0

0
0

文字

分享

0
0
0

用「想像」來練習,也能跟「實際」練習一樣?意象訓練是怎麼做到的?

Yulina_96
・2020/04/01 ・1866字 ・閱讀時間約 3 分鐘 ・SR值 505 ・六年級

-----廣告,請繼續往下閱讀-----

  • 作者/Yulina Huang

意象訓練對於許多運動員和音樂家都是極為重要的一個訓練環節。意象訓練指的是在腦海中演練我們曾經實際進行的訓練動作,目的是幫助我們替必須實際執行的動作做好準備,例如為了學習如何操作某個你喜歡的體育項目的動作,你就可以在腦海裡想像自己正在做這個動作,以此作為練習。

畢竟人不可能一直都在練習,即便有足夠的體力與熱忱,過度訓練還是會操壞身體。如果可以借由意象訓練,可以幫助自己進行更多身體無法負荷的訓練。儘管身體沒有真的在動,但在腦海裡演練,仍然可以達到同樣的效果。

像是大提琴家馬友友,他在搭乘飛機時大提琴必須放在行李艙,不過儘管坐在機位上,他曾表示自己會在腦海中排演全曲,而且效果跟自己拉琴時一樣好。

用想像練習罰球,同樣能提升進球表現

美國韋恩州立大學的研究,為了評估意象訓練對運動技能表現的影響,實驗者克拉克 (L. Verdelle Clark) 將一百四十四名高中學生隨機分成兩組參與籃球罰球活動,一組讓他們身體力行練習罰球,另外一組則只是透過想像來練習。

-----廣告,請繼續往下閱讀-----

在實驗期間共十四個上課日當中,實際練習罰球的那組被要求每天投五次罰球作為熱身,以及二十五次實際練習的罰球;意象訓練組則被要求透過想像練習相同的罰球量。

研究者在第一天和第十四天都分別測試了兩組球員,發現這兩組當中的中級和精熟等級的球員,進步程度差不多。於是克拉克得出了一個結論,在增強罰球表現上,意象訓練幾乎與實際訓練有同等的效果。

實際操作之餘,透過意象訓練,也能夠達到與實際訓練程度同等的成效。圖\pexels

大腦裡最原始的學習機制:鏡像神經元

在 Frontiers in human neuroscience 期刊中有個研究,匯集了認知神經科學,實驗神經心理學,運動與運動科學,臨床神經心理學和臨床神經學在內一系列學科,意圖闡明意象訓練所涉及的潛在神經機制。目前認為,意象訓練很可能跟我們大腦裡最原始的學習機制、也就是專門管理我們模仿行為的鏡像神經元有關。

一九九二年,一位義大利神經學家發現一隻沒得吃的猴子在看見其他猴子吃東西時,牠大腦同樣的部分竟然活化起來。雖然沒有真的在吃,但活化的形態甚至跟真正吃的時候完全相同,就是這個實驗使科學家發掘了大腦學習機制的奧秘:鏡像神經元。

-----廣告,請繼續往下閱讀-----

模仿其實就是學習的根本。嬰兒看到別人說話時,鏡像神經元便會啟動,讓掌管舌頭嘴唇的細胞活化,即使不是真正在說話,但藉由模仿並在讓相關細胞活化,慢慢就學會說話了。還有鋼琴家在腦海裡進行意象訓練時,沒有彈琴的動作,可是大腦被活化的區塊居然跟演奏時是一樣的位置。日常生活中,我們看到別人打哈欠,自己會覺得想睡或被傳染也打起哈欠來,亦是鏡像神經元的作用。

生活中是否也有過看到別人打哈欠,自己也想打哈欠的經驗呢?這有可能式鏡像神經元在作祟喔!圖\GIPHY

因為意象訓練能活化與實際訓練時一樣的神經迴路,不斷的進行意象訓練,可以使神經迴路變得更大更寬闊,更快更有效的神經路徑便會促使我們對某個動作更加熟練。由此,透過想像自己正在練習,確實能夠持續精進技巧。

沒場地沒體力?在腦袋裡想也是個好訓練

在運動心理學的領域中,使用意象訓練來提升運動表現已經長達數十年。隨著相關機制的發現,意象訓練的觀念不再僅僅只是一種傳說中的訓練法,轉變成為了基於神經科學的有效方法。

近年來,臨床神經心理學和神經病學也已經開始使用意象訓練,來改善通常需要實際身體練習的動作。

-----廣告,請繼續往下閱讀-----
透過鏡像神經元使大腦模擬功能對等,意象訓練可以增強並改善實際身體練習的動作。圖\GIPHY

想要學習什麼,從看別人怎麼做開始,活化這個部份的大腦,好好運用大腦的鏡像神經元。當然要完成學習還必須要親自動手,而達到一定程度,就可以多多利用意象訓練來幫忙。而當沒有那麼多的時間或是適當的場地可以練習,意象訓練也會是一個不錯的解方,能夠不限場域不限時間點的持續磨練技藝、持續進步。

參考資料

  1. Clark, L. V. (1960). Effect of mental practice on the development of a certain motor skill. Research Quarterly of the American Association for Health, Physical Education, & Recreation, 31, 560–569.
  2. di Pellegrino G, Fadiga L, Fogassi L, Gallese V, Rizzolatti G. 1992. Understanding motor events: a neurophysiological study. Exp. Brain Res. 91, 176–180. (10.1007/BF00230027)
  3. Ietswaart, Magdalena et al. “Editorial: Mental practice: clinical and experimental research in imagery and action observation.” Frontiers in human neuroscience vol. 9 573. 15 Oct. 2015, doi:10.3389/fnhum.2015.00573
  • Yulina Huang|文字內容創作者。從生活小事出發,書寫自我成長與人生,樂於分享。希望創作出的文章讓大家看了以後,能夠獲得前進的勇氣,即使只有一點點也好。現經營粉絲專頁提筆心手以及個人部落格,從生活中提煉值得用心體會的觀點,幫助你生成新的思路。
文章難易度
Yulina_96
5 篇文章 ・ 1 位粉絲
文字內容創作者,從生活小事出發,書寫自我成長與人生,樂於分享。希望創作出的文章讓大家看了以後,能夠獲得前進的勇氣,即使只有一點點也好。現經營粉絲專頁提筆心手以及個人部落格,從生活中提煉值得用心體會的觀點,幫助你生成新的思路。

0

3
3

文字

分享

0
3
3
圖形處理單元與人工智慧
賴昭正_96
・2024/06/24 ・6944字 ・閱讀時間約 14 分鐘

  • 作者/賴昭正|前清大化學系教授、系主任、所長;合創科學月刊

我擔心人工智慧可能會完全取代人類。如果人們能設計電腦病毒,那麼就會有人設計出能夠自我改進和複製的人工智慧。 這將是一種超越人類的新生命形式。

——史蒂芬.霍金(Stephen Hawking) 英國理論物理學家

大約在八十年前,當第一台數位計算機出現時,一些電腦科學家便一直致力於讓機器具有像人類一樣的智慧;但七十年後,還是沒有機器能夠可靠地提供人類程度的語言或影像辨識功能。誰又想到「人工智慧」(Artificial Intelligent,簡稱 AI)的能力最近十年突然起飛,在許多(所有?)領域的測試中擊敗了人類,正在改變各個領域——包括假新聞的製造與散佈——的生態。

圖形處理單元(graphic process unit,簡稱 GPU)是這場「人工智慧」革命中的最大助手。它的興起使得九年前還是個小公司的 Nvidia(英偉達)股票從每股不到 $5,上升到今天(5 月 24 日)每股超過 $1000(註一)的全世界第三大公司,其創辦人(之一)兼首席執行官、出生於台南的黃仁勳(Jenson Huang)也一躍成為全世界排名 20 內的大富豪、台灣家喻戶曉的名人!可是多少人了解圖形處理單元是什麼嗎?到底是時勢造英雄,還是英雄造時勢?

黃仁勳出席2016年台北國際電腦展
Nvidia 的崛起究竟是時勢造英雄,還是英雄造時勢?圖/wikimedia

在回答這問題之前,筆者得先聲明筆者不是學電腦的,因此在這裡所能談的只是與電腦設計細節無關的基本原理。筆者認為將原理轉成實用工具是專家的事,不是我們外行人需要了解的;但作為一位現在的知識分子或公民,了解基本原理則是必備的條件:例如了解「能量不滅定律」就可以不用仔細分析,即可判斷永動機是騙人的;又如現在可攜帶型冷氣機充斥市面上,它們不用往室外排廢熱氣,就可以提供屋內冷氣,讀者買嗎?

CPU 與 GPU

不管是大型電腦或個人電腦都需具有「中央處理單元」(central process unit,簡稱 CPU)。CPU 是電腦的「腦」,其電子電路負責處理所有軟體正確運作所需的所有任務,如算術、邏輯、控制、輸入和輸出操作等等。雖然早期的設計即可以讓一個指令同時做兩、三件不同的工作;但為了簡單化,我們在這裡所談的工作將只是執行算術和邏輯運算的工作(arithmetic and logic unit,簡稱 ALU),如將兩個數加在一起。在這一簡化的定義下,CPU 在任何一個時刻均只能執行一件工作而已。

-----廣告,請繼續往下閱讀-----

在個人電腦剛出現只能用於一般事物的處理時,CPU 均能非常勝任地完成任務。但電腦圖形和動畫的出現帶來了第一批運算密集型工作負載後,CPU 開始顯示心有餘而力不足:例如電玩動畫需要應用程式處理數以萬計的像素(pixel),每個像素都有自己的顏色、光強度、和運動等, 使得 CPU 根本沒辦法在短時間內完成這些工作。於是出現了主機板上之「顯示插卡」來支援補助 CPU。

1999 年,英偉達將其一「具有集成變換、照明、三角形設定/裁剪、和透過應用程式從模型產生二維或三維影像的單晶片處理器」(註二)定位為「世界上第一款 GPU」,「GPU」這一名詞於焉誕生。不像 CPU,GPU 可以在同一個時刻執行許多算術和邏輯運算的工作,快速地完成圖形和動畫的變化。

依序計算和平行計算

一部電腦 CPU 如何計算 7×5+6/3 呢?因每一時刻只能做一件事,所以其步驟為:

  • 計算 7×5;
  • 計算 6/3;
  • 將結果相加。

總共需要 3 個運算時間。但如果我們有兩個 CPU 呢?很多工作便可以同時(平行)進行:

-----廣告,請繼續往下閱讀-----
  • 同時計算 7×5 及 6/3;
  • 將結果相加。

只需要 2 個運算時間,比單獨的 CPU 減少了一個。這看起來好像沒節省多少時間,但如果我們有 16 對 a×b 要相加呢?單獨的 CPU 需要 31 個運算的時間(16 個 × 的運算時間及 15 個 + 的運算時間),而有 16 個小 CPU 的 GPU 則只需要 5 個運算的時間(1 個 × 的運算時間及 4 個 + 的運算時間)!

現在就讓我們來看看為什麼稱 GPU 為「圖形」處理單元。圖一左圖《我愛科學》一書擺斜了,如何將它擺正成右圖呢? 一句話:「將整個圖逆時針方向旋轉 θ 即可」。但因為左圖是由上百萬個像素點(座標 x, y)組成的,所以這句簡單的話可讓 CPU 忙得不亦樂乎了:每一點的座標都必須做如下的轉換

x’ = x cosθ + y sinθ

y’ = -x sinθ+ y cosθ

-----廣告,請繼續往下閱讀-----

即每一點均需要做四個 × 及兩個 + 的運算!如果每一運算需要 10-6 秒,那麼讓《我愛科學》一書做個簡單的角度旋轉,便需要 6 秒,這豈是電動玩具畫面變化所能接受的?

圖形處理的例子

人類的許多發明都是基於需要的關係,因此電腦硬件設計家便開始思考:這些點轉換都是獨立的,為什麼我們不讓它們同時進行(平行運算,parallel processing)呢?於是專門用來處理「圖形」的處理單元出現了——就是我們現在所知的 GPU。如果一個 GPU 可以同時處理 106 運算,那上圖的轉換只需 10-6 秒鐘!

GPU 的興起

GPU 可分成兩種:

  • 整合式圖形「卡」(integrated graphics)是內建於 CPU 中的 GPU,所以不是插卡,它與 CPU 共享系統記憶體,沒有單獨的記憶體組來儲存圖形/視訊,主要用於大部分的個人電腦及筆記型電腦上;早期英特爾(Intel)因為不讓插卡 GPU 侵蝕主機的地盤,在這方面的研發佔領先的地位,約佔 68% 的市場。
  • 獨立顯示卡(discrete graphics)有不與 CPU 共享的自己專用內存;由於與處理器晶片分離,它會消耗更多電量並產生大量熱量;然而,也正是因為有自己的記憶體來源和電源,它可以比整合式顯示卡提供更高的效能。

2007 年,英偉達發布了可以在獨立 GPU 上進行平行處理的軟體層後,科學家發現獨立 GPU 不但能夠快速處理圖形變化,在需要大量計算才能實現特定結果的任務上也非常有效,因此開啟了為計算密集型的實用題目編寫 GPU 程式的領域。如今獨立 GPU 的應用範圍已遠遠超出當初圖形處理,不但擴大到醫學影像和地震成像等之複雜圖像和影片編輯及視覺化,也應用於駕駛、導航、天氣預報、大資料庫分析、機器學習、人工智慧、加密貨幣挖礦、及分子動力學模擬(註三)等其它領域。獨立 GPU 已成為人工智慧生態系統中不可或缺的一部分,正在改變我們的生活方式及許多行業的遊戲規則。英特爾在這方面發展較遲,遠遠落在英偉達(80%)及超微半導體公司(Advance Micro Devices Inc.,19%,註四)之後,大約只有 1% 的市場。

-----廣告,請繼續往下閱讀-----
典型的CPU與GPU架構

事實上現在的中央處理單元也不再是真正的「單元」,而是如圖二可含有多個可以同時處理運算的核心(core)單元。GPU 犧牲大量快取和控制單元以獲得更多的處理核心,因此其核心功能不如 CPU 核心強大,但它們能同時高速執行大量相同的指令,在平行運算中發揮強大作用。現在電腦通常具有 2 到 64 個核心;GPU 則具有上千、甚至上萬的核心。

結論

我們一看到《我愛科學》這本書,不需要一點一點地從左上到右下慢慢掃描,即可瞬間知道它上面有書名、出版社等,也知道它擺斜了。這種「平行運作」的能力不僅限於視覺,它也延伸到其它感官和認知功能。例如筆者在清華大學授課時常犯的一個毛病是:嘴巴在講,腦筋思考已經不知往前跑了多少公里,常常為了追趕而越講越快,將不少學生拋到腦後!這不表示筆者聰明,因為研究人員發現我們的大腦具有同時處理和解釋大量感官輸入的能力。

人工智慧是一種讓電腦或機器能夠模擬人類智慧和解決問題能力的科技,因此必須如人腦一樣能同時並行地處理許多資料。學過矩陣(matrix)的讀者應該知道,如果用矩陣和向量(vector)表達,上面所談到之座標轉換將是非常簡潔的(註五)。而矩陣和向量計算正是機器學習(machine learning)演算法的基礎!也正是獨立圖形處理單元最強大的功能所在!因此我們可以了解為什麼 GPU 會成為人工智慧開發的基石:它們的架構就是充分利用並行處理,來快速執行多個操作,進行訓練電腦或機器以人腦之思考與學習的方式處理資料——稱為「深度學習」(deep learning)。

黃仁勳在 5 月 22 日的發布業績新聞上謂:「下一次工業革命已經開始了:企業界和各國正與英偉達合作,將價值數萬億美元的傳統資料中心轉變為加速運算及新型資料中心——人工智慧工廠——以生產新商品『人工智慧』。人工智慧將為每個產業帶來顯著的生產力提升,幫助企業降低成本和提高能源效率,同時擴大收入機會。」

附錄

人工智慧的實用例子:下面一段是微軟的「copilot」代書、谷歌的「translate」代譯之「one paragraph summary of GPU and AI」。讀完後,讀者是不是認為筆者該退休了?

-----廣告,請繼續往下閱讀-----

GPU(圖形處理單元)和 AI(人工智慧)之間的協同作用徹底改變了高效能運算領域。GPU 具有平行處理能力,特別適合人工智慧和機器學習所需的複雜資料密集運算。這導致了影像和視訊處理等領域的重大進步,使自動駕駛和臉部辨識等技術變得更加高效和可靠。NVIDIA 開發的平行運算平台 CUDA 進一步提高了 GPU 的效率,使開發人員能夠透過將人工智慧問題分解為更小的、可管理的、可同時處理的任務來解決這些問題。這不僅加快了人工智慧研究的步伐,而且使其更具成本效益,因為 GPU 可以在很短的時間內執行與多個 CPU 相同的任務。隨著人工智慧的不斷發展,GPU 的角色可能會變得更加不可或缺,推動各產業的創新和新的可能性。大腦透過神經元網路實現這一目標,這些神經元網路可以獨立但有凝聚力地工作,使我們能夠執行複雜的任務,例如駕駛、導航、觀察交通信號、聽音樂並同時規劃我們的路線。此外,研究表明,與非人類動物相比,人類大腦具有更多平行通路,這表明我們的神經處理具有更高的複雜性。這個複雜的系統證明了我們認知功能的卓越適應性和效率。我們可以一邊和朋友聊天一邊走在街上,一邊聽音樂一邊做飯,或一邊聽講座一邊做筆記。人工智慧是模擬人類腦神經網路的科技,因此必須能同時並行地來處理許多資料。研究人員發現了人腦通訊網路具有一個在獼猴或小鼠中未觀察獨特特徵:透過多個並行路徑傳輸訊息,因此具有令人難以置信的多任務處理能力。

註解

(註一)當讀者看到此篇文章時,其股票已一股換十股,現在每一股約在 $100 左右。

(註二)組裝或升級過個人電腦的讀者或許還記得「英偉達精視 256」(GeForce 256)插卡吧?

(註三)筆者於 1984 年離開清華大學到 IBM 時,就是參加了被認為全世界使用電腦時間最多的量子化學家、IBM「院士(fellow)」Enrico Clementi 的團隊:因為當時英偉達還未有可以在 GPU 上進行平行處理的軟體層,我們只能自己寫軟體將 8 台中型電腦(非 IBM 品牌!)與一大型電腦連接來做平行運算,進行分子動力學模擬等的科學研究。如果晚生 30 年或許就不會那麼辛苦了?

-----廣告,請繼續往下閱讀-----

(註四)補助個人電腦用的 GPU 品牌到 2000 年時只剩下兩大主導廠商:英偉達及 ATI(Array Technology Inc.)。後者是出生於香港之四位中國人於 1985 年在加拿大安大略省成立,2006 年被超微半導體公司收購,品牌於 2010 年被淘汰。超微半導體公司於 2014 年 10 月提升台南出生之蘇姿豐(Lisa Tzwu-Fang Su)博士為執行長後,股票從每股 $4 左右,上升到今天每股超過 $160,其市值已經是英特爾的兩倍,完全擺脫了在後者陰影下求生存的小眾玩家角色,正在挑戰英偉達的 GPU 市場。順便一題:超微半導體公司現任總裁(兼 AI 策略負責人)為出生於台北的彭明博(Victor Peng);與黃仁勳及蘇姿豐一樣,也是小時候就隨父母親移居到美國。

(註五)

延伸閱讀

  • 熱力學與能源利用」,《科學月刊》,1982 年 3 月號;收集於《我愛科學》(華騰文化有限公司,2017 年 12 月出版),轉載於「嘉義市政府全球資訊網」。
  • 網路安全技術與比特幣」,《科學月刊》,2020 年 11 月號;轉載於「善科教育基金會」的《科技大補帖》專欄。
文章難易度

討論功能關閉中。

賴昭正_96
43 篇文章 ・ 56 位粉絲
成功大學化學工程系學士,芝加哥大學化學物理博士。在芝大時與一群留學生合創「科學月刊」。一直想回國貢獻所學,因此畢業後不久即回清大化學系任教。自認平易近人,但教學嚴謹,因此穫有「賴大刀」之惡名!於1982年時當選爲 清大化學系新一代的年青首任系主任兼所長;但壯志難酬,兩年後即辭職到美留浪。晚期曾回台蓋工廠及創業,均應「水土不服」而鎩羽而歸。正式退休後,除了開始又爲科學月刊寫文章外,全職帶小孫女(半歲起);現已成七歲之小孫女的BFF(2015)。首先接觸到泛科學是因爲科學月刊將我的一篇文章「愛因斯坦的最大的錯誤一宇宙論常數」推薦到泛科學重登。

0

3
4

文字

分享

0
3
4
真的能「感同身受」嗎?我感受到了你的感受——《我是誰》
啟示
・2022/11/11 ・2543字 ・閱讀時間約 5 分鐘

-----廣告,請繼續往下閱讀-----

感同身受真的存在嗎?

有些人在看到卡爾.梅(Karl May)的小說拍成的電影裡溫尼圖(Winnetou)死去的那一刻掉下淚來;有些人為電影《油炸綠番茄》裡蘿絲(Roth)的死而哭;還有一些人在看到小說《哈利波特》裡鄧不利多(Dumbledore)教授被殺時流淚。

我們在看悲傷的電影或書的時候會哭,是因為我們設身處地去想像故事裡那些英雄們的感覺,彷彿他們的痛苦就是我們自己切身的痛苦一般;我們跟著笑,我們也為影片中的怪物和心理變態情節感到害怕,就好像他們威脅到了我們一樣。

我們在電影或書的時候會跟著劇情有情緒起伏,是因為我們設身處地去想像故事裡那些英雄們的感覺。圖/pixabay

這些是每個人都有過的經驗,但它們是如何產生的呢?為什麼我們能夠了解他人的感覺?為什麼我們會在電影院裡起雞皮疙瘩,雖然在那裡一點也不危險?為什麼他人的感覺會感染到我身上呢?

答案很簡單:我們能夠感同身受,是因為他人(在現實世界或電影裡)的感覺喚起了我們心中相同的感覺;而這很可能不僅存在於人類。

-----廣告,請繼續往下閱讀-----

根據德瓦爾在麥迪森研究中心的觀察,母獼猴法恩的姊姊顯然也感覺到法恩的痛苦和恐懼。然而,即使能與他人「感同身受」或「心有戚戚焉」是如此理所當然,對科學界來說,直到近幾年,這仍是個完全無解的謎。令人驚訝的是,第一位提出具有科學說服力的學者,在其所屬的專業領域之外仍然鮮為人知。

腦部研究的佼佼者:賈科莫.里佐拉蒂

賈科莫.里佐拉蒂(Giacomo Rizzolatti)經常被人們和愛因斯坦相提並論:蓬亂的白髮、嘴上同樣蓄著的白鬍子,以及臉上狡黠的微笑。不過他們的相似處不僅止於外表。

賈科莫.里佐拉蒂。圖/Wikipedia

對許多腦部學者來說,這位活潑開朗的義大利人是學界裡的佼佼者;他將腦部研究推向一個新的層次。不過,他的研究領域並不是最熱門的。里佐拉蒂探究控制行為的神經細胞,即所謂的行為神經元,已經超過 20 年了。

這個比較無趣的領域,因為啟動行為的「運動皮質」始終被視為比較遲鈍的腦區。大部分的學者都想:如果我們能夠研究像語言、智力或感覺等複雜的領域,又何必對簡單的肢體動作感興趣呢?

-----廣告,請繼續往下閱讀-----

看來似乎是如此。不過,情況在 1992 年有所轉變,而且這個轉變令大家都跌破眼鏡。里佐拉蒂工作的所在地帕瑪(Parma)是歐洲最古老的大學,位於城市邊緣的醫學院卻是個非常前衛的雪白色建築樓群。

1990 年代初期,里佐拉蒂身邊的腦部學者從事一項很不尋常的研究。他們知道,特定的行為具有「傳染」的效果,發笑、打哈欠、甚至談話者的身體姿勢,都能立刻引起對方的模仿。在某些猿猴也出現相同的現象,某些種類甚至以喜歡模仿聞名。

不過研究人員偏偏決定以一種一般來說不會模仿同伴的豬尾獼猴作為研究對象。里佐拉蒂和幾位較年輕的同事伽列賽(Gallese)、佛格西(Fogassi)和迪派勒吉諾(di Pellegrino),將電極接到一隻豬尾獼猴的腦部,然後把一粒核桃放在地上,並觀察當猴子快速伸手抓取核桃時某個行為神經元如何反應。

研究者將電極接到一隻豬尾獼猴的腦部,然後把一粒核桃放在地上,並觀察當猴子快速伸手抓取核桃時某個行為神經元如何反應。圖/Wikipedia

鏡像神經元的發現

至此一切都算正常,不過,這時驚人的情況發生了:研究人員把同一隻猴子放到一片玻璃後方,這次牠抓不到核桃了,只能眼睜睜看著里佐拉蒂的助手伸手抓取核桃。這時猴子的腦部發生了什麼現象呢? 當牠注視別人拿牠的核桃時,相同的神經元產生反應,就像牠之前自己伸手去抓核桃一樣,雖然牠的手並沒有移動,牠的精神卻想像了這個動作。

-----廣告,請繼續往下閱讀-----

科學家們無法相信自己所看到的:無論猴子是親手完成某個動作,亦或只是精神想像了訓練師所做的動作,其神經細胞都做了完全一樣的工作。

在此之前,從未有人觀察腦部如何模擬現實裡沒有發生的動作,而李奧那多.佛格西(Leonardo Fogassi)則是第一人。不過成功應該是屬於整個團隊的。里佐拉蒂發明一個新的概念,他把這個在被動想像時卻如真實行為般於腦部引發相同反應的神經細胞稱為「鏡像神經元」,一個新的神奇術語就此誕生了。

「親身經歷」和「感同身受」的差別

首先是義大利,接著是全世界大學和研究中心的腦部學者,都立刻投入鏡像神經元的研究行列。如果人的腦部對於我們的「親身經歷」和只是「認真觀察並感同身受」的反應沒有差別的話,那麼這不正是了解我們社會行為的關鍵嗎?

至少鏡像神經元是其中一個重要部分。它位於額葉的前額葉皮質,一個稱為「腦島」的區域。然而這個腦島卻不同於「社會中心」,也就是到目前為止所說的「腹側區」。

-----廣告,請繼續往下閱讀-----
大腦額葉和頂葉的位置,從左側看。額下葉是藍色區域的下部,頂葉上葉是黃色區域的上部。圖/Wikipedia

其中的差別也很清楚,因為鏡像神經元雖然和無意識的「移情作用」有關,卻和更大範圍的計畫、決定或意願無關。到目前為止,我們還不很清楚這些腦區如何交互作用。

里佐拉蒂於 6 年前以圖像程序說明,人類的鏡像神經元顯然也位於負責語言的兩個腦區之一(布羅卡區)附近,這使得學界特別振奮。

荷蘭格羅寧根(Groningen)大學的腦部學者不久前在「聽到聲響」和「鏡像神經元發出信號」之間發現了有趣的關聯。當人聽到開飲料罐氣泡冒出的聲音時,腦中的反應就跟他自己開飲料罐完全一樣;也就是說,單憑聲音就足以讓人經歷到整個情況。

——本文摘自《我是誰:對自我意識與「生而為人」的哲學思考》,2022 年 10 月,啟示出版,未經同意請勿轉載。

-----廣告,請繼續往下閱讀-----

0

4
4

文字

分享

0
4
4
「想像力」幫費爾普斯奪下了23面金牌,難道,我也可以嗎?——《心念的力量》
商業周刊
・2022/08/20 ・2148字 ・閱讀時間約 4 分鐘

泳壇的傳奇人物——「飛魚」費爾普斯

美國游泳健將麥可.費爾普斯(Michael Phelps)擁有二十八枚獎牌(其中二十三枚是金牌),至今仍然是最多榮譽獎牌的奧運選手。

費爾普斯的能力似乎超越了人體的極限,一些記者質疑他驚人的表現實在是「好到令人難以置信」。然而,費爾普斯在職業生涯中自願參加許多禁藥測試,也都全部通過。

也許他驚人的比賽成就可以用另一個異乎尋常的優勢來清楚地解釋,亦即他非凡的觀想能力。

在訓練期間、或為重大比賽做賽前準備時,他會想像一場完美的比賽。

他在《夢想,沒有極限》(No Limits)的自傳中寫道:「我能看到起點、游泳姿勢、蹬牆、轉身、終點、策略等所有細節。一切的想像,就像我在腦海中規畫了一場比賽,而這種規畫有時似乎讓比賽結果一如我所預期的」。他認為,正是這種能力幫助他成為最偉大的奧運選手,而不是純粹的身體能力。

-----廣告,請繼續往下閱讀-----
費爾普斯是擁有最多奧運獎牌的游泳選手。圖/Getty Images

激發想像力、強化運動表現

科學實驗已經證實,觀想的效果是深遠的,對職業運動員和休閒鍛鍊者來說都是如此,最引人注目和驚人的影響在於人的肌肉力量。

在一項研究中,科學家在進行某種形式的心理訓練之前,測量了參與者的前臂力量。這項任務很無趣,但是很簡單:他們必須每天花十五分鐘,每週五天,想像自己在用前臂舉重物,例如一張桌子。

一些人被要求從內在觀想來做這件事,想像自己在舉重的動作;另一些人被要求從外在觀想來做這件事,就像他們從自己身體外面看自己一樣。對照組則完全沒有進行任何練習。

六週後,結果令人驚訝,運用自我內在觀想的人,力量新增了 11%——儘管這組人沒有任何實際的舉重練習。那些運用外在觀想的人顯示大約 5% 微幅的改善(但研究人員無法確定這具有統計顯著性),而對照組實際上似乎稍微弱一些。

-----廣告,請繼續往下閱讀-----

與其他改善健康的心理技巧一樣,如果體力完全只是由肌肉質量決定,將會無法解釋這些發現。然而,根據心理生物學新的運動觀點,這一切是很有道理的。

請記住,運動表現取決於大腦對身體能達到的目標和運動強度的預期,然後再藉此規畫肌肉的力量和疲勞程度。

心理意象可以提高身體對自身能力的感知、增強發送給肌肉的訊號,並改善運動協調性。圖/Pexels

心理意象可以讓你有意識地完善這些預測、並提高身體對自身能力的感知、增強發送給肌肉的訊號,並改善運動協調性。

正如諾克斯的研究,即使在運動極度疲勞時,運動員通常也沒有運用到大部分的肌肉纖維,但這些心理意象可能會鼓勵身體召喚更多沒用到的肌肉纖維。

-----廣告,請繼續往下閱讀-----

針對運動員對於賽事進行生動觀想的腦部掃描顯示,對身體運動的想像會啟動大腦內部主要的運動皮層和基底神經節的區域,這些區域通常涉及運動的規畫和執行,讓大腦準確地計算出需要刺激哪些肌肉、以及對身體的影響。而這些增強的預期心理將轉化為真正的表現提升。

根據這個理論,內在想像比外在想像更成功,因為能夠更詳細地預測你在運動期間的感受,進而使身體能夠更有效地執行動作。

注意!想像不能讓你變超人,僅僅是運動的輔助工具

當然,心理訓練不能、也不應該取代身體訓練,但卻可以讓運動員充分利用休息時間,以及避免受傷後力量流失。

例如,當人的四肢被打上石膏時,身體肌肉通常會變弱,但俄亥俄大學(Ohio University)的科學家發現,每天幾分鐘的心理練習可以將這些損失降低一半。

-----廣告,請繼續往下閱讀-----

對於一般人來說,心理訓練應該只是另一種工具,藉此強化運動的好處。

雖然「想像」可以提升運動表現,但並不代表可以直接取代身體的訓練,也不代表可以讓一般人超出人體的極限!圖/Pixabay

如果你覺得上健身房是一種壓力,想要改變你對運動的心態,那麼定期想像運動的好處可以使你更享受整個過程。如今,針對青少年、中年和老年人參與者的各種研究已證明,每週有規律地練習幾分鐘的運動想像,可提高人的動機、對運動的享受、以及運動表現。

當你親自測試這一點,在想像你的表現時不要好高騖遠。

你不想讓自己失望,這會降低你的動力,或是要小心過度勞累導致受傷(如果沒有持續的體能鍛鍊,身心合一的效果也是有限的)。當你在想像運動時,試著把注意力集中在過程中希望感受到的積極感:例如,充滿活力和興奮的感覺,而不是疲勞或倦怠。

-----廣告,請繼續往下閱讀-----

就像費爾普斯一樣,你將會「重新規畫」身心合一,讓自己克服任何可能妨礙表現的心理限制,如此一來,運動就不再是一個無法克服的挑戰。

——本文摘自《心念的力量:運用大腦的期望效應,找到扭轉人生的開關》,2022 年 7 月,商業週刊