網站更新隱私權聲明
本網站使用 cookie 及其他相關技術分析以確保使用者獲得最佳體驗,通過我們的網站,您確認並同意本網站的隱私權政策更新,了解最新隱私權政策

0

1
0

文字

分享

0
1
0

地球假如不是球:如果地球是平的會發生什麼事?

言蓁
・2020/03/10 ・1682字 ・閱讀時間約 3 分鐘 ・SR值 520 ・七年級

你曾好奇過「如果地球是平的」會發生甚麼事嗎?

在搜尋引擎上用這個關鍵字一查,會冒出一億三千多萬個讓人眼花撩亂的結果,看上去卻又有些似是而非。

現在,就由科學家來告訴你:一旦地球是平的,會發生甚麼事?

地「球」掰掰!那些地平論者的看法

地球為球狀這件事,在 1957 年蘇聯發射史普尼克一號人造衛星後,可說是被徹底證實。

然而近年來,有一部分人主張世界並不是大眾普遍認知的球體,而是扁平的盤狀,這些人就是所謂的地平論者。他們對「地球是圓的」這項基本事實產生了懷疑,並提出許多解釋的主張。

但倘若地球真是平的,它便不會像我們所知的行星那樣運作,人類與其他地球上的小夥伴也都將面臨極大的危險

蘇聯於 1957 年發射的史普尼克一號衛星,是第一顆進入行星軌道的人造衛星。圖/WIKI

如果地平以後,我們會發生什麼事?

「如果星體要成為盤狀而非球型,它必須先被高速地旋轉,但這同時會將星體自身撕裂成細小顆粒,摧毀一切。」加州行星科學家戴維.史蒂文森 (David Stevenson) 說。

在 1850 年代,天文學家詹姆斯.克拉克.馬克士威 (James Clerk Maxwell) 進行土星環研究時,以數學表明:固態的盤狀體在宇宙中並非穩定的組態,進而解釋了銀河系周遭為何沒有出現行星尺寸的「盤狀」懸浮物。另外,他也預測了土星環是由大量小顆粒所構成的,並在日後被驗證。

即使有朝一日地球變得平坦,也沒辦法撐太久(地球:幫我撐十秒)(誤),幾個小時內,重力便會將把它壓回球狀。重力的延伸是平等的,這就是行星為球體或幾近球體的原因。當然,每個行星的自轉速度並不同,可能會與重力作用,而在赤道處產生一些凸起。

一如馬克士威的數學證明,在現實的重力條件下,不可能有一個穩定且固態的盤狀地球。

地平說支持者所繪製的世界地圖。(圖/WIKI

離開地球表面!重力起了甚麼作用?

失去重力,下自地球內核,上至大氣層甚至月球,地球的運作都將大不相同。

重力是地球分層的原因。重力作用下,最稠密的物質沉入岩心,較輕的物質構成地函,最輕的物質則形成地殼。地球液態的外地核創造了磁場,保護大氣免受太陽風和宇宙射線的剝奪,而重力將大氣層固定在地表上空。

紐約地球物理學家詹姆斯·戴維斯 (James Davis) 說, 如果地球是平坦的,便不能發生板塊作用

地球內部構造圖。圖/中央氣象局地震測報中心

那麼,月亮有可能倖免於難嗎?不,它也不能。

不論是認為曾有天體與原生地球碰撞,迸生的物質被引力累積、形成月球的「大碰撞說」;認為月球與地球是由不同化學成分的星雲物質凝聚、吸積,而後同時形成的「同源說」;抑或認為月亮原先是一塊太空岩石,只是被地球引力抓住成為衛星的「捕獲說」,都一再表明,現今所有對月球存在的可能解釋皆和引力有關。

一旦擺脫重力,地球上的所有事物都會迅速地消失。

如果想進一步了解月球的演進,可以參考 NASA 的影片:

把地球甩掉?那些地平論者沒想到的事

戴維斯認為,地平論者的諸多解釋在數學與物理運算中並沒有任何基礎。

在現實生活裡,我們可以基於「重力運作」這個可被量化的理由,解釋為何地球和月球皆為圓形,反觀地平論者,卻必須對兩者做出獨立的解釋,那些解釋又常彼此矛盾,科學理論可不能長這樣啊。

「用一個簡單的理論來解釋一千個觀察結果,勝過用一千個理論解釋一千個觀察結果。」戴維斯表示。

回到最初爭議的問題,如果地球是平的會怎樣呢?恩……那地球上的所有事物──包含認定它是平的人們──都終將急遽毀滅。

資料來源:

 

文章難易度
言蓁
7 篇文章 ・ 211 位粉絲
喜歡貓但不敢紮實去摸,像對所有喜愛的事物,嚮往也懼怕。依賴文字,生存於不被看好的文組,走著忽焉變成資訊的雜食動物。


0

5
0

文字

分享

0
5
0

如何從茫茫大海中,找到戰爭遺留的深水炸彈?——海底掃雷行動

Else Production
・2022/01/19 ・2597字 ・閱讀時間約 5 分鐘

對於年輕人來說,我相信「深水炸彈」一詞並不會陌生,因為這近乎是每一個狂歡派對裡的必需品。但對於埋藏在深海裡的炸彈,大家又有沒有想過我們如何找出來?

這些未爆炸的軍備,我們稱之為 Unexploded Ordnance(簡稱 UXO),有可能是水雷,有可能是深水炸彈,也有可能是導彈。它們多數是第一次或第二次世界大戰遺留下來的產品,受到多年來沉積(即水流在流速減慢時,所挾帶的砂石、塵土等沉淀堆積起來)的影響,令它們埋藏在海床以下的地方。跟據 Euronews 的估計,單單在波羅的海亦有超過 30 萬的 UXO 埋在那裡。

二戰期間,桑德蘭水上飛機掛載的深水炸彈,圖/維基百科

你也許會問,既然都已經埋藏了,何況我們仍然要處理他們?這是因為我們會在海底裡鋪設電欖、水管、天然氣輸送管等輸送系統,假如鑽探過程中不小心觸碰了它們已產生意外,或是在完成工程某一天突然爆炸而令輸電系統中斷,後果可真是不堪設想。因此,最理想的方法便是把他們全部找出來並繞道而行,或是安排專家把他們處理。

真正的大海撈針:用磁場把 UXO 吸出來!

要找到這些 UXO,最容易的方法便是使用金屬探測的方法,但由於普遍的金屬探測器的探測範圍是不超過 2 公尺的,我們很難把探測器貼近凹凸不平的水底前行(這大大增加了磨損探測器的風險),因此我們會選擇較間接的方法:磁強計(Magnetometer)。由於大部份的彈藥外層是用鐵形成的,而鐵是對磁非常敏感的,因此我們能夠在較遠的範圍便能察覺他們的存在。當在外勤工作,我們會以兩個磁強計為一組去作探測,令我們更準備知道其實際位置及大小。讓我們看看以下例子:

圖 1:磁強計的探測結果

在圖 1 裡,假設我們知道標記「1」是一個 UXO 的位置,上圖的平行線為磁強計由左至右的移動路線,下圖為磁場沿路的變化。我們可以看見,當若果沒有任何金屬物件存在的話,兩個磁強計量度的數是相近的,亦即是該環境本身的磁場。但在 UXO 的附近,我們可以看到明顯的變化。藍色線代表航行路線的左方磁強計的量度值,燈色線代表右方,由於磁場強度會隨著距離而減少,因此很明顯這一個 UXO 的位置更接近藍色線,亦即是航線的上方。

我們可以透過兩者的差距估計其位置及大小,但為了確保其真實性,我們亦會在附近再次航行,假如也有磁場變異,這便是一個不會移動的金屬物品(撇除了船、飄浮中的海洋垃圾等的可能性)。

排除法:用側掃聲納窺探看不見的海底!

正如上文提要,磁場變異所告訴我們的,只是金屬物品的位置,但它亦有可能不是炸彈,也有可能不是埋在海床下,因此我們也會使用其他科學方法去驗證。其中一個便是側掃聲納(Side Scan Sonar) ,透過聲波反射的原理,我們可以看到海床的影像。假如海床是乾淨的,聲波傳送及接收的時間是一樣的,因此我們可以看到連續的晝面。但假如有異物在水中間或海床上,聲波便會被折射而形成黑影。讓我們看看以下例子:

圖2: 側掃聲納 圖片,紅色箭咀範圍代表沒有反射的區域,綠色箭頭範圖代表船與海底的距離 (圖片來源:Grothues et al., 2017)

看看圖 2。燈色的部份是海床的晝面,中間白色的部份是船的航道,亦是側掃聲納的盲點,而黑色的部份則是有物件在海床上方而形成的聲波折射,讓我們能夠清楚看見它們的形狀。有時候我們亦會看到一些海洋垃圾,如車胎、單車等,而在上圖的左上方,我們相信是一些棄置的工業廢料。

當然你也可以爭論,在圖左上方的物件有機會不是死物,而是一種未知海洋生物,因此我們也會進行多次的側掃聲納,如果在同一位置並不能再看到它,那麼這是生物的機率便很高。假如在磁場異變的位置側掃聲納沒有探測到任何物件,這進一步證明其 UXO 的可能性。但假如有黑影在上方,我們也會透過黑影分析其大小是否吻合,並會憑經驗分析該物品會否存在金屬。

此外,在看側掃聲納,我們也很重視在磁場異變的位置附近有沒有刮痕,因為形成刮痕的原因多數是船上作業頻繁的地方,有機會是漁船拖網的地點,也有機會是大船拋錨起錨的地方,而這些動作均有機會接觸或移動了這些潛在的 UXO,產生危機。因此,這些地方都會是我們首要處理的地方。

筆者按:假如大家想看看其他用側掃聲納發現的東西,如沉船、飛機等,可以到這裡觀看

萬無一失:Mission Completed !

當然,在取得數據時,我們也要儘可能減低人為因素而形成的影響。舉個例子,我們要確保磁強計遠離測量船,以免船上的儀器影響了磁強計。因此,我們並不會把磁強計綁在船底,而是把它們用纜索綁在船尾數十米以外的地方拖行。

另外,我們也要確保測量船要以均速航行,以確保所有數據都是一致的。最後,我們也要確保船上的 GPS 系統準確無誤,否則所有有可能是 UXO 的位置都是錯誤的。

完成以上的工序後,我們便會製作磁梯度圖(Magnetic Gradient Map),把剩餘下來的磁場變置點用其強度及大小表示出來,正如圖 3,再交給拆彈專家們處理。他們便會跟據他們的專業知識,加上該海岸的戰爭歷史,對比當時有可能參戰的國家、使用的武器及其金屬含量以找出存在的炸彈來處理。

要知道這些 UXO,單單在 2015 年在世界各地亦奪去了超過 6000 人的性命,因此這個科學命題可真是不容忽視!

圖 3:磁梯度圖。左邊是潛在 UXO 的位置而右邊則是它們的磁場強度的改變。(圖片來源:Salem et al., 2005)

延伸閱讀:

參考資料:

  1. Salem, A., Hamada, T., Asahina, J. K., & Ushijima, K. (2005). Detection of unexploded ordnance (UXO) using marine magnetic gradiometer data. Exploration Geophysics, 36(1), 97–103.  
  2. Han, S., Rong, X., Bian, L., Zhong, M., & Zhang, L. (2019). The application of magnetometers and electromagnetic induction sensors in UXO detection. E3S Web of Conferences, 131, 01045.
  3. Image scans gallery. EdgeTech. (n.d.). Retrieved January 5, 2022, from https://www.edgetech.com/underwater-technology-gallery/ 
  4. Grothues, T. M., Newhall, A. E., Lynch, J. F., Vogel, K. S., & Gawarkiewicz, G. G. (2017). High-frequency side-scan sonar fish reconnaissance by autonomous underwater vehicles. Canadian Journal of Fisheries and Aquatic Sciences, 74(2), 240–255.

本文亦刊載於作者部落格 Else Production ,歡迎查閱及留言

 

Else Production
76 篇文章 ・ 908 位粉絲
馬朗生,見習地球物理工程師,英國材料與礦冶學會成員,主力擔任海上測量工作,包括海床勘探、泥土分析、聲波探測等。