傳輸時需要的頻寬較少,但兩端需要增加處理工作。有時候,只有一端做壓縮處理,大型 JavaScript 程式經常被壓縮,移除所有不必要的空白,讓變數及函式使用一或兩個字母的名稱,壓縮後的程式是人類看不懂的,但用戶端電腦不在意。

儘管有技術性挑戰,若你總是能連上網際網路的話,雲端運算的優點很多。它們供應的軟體總是最新的,資訊儲存於專業管理的、有大容量的伺服器上,客戶資料隨時都有備份,幾乎沒有遺失的可能。一份文件只有一種版本,不會發生同一份文件在不同的電腦上可能有不一致版本的情形,而且,很容易即時共享文件及通力合作。雲端服務的價格很便宜,個人消費者往往可以免費取得,但企業客戶可能得付費。

-----廣告,請繼續往下閱讀-----

——本文摘自《普林斯頓最熱門的電腦通識課》,2022 年 2 月,商業周刊

-----廣告,請繼續往下閱讀-----

0

0
0

文字

分享

0
0
0
感覺理所當然的醫學大數據
活躍星系核_96
・2014/08/21 ・3192字 ・閱讀時間約 6 分鐘 ・SR值 530 ・七年級

作者:潘人豪助理教授,元智大學大數據與數位匯流創新中心

國內醫療院所參訪(潘人豪攝於衛生福利部桃園醫院)
國內醫療院所參訪(潘人豪攝於衛生福利部桃園醫院)

最近時常帶著來台灣受訓考察的外國朋友,到國內大型醫院做數位化醫院的介紹與教學。當中最讓人感到有趣的,就是這些來自發展中國家的朋友們,對台灣高度資訊化的醫療現場、醫院流程總是處處充滿著驚奇與讚嘆,但這些資訊化的醫院程序,對於居住在台灣的我們來說,彷彿理所當然般的熟悉,但,我們是否有曾經思考過,這些再普遍不過的醫院就醫流程,到底是怎麼發生在我們身活的周遭裡呢?

門診候診區病人以鐵柵分隔避免失控(潘人豪攝於海地共和國)
門診候診區病人以鐵柵分隔避免失控(潘人豪攝於海地共和國)

-----廣告,請繼續往下閱讀-----

不知你是否曾想過,當你到醫院看病時,必須與所有病人擠在鐵閘門外彷彿沙丁魚罐頭般毫無秩序的等待著自己名字被呼喊,而醫生則彷彿珍奇異獸般在那保護周密的籠子裡幫人看診。不知你又是否能想像,當醫生要求你要拍攝 X 光片或檢驗時,你必須等到「改天」再回來「戶外」的放射間拍攝,隨後「改天」自行回來找你的 X 光片後,再「改天」重新化身沙丁魚回診讓醫生幫你看片做診斷,而這手沖的 X 光片,並沒有人會幫你分類保管,而是要你自己好好地攜帶保存,更不用說醫院會保存那屬於你的病歷資料。而這些才是屬於當地人們理所當然的日常生活。

戶外露天放射部門(潘人豪攝於海地共和國)
戶外露天放射部門(潘人豪攝於海地共和國)

在世界名列前茅醫療資訊高度發展的台灣,看診時從網路掛號、候診順序、診間病歷調閱、醫師醫令、處方開立,一直到放射影像存取、檢查檢驗資料儲存等等,無數的數據資訊悄悄的在我們沒有注意的時候在醫院各個角落中傳遞、交換、儲存,在你拍完 X 光片還沒走回診間時,X 光設備便已經透過光纖將你的資料送達儲存在資訊機房設備中,當你返回醫師診間時,醫生便能透過診間電腦進行調閱診斷。同時,大多數你的生理檢驗資訊,同樣的在你回診時得以從電子病歷中檢索。這些我們感覺理所當然資訊處理,在發展中國家甚至需要一個月時間才能完成所有步驟,但在台灣我們只要一天甚至一個早上便達成了!

這一切正是仰賴醫學資訊分析的與醫療大數據交換處理。醫學大數據的產生,主要歸功於醫療設備數位化及電子化病歷發展兩大領域的突破,透過儀器數位化(如放射設備、檢驗設備與電子訊號儀器等),醫院得以獲得更多病人疾病與健康資訊紀錄。然而在病人醫療診斷上,為了妥善紀錄病患個人資料、診斷資料與過往醫療紀錄、照護紀錄與前面提及的放射、檢驗結果等,即促成了電子病歷系統發展。

-----廣告,請繼續往下閱讀-----

電子病歷的發展由過去由紙張紀錄抄寫、早期的數位化紀錄病人個人資訊、生理數據與疾病健康資訊紀錄的電子健康資訊系統(electronic health record,EHR),一路發展至目前國內醫療院所普遍使用,醫師可於診斷時在診間電腦進行病歷、檢查檢驗、放射影像數據等資料調用的病歷資料電腦化系統(computerized medical records,CMR),再到目前當紅發展,藉由設備間共通協定進行資料的交換串接,實現自動資訊蒐集的醫療記錄自動化系統(automated medical record,AMR),如自動化檢驗設備流程平台、移動護理資訊系統等等透過電腦自動化數據傳輸將檢體檢驗數據結果或是病人生理資訊,自動將該檢體與病人條碼自動配對與結果回傳儲存,取代以往的人工抄寫輸入流程。

醫學大數據發展的軌跡由過去紙張記錄、紙本資訊數位化、醫學紀錄儲存到現今多資訊整合,其數據量驚人的成長,不僅由過去個人社經資訊、診斷資訊等文字媒介,更擴展到多媒體影像資訊(X 光影像、高解析靜態影像)、動態視訊影像資訊(如磁振造影(magnetic resonance imaging, MRI)動態影像檔、內視鏡攝影)以及電訊號資訊,如心電圖(Electrocardiogram, EKG / ECG)、腦波訊號(Electroencephalography, EEG)等等,這些龐大醫學數據的彙集與高度整合技術能力,正是台灣醫學資訊發展超群的主因,同時更顯見醫學數據發展的多元應用與其重要性。

Source: Peter Groves, Basel Kayyali, Steve Van Kuiken, & David Knott, The Big Data revolution in healthcare: Accelerating value and innovation, McKinsey & Company Report, April 2013
Source: Peter Groves, Basel Kayyali, Steve Van Kuiken, & David Knott, The Big Data revolution in healthcare: Accelerating value and innovation, McKinsey & Company Report, April 2013

當今醫學大數據的發展趨勢,架構在臨床、非臨床、放射、檢驗、公共衛生以及醫療保險各領域之資訊彙整上,所衍生之各種分析、整合技術與服務,我們可以從麥肯錫公司(McKinsey & Company)於 2013 年所發表的 The “big data” revolution in healthcare 趨勢報告了解,未來醫學大數據發展及應用所朝向的五個目標,將鎖定在提供人們更佳的生活品質(Right living)、更安全的醫療照護(Right care)、更具水準的醫事人員(RIght provider)、產出更高醫療價值與降低醫療成本(Right value)以及更多創新(Right Innovation)醫療應用,其含括層次包含個人、醫事工作者、醫療單位、設施以及公共群體、政府政策與國際健康衛生,由下至上皆直接受惠於醫學大數據應用之發展,就像目前當紅的健保資料庫加值應用、穿戴式裝置的個人健康管理、遠距照護的資訊傳遞、個人保健雲,許許多多的創新應用都說明了醫學大數據未來的重要性與發展潛力。

-----廣告,請繼續往下閱讀-----

在百花齊放的醫學大數據應用中,最後我們可以稍稍反思一下,依據 2012 年 10 月實施之新版個資法規範,如何確保隸屬於極端隱私的個人醫療資訊於大數據計算載體間傳遞並且符合個人資料保護原則、資料歸屬權與道德隱私等議題,相信會是未來醫學大數據發展的另一波衝擊與探討重點。當我們在享受就醫的便利與各種個人健康數據管理裝置、軟體的介入下,你是否開始認識自我資訊隱私的安全保護呢?

Source: Peter Groves, Basel Kayyali, Steve Van Kuiken, & David Knott, The Big Data revolution in healthcare: Accelerating value and innovation, McKinsey & Company Report, April 2013
Source: Peter Groves, Basel Kayyali, Steve Van Kuiken, & David Knott, The Big Data revolution in healthcare: Accelerating value and innovation, McKinsey & Company Report, April 2013 (點擊看大圖)

醫學大數據小辭典:

  • 醫學影像存檔與通信系統(Picture archiving and communication system,PACS):在過去紙本化醫療紀錄制度中,影像資料如X光片、電腦斷層掃描(CT)、核磁共振(MRI)、超音波影像,僅能由專業儀器或是直接沖洗底片才得以讓醫師進行觀察與診斷。因此病例管理便顯得特別重要,因為若無法有效檢索,影像底片自然無處可尋。因此在許多開發中國家,甚至採用膠片讓病患自行帶回的方式,自行管理以避免資料丟失。但在PACS系統的發展後,透過數位化影像擷取技術將過去需要做底片沖洗的過程直接以數位化方式取代,並採用網路進行存取,醫事人員得以在診間,甚至病床端直接進行影像分析與診斷,更避免了過去實體文件儲存所花費的高額成本。(資料來源:潘人豪助理教授,元智大學大數據與數位匯流創新中心)
  • 電子病歷 (Electronic medical records,EMR):紙本化手寫病歷是醫發展重要工具之一,透過對病況的紀錄與編撰,醫事人員得以瞭解該病患的疾病歷史、生理、心理狀況等資料,因此在醫師的訓練過程中,如何客觀評估病人狀態並給予正確診斷、處置並紀錄於病歷中,便是一門大學問,也因此發展出所謂的SOAP ( Subject, Objective, Assessment, Plan)紀錄方法。然而在醫院規模的成長,病歷的管理、儲存與調閱便越顯困難,在許多開發中國家甚至因為無法有效儲存,導致每次的看診都需重覆建檔,因而造成病人的醫療品質低落。而電子病歷便是因此而發展出,透過電腦建檔,電子病歷便可以在電子載體中儲存、複製與傳輸,更不會受限於紙本調閱在空間與時間上造成的成本耗損,醫事人員可以在醫院內任何受權存取的電腦或設備上進行讀取(前提是經過身份核準),而當下的電子病歷更大幅擴展到包含實驗室資訊、檢查報告、數據、護理紀錄,生命徵象紀錄,藥物使用記錄等等,將病人的疾病資料更加完整的整合,以提供醫師更精確的疾病資料以維持醫療品質與病人就醫安全。(資料來源:潘人豪助理教授,元智大學大數據與數位匯流創新中心)

想了解更多大數據知識,歡迎訂閱元智大學大數據匯流電子報創刊號  

-----廣告,請繼續往下閱讀-----
-----廣告,請繼續往下閱讀-----
活躍星系核_96
778 篇文章 ・ 128 位粉絲
活躍星系核(active galactic nucleus, AGN)是一類中央核區活動性很強的河外星系。這些星系比普通星系活躍,在從無線電波到伽瑪射線的全波段裡都發出很強的電磁輻射。 本帳號發表來自各方的投稿。附有資料出處的科學好文,都歡迎你來投稿喔。 Email: contact@pansci.asia