Loading [MathJax]/extensions/tex2jax.js

0

1
1

文字

分享

0
1
1

破解被圈住的心靈!首度發現調控自閉症腦組織的環狀 RNA

PanSci_96
・2020/05/14 ・2012字 ・閱讀時間約 4 分鐘 ・SR值 589 ・九年級

-----廣告,請繼續往下閱讀-----

  • 「被圈住的心靈!」首度建構自閉症腦組織的環狀 RNA 與基因間調控網路圖譜。圖/中研院提供

自閉症譜系障礙 (autism spectrum disorder,簡稱 ASD) 是一種腦部發育障礙所導致的複雜疾病,患者往往在社交溝通、互動及表達上有障礙,成因目前仍未有定論,普遍認為與遺傳及基因變異有關。中央研究院基因體研究中心研究員莊樹諄研究團隊,首次系統性建構環狀 RNA (circular RNA) 在自閉症腦部的基因調控網路圖譜,有助於增進對自閉症致病分子機制的理解。

環狀 RNA 是一種單鏈封閉式環型結構,且特別高度表現在神經系統 註1

莊樹諄研究團隊利用大數據分析找到在自閉症患者大腦皮質中表現量異常的環狀 RNA ,並預測其調控路徑,結合分子生物實驗後證實:環狀 RNA 像海綿一樣吸附特定的微 RNA (miRNA) ,使其失去或降低對下游自閉症風險基因調控的能力 註2。有關環狀 RNA 、微 RNA 、與下游基因在自閉症腦部的調控網路關係,過去並未被有系統地探討。

莊樹諄所率領的大數據分析與神經科學實驗室團隊,透過先前開發的環狀 RNA 偵測軟體 (NCLscan) ,設計大數據分析流程。從超過 200 個樣本的轉錄體定序 (RNA-seq) 資料,找到 60 個在自閉症患者大腦皮質中表現異常的環狀 RNA ;經統計模型分析顯示,根據此 60 個環狀 RNA 的表現情形,能有效區別自閉症與非自閉症樣本,因此可判定這些環狀RNA與自閉症的發生應有關連 。

偵測在自閉症患者大腦皮質中表現異常的 60 個環狀 RNA 。 A 圖顯示 22 個(紅點)表現量在自閉症患者顯著上升, 38 個(綠點)表現量在自閉症患者顯著下降,其餘(灰點)表示在自閉症與非自閉症者間無顯著差異。在此每一點表示一個環狀 RNA 。 B 圖顯示這 60 個環狀 RNA 的表現量能有效區別自閉症(紅點)和非自閉症(綠點)樣本。在此每一點表示一個腦組織樣本。圖\Chen, Y.J., et al., Genome Res, 2020. 30(3): p. 375-391.

環狀RNA調控網路和自閉症風險基因高度相關

為此,團隊進一步預測這些環狀 RNA 的下游調控路徑,建構出 8,170 個環狀 RNA 、微 RNA 、信使 RNA (mRNA) 間的交互調控網路 ,接著再透過基因富集分析 註3,發現這些網路所調控的下游目標基因,顯著集中在已知的自閉症風險基因。
莊樹諄說明,這個研究除設計大數據分析流程來建構環狀 RNA 的調控網路關係,也結合分生實驗驗證。團隊挑選一個在自閉症患者腦部表現量明顯上升的環狀 RNA ( 命名為 circARID1A) ,於人類神經細胞實驗驗證後發現,

-----廣告,請繼續往下閱讀-----

circARID1A 確實可藉由調控微 RNA (miR-204-3p) ,影響下游多個自閉症風險基因的表達 。

環狀 RNA 調控網路。 A 圖為環狀 RNA (circRNA) 、微 RNA (microRNA) 、信使 RNA (mRNA) 間交互調控網路示意圖。 B 圖為所預測的其中部分的調控網路,紅色字體顯示此網路中的 12 個已知的自閉症風險基因。圖\Chen, Y.J., et al., Genome Res, 2020. 30(3): p. 375-391.
在人類神經相關細胞 (NHA 或 ReN cells) 實驗驗證 circARID1A 確實可藉由調控 miR-204-3p 影響自閉症風險基因 (如 NLGN1 、 STAG1 、 HSD11B1 、 VIP 、 UBA6) 的基因表達。圖\中研院新聞稿

論文封面圖片靈感,出自紀錄片《遙遠星球的孩子》

莊樹諄團隊不僅建構環狀 RNA 的調控網路,論文封面也讓人好奇,只見一個孩子孤獨地待在自己的星球上,寂寞地望著地球。

莊樹諄解釋,此圖片設計靈感來自於以自閉症為主題的紀錄片《遙遠星球的孩子》,環繞在星球外圍的光環即環狀 RNA ,像海綿一樣吸附軌道上的小行星,「像上帝畫的圈圈」,讓自閉症孩子只能待在自己的星球上,難以融入地球常軌。

靈感來自於紀錄片《遙遠星球的孩子》,因無法融入地球軌道,一個人孤獨地待在自己的星球上。圖\徐維駿 繪圖

由於自閉症發生原因不明,本文揭開環狀 RNA 在自閉症腦組織的調控關係,可用以探究自閉症的致病分子機制,對於未來診斷、追蹤及治療提供新的思考方向。研究團隊結合資訊、統計、分生、演化等知識背景,所設計的大數據分析與分生實驗流程,將來也可應用於與環狀 RNA 調控相關之其他神經疾病上,如:阿茲海默症、帕金森氏症、思覺失調症等。

註解:

  1. 環狀 RNA 因其構型關係不易被核酸外切酶降解,因此比其他 RNA 更加穩定,適合開發為新型臨床診斷的生物標記。近年來隨著次世代定序技術快速發展,陸續發現大量的環狀 RNA 存在各種生物體中。
  2. miRNA 會抑制 mRNA 的基因表達,當 miRNA 結合至目標基因 mRNA 序列上,使 mRNA 無法進行轉譯作用而產生蛋白質。當環狀 RNA 吸附 miRNA ,將使 miRNA 失去或降低其調控下游基因表達的能力。
  3. 基因富集分析 (gene set enrichment analysis) 是一種統計分析策略,用以針對某一組特定基因,探討這組基因是否特別表現在哪一種(或多種)已知功能。
-----廣告,請繼續往下閱讀-----
文章難易度
PanSci_96
1262 篇文章 ・ 2411 位粉絲
PanSci的編輯部帳號,會發自產內容跟各種消息喔。

0

0
0

文字

分享

0
0
0
拆解邊緣AI熱潮:伺服器如何提供穩固的運算基石?
鳥苷三磷酸 (PanSci Promo)_96
・2025/05/21 ・5071字 ・閱讀時間約 10 分鐘

-----廣告,請繼續往下閱讀-----

本文與 研華科技 合作,泛科學企劃執行。

每次 NVIDIA 執行長黃仁勳公開發言,總能牽動整個 AI 產業的神經。然而,我們不妨設想一個更深層的問題——如今的 AI 幾乎都倚賴網路連線,那如果哪天「網路斷了」,會發生什麼事?

想像你正在自駕車打個盹,系統突然警示:「網路連線中斷」,車輛開始偏離路線,而前方竟是萬丈深谷。又或者家庭機器人被駭,開始暴走跳舞,甚至舉起刀具向你走來。

這會是黃仁勳期待的未來嗎?當然不是!也因為如此,「邊緣 AI」成為業界關注重點。不靠雲端,AI 就能在現場即時反應,不只更安全、低延遲,還能讓數據當場變現,不再淪為沉沒成本。

什麼是邊緣 AI ?

邊緣 AI,乍聽之下,好像是「孤單站在角落的人工智慧」,但事實上,它正是我們身邊最可靠、最即時的親密數位夥伴呀。

當前,像是企業、醫院、學校內部的伺服器,個人電腦,甚至手機等裝置,都可以成為「邊緣節點」。當數據在這些邊緣節點進行運算,稱為邊緣運算;而在邊緣節點上運行 AI ,就被稱為邊緣 AI。簡單來說,就是將原本集中在遠端資料中心的運算能力,「搬家」到更靠近數據源頭的地方。

-----廣告,請繼續往下閱讀-----

那麼,為什麼需要這樣做?資料放在雲端,集中管理不是更方便嗎?對,就是不好。

當數據在這些邊緣節點進行運算,稱為邊緣運算;而在邊緣節點上運行 AI ,就被稱為邊緣 AI。/ 圖片來源:MotionArray

第一個不好是物理限制:「延遲」。
即使光速已經非常快,數據從你家旁邊的路口傳到幾千公里外的雲端機房,再把分析結果傳回來,中間還要經過各種網路節點轉來轉去…這樣一來一回,就算只是幾十毫秒的延遲,對於需要「即刻反應」的 AI 應用,比如說工廠裡要精密控制的機械手臂、或者自駕車要判斷路況時,每一毫秒都攸關安全與精度,這點延遲都是無法接受的!這是物理距離與網路架構先天上的限制,無法繞過去。

第二個挑戰,是資訊科學跟工程上的考量:「頻寬」與「成本」。
你可以想像網路頻寬就像水管的粗細。隨著高解析影像與感測器數據不斷來回傳送,湧入的資料數據量就像超級大的水流,一下子就把水管塞爆!要避免流量爆炸,你就要一直擴充水管,也就是擴增頻寬,然而這樣的基礎建設成本是很驚人的。如果能在邊緣就先處理,把重要資訊「濃縮」過後再傳回雲端,是不是就能減輕頻寬負擔,也能節省大量費用呢?

第三個挑戰:系統「可靠性」與「韌性」。
如果所有運算都仰賴遠端的雲端時,一旦網路不穩、甚至斷線,那怎麼辦?很多關鍵應用,像是公共安全監控或是重要設備的預警系統,可不能這樣「看天吃飯」啊!邊緣處理讓系統更獨立,就算暫時斷線,本地的 AI 還是能繼續運作與即時反應,這在工程上是非常重要的考量。

所以你看,邊緣運算不是科學家們沒事找事做,它是順應數據特性和實際應用需求,一個非常合理的科學與工程上的最佳化選擇,是我們想要抓住即時數據價值,非走不可的一條路!

邊緣 AI 的實戰魅力:從工廠到倉儲,再到你的工作桌

知道要把 AI 算力搬到邊緣了,接下來的問題就是─邊緣 AI 究竟強在哪裡呢?它強就強在能夠做到「深度感知(Deep Perception)」!

-----廣告,請繼續往下閱讀-----

所謂深度感知,並非僅僅是對數據進行簡單的加加減減,而是透過如深度神經網路這類複雜的 AI 模型,從原始數據裡面,去「理解」出更高層次、更具意義的資訊。

研華科技為例,旗下已有多項邊緣 AI 的實戰應用。以工業瑕疵檢測為例,利用物件偵測模型,快速將工業產品中的瑕疵挑出來,而且由於 AI 模型可以使用同一套參數去檢測,因此品管上能達到一致性,減少人為疏漏。尤其在高產能工廠中,檢測速度必須快、狠、準。研華這套 AI 系統每分鐘最高可處理 8,000 件產品,替工廠節省大量人力,同時確保品質穩定。這樣的效能來自於一台僅有膠囊咖啡機大小的邊緣設備—IPC-240。

這樣的效能來自於一台僅有膠囊咖啡機大小的邊緣設備—IPC-240。/ 圖片提供:研華科技

此外,在智慧倉儲場域,研華與威剛合作,研華與威剛聯手合作,在 MIC-732AO 伺服器上搭載輝達的 Nova Orin 開發平台,打造倉儲系統的 AMR(Autonomous Mobile Robot) 自走車。這跟過去在倉儲系統中使用的自動導引車 AGV 技術不一樣,AMR 不需要事先規劃好路線,靠著感測器偵測,就能輕鬆避開障礙物,識別路線,並且將貨物載到指定地點存放。

當然,還有語言模型的應用。例如結合檢索增強生成 ( RAG ) 跟上下文學習 ( in-context learning ),除了可以做備忘錄跟排程規劃以外,還能將實務上碰到的問題記錄下來,等到之後碰到類似的問題時,就能詢問 AI 並得到解答。

你或許會問,那為什麼不直接使用 ChatGPT 就好了?其實,對許多企業來說,內部資料往往具有高度機密性與商業價值,有些場域甚至連手機都禁止員工帶入,自然無法將資料上傳雲端。對於重視資安,又希望運用 AI 提升效率的企業與工廠而言,自行部署大型語言模型(self-hosted LLM)才是理想選擇。而這樣的應用,並不需要龐大的設備。研華的 SKY-602E3 塔式 GPU 伺服器,體積僅如後背包大小,卻能輕鬆支援語言模型的運作,實現高效又安全的 AI 解決方案。

但問題也接著浮現:要在這麼小的設備上跑大型 AI 模型,會不會太吃資源?這正是目前 AI 領域最前沿、最火熱的研究方向之一:如何幫 AI 模型進行「科學瘦身」,又不減智慧。接下來,我們就來看看科學家是怎麼幫 AI 減重的。

-----廣告,請繼續往下閱讀-----

語言模型瘦身術之一:量化(Quantization)—用更精簡的數位方式來表示知識

當硬體資源有限,大模型卻越來越龐大,「幫模型減肥」就成了邊緣 AI 的重要課題。這其實跟圖片壓縮有點像:有些畫面細節我們肉眼根本看不出來,刪掉也不影響整體感覺,卻能大幅減少檔案大小。

模型量化的原理也是如此,只不過對象是模型裡面的參數。這些參數原先通常都是以「浮點數」表示,什麼是浮點數?其實就是你我都熟知的小數。舉例來說,圓周率是個無窮不循環小數,唸下去就會是3.141592653…但實際運算時,我們常常用 3.14 或甚至直接用 3,也能得到夠用的結果。降低模型參數中浮點數的精度就是這個意思! 

然而,量化並不是那麼容易的事情。而且實際上,降低精度多少還是會影響到模型表現的。因此在設計時,工程師會精密調整,確保效能在可接受範圍內,達成「瘦身不減智」的目標。

當硬體資源有限,大模型卻越來越龐大,「幫模型減肥」就成了邊緣 AI 的重要課題。/ 圖片來源:MotionArray

模型剪枝(Model Pruning)—基於重要性的結構精簡

建立一個 AI 模型,其實就是在搭建一整套類神經網路系統,並訓練類神經元中彼此關聯的參數。然而,在這麼多參數中,總會有一些參數明明佔了一個位置,卻對整體模型沒有貢獻。既然如此,不如果斷將這些「冗餘」移除。

這就像種植作物的時候,總會雜草叢生,但這些雜草並不是我們想要的作物,這時候我們就會動手清理雜草。在語言模型中也會有這樣的雜草存在,而動手去清理這些不需要的連結參數或神經元的技術,就稱為 AI 模型的模型剪枝(Model Pruning)。

-----廣告,請繼續往下閱讀-----

模型剪枝的效果,大概能把100變成70這樣的程度,說多也不是太多。雖然這樣的縮減對於提升效率已具幫助,但若我們要的是一個更小幾個數量級的模型,僅靠剪枝仍不足以應對。最後還是需要從源頭著手,採取更治本的方法:一開始就打造一個很小的模型,並讓它去學習大模型的知識。這項技術被稱為「知識蒸餾」,是目前 AI 模型壓縮領域中最具潛力的方法之一。

知識蒸餾(Knowledge Distillation)—讓小模型學習大師的「精髓」

想像一下,一位經驗豐富、見多識廣的老師傅,就是那個龐大而強悍的 AI 模型。現在,他要培養一位年輕學徒—小型 AI 模型。與其只是告訴小型模型正確答案,老師傅 (大模型) 會更直接傳授他做判斷時的「思考過程」跟「眉角」,例如「為什麼我會這樣想?」、「其他選項的可能性有多少?」。這樣一來,小小的學徒模型,用它有限的「腦容量」,也能學到老師傅的「智慧精髓」,表現就能大幅提升!這是一種很高級的訓練技巧,跟遷移學習有關。

舉個例子,當大型語言模型在收到「晚餐:鳳梨」這組輸入時,它下一個會接的詞語跟機率分別為「炒飯:50%,蝦球:30%,披薩:15%,汁:5%」。在知識蒸餾的過程中,它可以把這套機率表一起教給小語言模型,讓小語言模型不必透過自己訓練,也能輕鬆得到這個推理過程。如今,許多高效的小型語言模型正是透過這項技術訓練而成,讓我們得以在資源有限的邊緣設備上,也能部署愈來愈強大的小模型 AI。

但是!即使模型經過了這些科學方法的優化,變得比較「苗條」了,要真正在邊緣環境中處理如潮水般湧現的資料,並且高速、即時、穩定地運作,仍然需要一個夠強的「引擎」來驅動它們。也就是說,要把這些經過科學千錘百鍊、但依然需要大量計算的 AI 模型,真正放到邊緣的現場去發揮作用,就需要一個強大的「硬體平台」來承載。

-----廣告,請繼續往下閱讀-----

邊緣 AI 的強心臟:SKY-602E3 的三大關鍵

像研華的 SKY-602E3 塔式 GPU 伺服器,就是扮演「邊緣 AI 引擎」的關鍵角色!那麼,它到底厲害在哪?

一、核心算力
它最多可安裝 4 張雙寬度 GPU 顯示卡。為什麼 GPU 這麼重要?因為 GPU 的設計,天生就擅長做「平行計算」,這正好就是 AI 模型裡面那種海量數學運算最需要的!

你想想看,那麼多數據要同時處理,就像要請一大堆人同時算數學一樣,GPU 就是那個最有效率的工具人!而且,有多張 GPU,代表可以同時跑更多不同的 AI 任務,或者處理更大流量的數據。這是確保那些科學研究成果,在邊緣能真正「跑起來」、「跑得快」、而且「能同時做更多事」的物理基礎!

二、工程適應性——塔式設計。
邊緣環境通常不是那種恆溫恆濕的標準機房,有時是在工廠角落、辦公室一隅、或某個研究實驗室。這種塔式的機箱設計,體積相對緊湊,散熱空間也比較好(這對高功耗的 GPU 很重要!),部署起來比傳統機架式伺服器更有彈性。這就是把高性能計算,進行「工程化」,讓它能適應台灣多樣化的邊緣應用場景。

三、可靠性
SKY-602E3 用的是伺服器等級的主機板、ECC 糾錯記憶體、還有備援電源供應器等等。這些聽起來很硬的規格,背後代表的是嚴謹的工程可靠性設計。畢竟在邊緣現場,系統穩定壓倒一切!你總不希望 AI 分析跑到一半就掛掉吧?這些設計確保了部署在現場的 AI 系統,能夠長時間、穩定地運作,把實驗室裡的科學成果,可靠地轉化成實際的應用價值。

-----廣告,請繼續往下閱讀-----
研華的 SKY-602E3 塔式 GPU 伺服器,體積僅如後背包大小,卻能輕鬆支援語言模型的運作,實現高效又安全的 AI 解決方案。/ 圖片提供:研華科技

台灣製造 × 在地智慧:打造專屬的邊緣 AI 解決方案

研華科技攜手八維智能,能幫助企業或機構提供客製化的AI解決方案。他們的技術能力涵蓋了自然語言處理、電腦視覺、預測性大數據分析、全端軟體開發與部署,及AI軟硬體整合。

無論是大小型語言模型的微調、工業瑕疵檢測的模型訓練、大數據分析,還是其他 AI 相關的服務,都能交給研華與八維智能來協助完成。他們甚至提供 GPU 與伺服器的租借服務,讓企業在啟動 AI 專案前,大幅降低前期投入門檻,靈活又實用。

台灣有著獨特的產業結構,從精密製造、城市交通管理,到因應高齡化社會的智慧醫療與公共安全,都是邊緣 AI 的理想應用場域。更重要的是,這些情境中許多關鍵資訊都具有高度的「時效性」。像是產線上的一處異常、道路上的突發狀況、醫療設備的即刻警示,這些都需要分秒必爭的即時回應。

如果我們還需要將數據送上雲端分析、再等待回傳結果,往往已經錯失最佳反應時機。這也是為什麼邊緣 AI,不只是一項技術創新,更是一條把尖端 AI 科學落地、真正發揮產業生產力與社會價值的關鍵路徑。讓數據在生成的那一刻、在事件發生的現場,就能被有效的「理解」與「利用」,是將數據垃圾變成數據黃金的賢者之石!

👉 更多研華Edge AI解決方案
👉 立即申請Server租借

-----廣告,請繼續往下閱讀-----
-----廣告,請繼續往下閱讀-----
文章難易度

討論功能關閉中。

0

5
2

文字

分享

0
5
2
研究自閉症成因的新思路:環狀 RNA——專訪中研院基因體研究中心莊樹諄研究員
研之有物│中央研究院_96
・2023/09/22 ・5439字 ・閱讀時間約 11 分鐘

本文轉載自中央研究院「研之有物」,為「中研院廣告」

  • 採訪撰文|寒波
  • 責任編輯|簡克志
  • 美術設計|蔡宛潔

自閉症研究的新方向

臺灣民眾大概都聽說過「自閉症」這個名詞,自閉症是腦部發育障礙導致的複雜疾病,同時受到先天遺傳以及後天環境因素的影響,具體成因依然是個謎,科學家須對遺傳調控方面有更多了解。中央研究院「研之有物」專訪院內基因體研究中心的莊樹諄研究員,他的團隊結合生物學、資訊學以及統計學方法,發現自閉症的風險基因與 RNA 之間有複雜的交互作用,在自閉症患者與非患者的腦部有很大差異。如果持續研究 RNA 的調控機制,或能開闢新的方向進一步理解自閉症。

遺傳性疾病成因——致病基因

根據衛生福利部 2023 年統計數據,我國自閉症患者超過一萬九千人。自閉症的全稱為「自閉症譜系障礙(autism spectrum disorder,簡稱 ASD)」,常見症狀是溝通、表達、社交上有困難,經常出現反復固定的狹窄行為,目前尚無有效的治療藥物。雖然經典電影《雨人》的主角雷蒙或是韓劇《非常律師禹英禑》的禹英禑都令人印象深刻,不過天才或高智商的自閉症患者只是極少數,而且不同患者的症狀輕重差異很大,故稱之為「譜系」(spectrum)。

理解遺傳性疾病,可利用遺傳學與基因體學的研究方法,比較患者與非患者之間的遺傳差異,便有機會尋獲致病的遺傳成因。過往研究得知,有些遺傳性疾病只取決於單一或少數基因的強力影響,例如亨廷頓舞蹈症(Huntington’s disease)、纖維性囊腫(cystic fibrosis)等,致病原因較為單純。

自閉症自然也受到先天遺傳基因影響,然而,它涉及許多影響力不明顯的基因,而且影響每名患者的基因又不盡相同,讓遺傳與症狀的關係更加複雜。如果從 RNA 研究路徑出發呢?RNA 是核糖核酸,具有承載 DNA 訊息和調控基因等功能,相比於其他疾病,在 RNA 層次研究自閉症的另一挑戰是取樣極為困難,自閉症患者的病因位於大腦內部,通常無法直接從人腦取樣分析。所幸的是,若檢視去世者捐贈的大腦樣本,仍有機會一窺自閉症的腦內奧秘。

-----廣告,請繼續往下閱讀-----

莊樹諄分析的數據來自公共存取的 Synapse 資料庫,包括上百位自閉症患者與非自閉症者的資料。人數乍看不多,卻已是當今想同時探討同一個人的基因體(DNA 層次)與轉錄體(RNA 層次)間因果關係的最佳的選擇。藉由此一資料庫蒐集的人類腦部組織轉錄體資料,可全面探討各式各樣的 RNA,包含信使 RNA(messenger RNA,簡稱 mRNA)、小分子 RNA(microRNA,簡稱 miRNA),以及莊樹諄鎖定的研究目標:環狀 RNA(circular RNA)

自閉症成因不明,目前尚無治療用藥物。有自閉症的人需要社會與家人的支持及陪伴,透過療育和行為輔導的協助,慢慢活出自我。
圖|iStock

不能轉譯,但似乎會互相影響?非編碼 RNA

莊樹諄的教育背景是資訊學博士,博士後研究的階段投入生物資訊學,之前主要從事 RNA 與靈長類演化方面的研究,探討多樣性切割、RNA 編輯(RNA editing)等議題,環狀 RNA 則是他近年來特別感興趣的題材。

根據生物資訊學的預測,環狀 RNA 這類長鍊的 RNA 分子有數萬個,但實際上有多少仍不清楚。它們在大腦神經系統特別常見,似乎涉及許多基因調控的工作。莊樹諄目前最關注環狀 RNA 對自閉症的影響,不過他指出這番思路不限於自閉症,阿茲海默症、帕金森氏症、精神分裂症(schizophrenia)等疾病也能用同樣的方法探索。

不過,什麼是環狀 RNA 呢?按照序列長度、作用,可以將 RNA 分為很多種類。DNA 轉錄出的 RNA 經過處理,有些形成 20 多個核苷酸長的短鏈 RNA,如 miRNA 屬於此類。一些較長鏈的 mRNA 又會轉譯成氨基酸,產生各式蛋白質。還有些長鍊的 RNA 不會轉譯,仍然維持長鍊 RNA 的形式發揮作用,統稱為長鍊非編碼 RNA(long noncoding RNA,lncRNA),莊樹諄研究的主角環狀 RNA 大致上被歸屬於一種非編碼 RNA。這麼多種類的 RNA 彼此會互相影響,導致複雜的基因調控。

-----廣告,請繼續往下閱讀-----
長鍊非編碼 RNA(lncRNA)是 Pre-mRNA 選擇性剪接的產物,根據不同的生成方式,產生各種類型的環狀 RNA。
圖|研之有物(資料來源|International Journal of Oncology

由 DNA 轉錄而成的 RNA 是線形,至於「環狀」RNA 一如其名,是 RNA 長鏈首尾相接後形成的環形結構,相比線形 RNA 更加穩定,不容易遭到分解。這些長期存在的圈圈,假如序列可以和短鏈的 miRNA 互補,兩者便有機會結合在一起,讀者可以想像為類似「海綿」(sponge)的吸附作用。

miRNA 原本的工作是結合 mRNA,使其無法轉錄為蛋白質,抑制基因表現。可想而知,一旦 miRNA 被環狀 RNA 吸附,便無法再干擾 mRNA 作用,失去抑制基因表現的效果。因此環狀 RNA 能透過直接影響 miRNA,來間接參與調控其他的下游基因。這便是環狀 RNA 的許多種調控功能中,最常被研究的一種。

左圖是 miRNA 抑制 mRNA 轉譯的一般流程。右圖是環狀 RNA 像海綿一樣吸附 miRNA,讓 miRNA 原本抑制 mRNA 轉譯的「剎車」功能失去作用。因此環狀 RNA 透過直接影響 miRNA,就能間接參與調控其他的下游基因。
圖|研之有物(資料來源|Frontiers in Cardiovascular Medicine

自閉症的成因要往腦部深究,環狀 RNA 又在腦部表現最多,使得莊樹諄好奇當中的奧秘。然而儘管如今 RNA 定序已經很發達,環狀 RNA 由於結構的關係,一般的 RNA 定序方法無法抓到這類環形分子。莊樹諄指出這也是 Synapse 資料庫的一大優點,此一資料庫罕見地包含能找出環狀 RNA 的 RNA 定序資料,配合 miRNA、mRNA 與基因體等資料交叉分析,才有機會闡明環狀 RNA 的角色。

尋找環狀 RNA 和自閉症的關聯

莊樹諄率領的團隊已經發表 2 篇環狀 RNA 與自閉症的研究論文,第一篇論文著重於尋找哪些環狀 RNA 和自閉症有關,研究假設是環狀 RNA 透過 miRNA 間接影響自閉症風險基因 mRNA 的表現。由於環狀 RNA、miRNA 和 mRNA 都多達數萬個,需要統計分析的幫忙。

-----廣告,請繼續往下閱讀-----

首先,將樣本分為有自閉症/無自閉症。要注意每個自閉症患者的基因表現仍有差異,納入夠多樣本一起比較,才有機會看出端倪。

接著,尋找環狀 RNA 和風險基因有顯著相關的搭配組合。例如:高比例自閉症的人,某個環狀 RNA 含量較高時,某個風險基因的 mRNA 表達量也較高,那這組環狀 RNA 和基因就存在正相關;反之則為負相關。

不過相關性很可能只是巧合,所以莊樹諄團隊比對序列,找到符合上述相關性的中介因子「miRNA」。最後再觀察「當排除 miRNA 影響時,環狀 RNA 與風險基因的顯著關係即消失」的組合,這些消失的組合,就是真正共同參與基因調控的「三人組」(環狀 RNA、miRNA、mRNA)。

一番分析後,篩選出的環狀 RNA 共有 60 個,其中涉及與 miRNA、mRNA 的組合總共 8,170 組。人類一共 2 萬個基因,與自閉症有關的調控網路就有 8,000 組之多,數字相當可觀,顯示環狀 RNA 的重要性。莊樹諄用統計手法找出的自閉症風險基因,和過去科學家已知的部分風險基因相符合,未來可以繼續探究在這 8,000 組調控網路中,有哪幾組是真的作用在生物上。

-----廣告,請繼續往下閱讀-----

在資訊與統計分析之外,莊樹諄的團隊也有人進行分子生物學實驗,驗證 RNA 調控網路的相互影響。以體外培養的人類細胞為材料,人為誘導遺傳突變,精確分析特定環狀 RNA 在細胞內分子層次的作用。實驗證實選取的環狀 RNA,確實會結合 miRNA,又影響 mRNA 的表現。

環狀 RNA 會取消原本 miRNA 抑制 mRNA 轉譯的「煞車功能」,進而影響自閉症風險基因的表現。
圖|研之有物(資料來源|中研院基因體研究中心

基因調控是什麼?

莊樹諄強調,使用資料庫的公開資料,好處是經過多方檢視,避免資料品質不一致的問題,缺點是大家都能取得數據,必須要跳脫既有的思考模式才能發現新的結果。他在環狀 RNA 議題的新思路,成為第二篇論文的內容:探討環狀 RNA 的遠端調控(trans-regulation)對自閉症的影響

基因的表達會受到基因調控元件(regulatory element,一段非編碼 DNA 序列)的影響,若調控元件就在基因附近,稱為近端調控(cis-regulation);如果調控元件不在附近,甚至位於另一條染色體上,則為遠端調控。

研究基因調控,通常近端比遠端調控容易,因為近端調控元件(cis-regulatory element)的位置就在基因旁邊,不難尋找;但遠端調控卻沒那麼直觀,作用機制也比較難以想像。實際上常常能發現一個基因的表現,受到多處近端調控,加上多處遠端調控的影響。如果想全方位認識一個基因的表現與調控,最好能都能得知近端與遠端的影響,否則難以掌握調控的全貌。

-----廣告,請繼續往下閱讀-----

莊樹諄的想法是,某些基因被遠端調控的過程,是否有環狀 RNA 參與?具體說來就是某個調控位置,先近端調控其周圍的環狀 RNA 基因,再藉由環狀 RNA 影響基因體上其他位置的基因表現,發揮遠端調控的效果。

如圖顯示,環狀 RNA 表達數量性狀基因座(circQTL)近端調控了環狀 RNA,遠端調控其他基因。莊樹諄的想法是,某些基因被遠端調控的過程,是否有環狀 RNA 的參與?
圖|研之有物(資料來源|Molecular Psychiatry

為了避免用語誤解,有必要先解釋一下什麼是「基因」。基因的概念隨著生物學發展持續改變,如今一般人熟悉的定義,基因是由 DNA 編碼序列構成,能轉錄出 mRNA,再轉譯為蛋白質的訊息載體。不過若將基因定義為會轉錄出 RNA 的 DNA 序列,那麼即使沒有對應的蛋白質產物,只要其衍生的 RNA 產物有所作用,也能視為「基因」,如 miRNA 基因、mRNA 或長鏈非編碼 RNA 基因。既然是有 DNA 編碼的基因,便會受到近端、遠端調控位置影響。

探索遠端調控機制有很多想法,莊樹諄可以說又打開了一條新思路。遠端調控位置不在基因旁邊,亦即基因體任何地方都有機會。假如直接挑戰基因與遠端調控位置的關聯性,可能相關的數量可謂天文數字,而且缺乏生物性的理由支持,找到的目標往往令人半信半疑。

莊樹諄引進環狀 RNA 涉及其中的可能性,尋找「環狀 RNA 基因的近端調控位置」與「目標基因的遠端調控」之交集,大幅縮小了搜索範圍。

-----廣告,請繼續往下閱讀-----
莊樹諄透過「環狀 RNA 基因的近端調控位置」與「目標基因的遠端調控」之交集,找到環狀 RNA 參與遠端調控的證據。
圖|研之有物(資料來源|莊樹諄

一番分析後,研究團隊從自閉症患者的基因體上,定位出 3,619 個近端調控的 circQTLs,這些表達數量性狀基因座相當特殊,可能藉由直接或間接遠端調控兩種模式來調控遠端基因(如上圖)。而這 3,619 個 circQTLs,與環狀 RNA、遠端基因三者形成了八萬六千多組的遠端調控網路。接著團隊使用了不同的統計方法,其中 8,103 組通過多重統計測試,顯示較高的機率是屬於間接遠端調控模式。

莊樹諄團隊透過統計手法,找到相當多基因和調控路徑,雖然目前仍不清楚它們影響自閉症的具體細節,卻無疑讓我們新增一分對自閉症的認識。

莊樹諄指出,這套統計方法或可應用至人類的其他複雜疾病(如思覺失調症),找出基因調控的多個可能路徑,提供臨床醫藥研發更多線索。

生物與資訊的跨領域結合

訪談中問到:為何會從資訊科學跨入到生物領域?莊樹諄回憶,1998 他博士班畢業那年才第一次聽到「生物資訊」這個詞,他基於對生命科學的興趣,以及因為內在性格想往學術轉型的想法,引領他到了中研院。

-----廣告,請繼續往下閱讀-----

莊樹諄接著說,2003 年李文雄院士延攬他進入基因體研究中心,之前他們不曾認識。他感謝李院士帶他進入了分子演化的世界,就此打開了研究視野。在剛開始成立自己的實驗室時,缺少人力,李院士讓當時的博後陳豐奇博士(現為國衛院群體健康科學研究所研究員兼任副所長)與他共同工作。莊樹諄強調,他所有分子演化的觀念與基礎,都是陳博士幫他建立的,如果說陳博士是他的師父,那李院士就是師父的師父了。

如今,莊樹諄在中研院的研究生涯邁入第 25 年,從資訊學背景投入生物學研究,大量使用統計工具,他經常需要持續整合不同領域的觀念與工具,推動自己的新研究。在訪談中,他也感謝諸多研究同儕的協助,特別是幾年前建立分生實驗室時,蕭宏昇研究員及其團隊成員的鼎力相助。

莊樹諄的團隊包含資訊、統計、分子生物三個領域的同仁,來自不同領域,傾聽他人意見自然也特別重要,這是他們實驗室的核心價值之一。莊樹諄認為在科學面前,人是很渺小的,需要互相尊重和理解,方能一起解開科學之謎。

最後,莊樹諄特別強調他個人在相關領域的研究,仍有極巨大的進步空間,感謝研之有物的主動邀訪,期望將來能與更多先進交流學習,也企盼年輕新血加入這個生物資訊的跨領域團隊。

莊樹諄期望在環狀 RNA 與基因調控網路的研究基礎之上,可以對自閉症這個複雜疾病的調控機制,提供更多科學線索,幫助臨床上的診斷和治療。
圖|研之有物
-----廣告,請繼續往下閱讀-----
研之有物│中央研究院_96
296 篇文章 ・ 3652 位粉絲
研之有物,取諧音自「言之有物」,出處為《周易·家人》:「君子以言有物而行有恆」。探索具體研究案例、直擊研究員生活,成為串聯您與中研院的橋梁,通往博大精深的知識世界。 網頁:研之有物 臉書:研之有物@Facebook

0

1
1

文字

分享

0
1
1
精神個案系列:說自閉症患者聽得進去的「畫」
胡中行_96
・2023/05/29 ・1633字 ・閱讀時間約 3 分鐘

在美國賓州有個 19 歲的非裔青年,近來狂妄自大、幻想戀情、行為怪異,而且憂鬱又想自殺。他一廂情願地認定自己能拯救宇宙,還有某位女同學真心愛他。住院病房的醫師,開立抗精神病藥物 olanzapine,試圖將他拉回現實;以及選擇性血清素再吸收抑制劑 fluoxetine,以化解其心中執念。不過,藥物並非萬能,有些事情還是得仰賴諮商。[1]

泛自閉症障礙

這名青年罹患情感性思覺失調症(schizoaffective disorder),難免有些極端情緒和不切實際的想法,[1, 2]醫療團隊必要跟他懇談。然而,他非住院原因的泛自閉症障礙(autism spectrum disorder),卻是溝通的挑戰。[1]自閉者的腦部發育與眾不同,雖然不減損智能,但是會影響其感知,以及與外界互動的方式。[3]換句話說,別人想講的內容,青年未必不能理解,問題是要怎麼讓他先聽進去。

泛自閉症障礙的症狀繁多,以下是其中幾個例子:

  • 缺乏情緒或非言語的交流,比方說:不太有表情,或點頭、搖頭等動作。[3]
  • 說話時,不看對方的眼睛。[3]
  • 偏好規律;當情況改變,就非常焦慮。[3]
  • 對某些感官刺激,像是聲音或疼痛等,有異常強烈的反應。[3]
  • 鍾情於狹隘的興趣,僅談論特定的議題,或者只玩某種玩具。[3]
  • 不擅長處理情緒。[3]
  • 無法維持穩定的人際關係,因而感到孤獨。[3]

儘管溝通品質不甚理想,該說的話還是得說。治療團隊看青年的「戀愛」,該是郎有情妹無意,便勸他想想對方就好,別致電或登門騷擾。不曉得到底聽進去幾分,青年最後勉強同意。[1]

-----廣告,請繼續往下閱讀-----

不當舉止

出院才一週,青年又被送回來了,這次展露殺人意圖:宣稱家人若阻止他拜訪「女友」,他就神擋殺神,佛擋殺佛。根據其姊妹的說法,青年之前返家後,曾接近該「女友」的住處,因此觸景生情,無法自拔。看來上次住院期間的好言相勸,效果微弱。現在滿腦子性愛的他,對病房裡的女性病友,舉止頗不恰當。醫師將他的抗精神病藥物從 olanzapine,換成 haloperidol,然後又改為 aripiprazole;同時,停止造成副作用的 fluoxetine。多數的精神症狀都改善了,唯獨矯正舉止的方面,仍有待加強。[1]

畫作意涵

青年常講,有顆小行星將要撞擊地球,所有人都會死,而他務必救世。這個主題,也頻繁地出現在他的畫作之中。他闡述創作理念的時候,總是長篇大論;換作醫師問診,就變得言簡意賅。幾週來,醫療團隊不斷表達對其作品的好奇。有天,青年終於忍不住解釋:他母親的伴侶曾虐待他與姊妹。醫療團隊恍然大悟,原來圖畫的意思是母親的伴侶如同小行星,所做的惡行令大家遭殃。[1]

「耶!!」雙眼閃爍著幸遇知音的光芒,青年露出一抹難得的微笑,主動跟醫療人員碰拳。[1]

圖/Law & Order on GIPHY

以畫溝通

總算掌握溝通技巧的醫療團隊,決心拾起畫筆,放手一搏。他們畫了一顆快要被小行星撞擊的地球,外頭包著由人群組成的防護罩。繪製的過程吸引了青年的注意,團隊藉機向他曉以大義:包含他在內的每個人,都擔當保護地球的重責大任。他可以給大家安全感,一起防範攻擊。青年聽完說,懂。[1]

-----廣告,請繼續往下閱讀-----

又過了幾週,他在團體治療的活動中,向眾人表示:「我們要與人為善…這樣地球上的每個人才都能存活。」原來只要方法對了,他不僅能聽懂、記得,還會傳道。[1]

2021 年於期刊上發表此個案報告的作者群中,大概有《星艦迷航記:銀河飛龍》(Star Trek : The Next Generation)的劇迷。他們將與自閉青年的互動經驗,比喻做劇情裡兩個語言不通的外星種族,找到創意的溝通方式。由於這個重大突破,青年學會了道理,行為舉止也不再使他人困擾。[1]

  

  1. Kim E, Martin K, Karper L, et al. (2021) ‘Darmok and Jalad at the Psych Ward: A Case Demonstration of How to Creatively Communicate with a 19-Year-Old Patient with Autism Spectrum Disorder’. Case Reports in Psychiatry, 6690564.
  2. Schizoaffective disorder’. (09 NOV 2019) Mayo Clinic.
  3. Autism spectrum disorder (ASD)’. (JUN 2022) Health Direct.
-----廣告,請繼續往下閱讀-----
胡中行_96
169 篇文章 ・ 67 位粉絲
曾任澳洲臨床試驗研究護理師,以及臺、澳劇場工作者。 西澳大學護理碩士、國立台北藝術大學戲劇學士(主修編劇)。邀稿請洽臉書「荒誕遊牧」,謝謝。