Loading [MathJax]/extensions/tex2jax.js

0

0
0

文字

分享

0
0
0

M55:巨大的球狀星團

臺北天文館_96
・2012/06/20 ・886字 ・閱讀時間約 1 分鐘 ・SR值 477 ・五年級

右圖是歐南天文台(ESO)4.1米的VISTA紅外巡天望遠鏡(Visible and Infrared Survey Telescope for Astronomy)所拍攝的M55星團。這個龐大而擁擠的球狀星團含有數萬顆恆星,而這個巨大的恆星蜂巢,是宇宙中最古老的天體之一。天文學家藉由研究像M55這樣的球狀星團來瞭解星系如何演化,以及恆星如何變老。除了M55之外,還可在影像中見到許多背景星系,其中最明顯的是星團右上角那個側向地球的螺旋星系。

球狀星團因受到重力作用而形成一個緊密的球狀外觀。在M55中,數萬顆恆星擠在直徑僅約太陽到匹鄰星約25倍大的狹小空間中,使得恆星彼此間很靠近。匹鄰星是半人馬座Alpha星(南門二)這個三合星中的C星,距離4.2光年,是已知最靠近太陽系的恆星。

天文學家目前已在銀河系中發現約160個球狀星團。最新發現的兩個球狀星團,就是VISTA的貢獻。(請參閱天文新知2011-10-20 VISTA看透銀河中心,在銀心彼端發現2個球狀星團)。天文學家估計:最大型的星系中,可能可以擁有數千個這類球狀星團。

根據研究,球狀星團中基本上都是在約100億年前形成的,而每個星團中的成員基本上都是從同一片雲氣中誕生。由於它們是在大霹靂之後僅約10~20億年左右形成的,其原始星雲的成分是最單純、最輕也最普遍的氫,伴隨少部份氦,以及極少量的其他重元素(金屬元素),如氧或氮等。這種金屬豐度低的現象,讓它們與後期誕生的恆星,如太陽等,有所區別。太陽約於46億年前誕生,大約只有球狀星團成員星的一半年齡而已。因為後期誕生的恆星所使用的材料,是一代一代的恆星們演化到末期,發生超新星爆炸或默默形成行星狀星雲後,將演化過程中的核融合產物拋回太空的結果,因此愈近期誕生的恆星,金屬豐度愈高。

-----廣告,請繼續往下閱讀-----

M55位在南天的人馬座方向,距離地球約17,000光年,整個星團的寬度相當於滿月的2/3,以一般小型望遠鏡就可以觀賞。這個星團是法國天文學家Nicolas Louis de Lacaille於1752年首度發現,26年後另一位法國天文學家梅西爾(Charles Messier)將其收錄進他著名的梅西爾星表中,編號第55號,故標記為M55。這個天體另一編號為NGC 6809。

資料來源:VISTA Views a Vast Ball of Stars[2012.05.09]

轉載自台北天文館之網路天文館網站

-----廣告,請繼續往下閱讀-----
文章難易度
臺北天文館_96
482 篇文章 ・ 44 位粉絲
臺北市立天文科學教育館是國內最大的天文社教機構,我們以推廣天文教育為職志,做為天文知識和大眾間的橋梁,期盼和大家一起分享天文的樂趣!

0

1
0

文字

分享

0
1
0
拆解邊緣AI熱潮:伺服器如何提供穩固的運算基石?
鳥苷三磷酸 (PanSci Promo)_96
・2025/05/21 ・5071字 ・閱讀時間約 10 分鐘

本文與 研華科技 合作,泛科學企劃執行。

每次 NVIDIA 執行長黃仁勳公開發言,總能牽動整個 AI 產業的神經。然而,我們不妨設想一個更深層的問題——如今的 AI 幾乎都倚賴網路連線,那如果哪天「網路斷了」,會發生什麼事?

想像你正在自駕車打個盹,系統突然警示:「網路連線中斷」,車輛開始偏離路線,而前方竟是萬丈深谷。又或者家庭機器人被駭,開始暴走跳舞,甚至舉起刀具向你走來。

這會是黃仁勳期待的未來嗎?當然不是!也因為如此,「邊緣 AI」成為業界關注重點。不靠雲端,AI 就能在現場即時反應,不只更安全、低延遲,還能讓數據當場變現,不再淪為沉沒成本。

什麼是邊緣 AI ?

邊緣 AI,乍聽之下,好像是「孤單站在角落的人工智慧」,但事實上,它正是我們身邊最可靠、最即時的親密數位夥伴呀。

當前,像是企業、醫院、學校內部的伺服器,個人電腦,甚至手機等裝置,都可以成為「邊緣節點」。當數據在這些邊緣節點進行運算,稱為邊緣運算;而在邊緣節點上運行 AI ,就被稱為邊緣 AI。簡單來說,就是將原本集中在遠端資料中心的運算能力,「搬家」到更靠近數據源頭的地方。

-----廣告,請繼續往下閱讀-----

那麼,為什麼需要這樣做?資料放在雲端,集中管理不是更方便嗎?對,就是不好。

當數據在這些邊緣節點進行運算,稱為邊緣運算;而在邊緣節點上運行 AI ,就被稱為邊緣 AI。/ 圖片來源:MotionArray

第一個不好是物理限制:「延遲」。
即使光速已經非常快,數據從你家旁邊的路口傳到幾千公里外的雲端機房,再把分析結果傳回來,中間還要經過各種網路節點轉來轉去…這樣一來一回,就算只是幾十毫秒的延遲,對於需要「即刻反應」的 AI 應用,比如說工廠裡要精密控制的機械手臂、或者自駕車要判斷路況時,每一毫秒都攸關安全與精度,這點延遲都是無法接受的!這是物理距離與網路架構先天上的限制,無法繞過去。

第二個挑戰,是資訊科學跟工程上的考量:「頻寬」與「成本」。
你可以想像網路頻寬就像水管的粗細。隨著高解析影像與感測器數據不斷來回傳送,湧入的資料數據量就像超級大的水流,一下子就把水管塞爆!要避免流量爆炸,你就要一直擴充水管,也就是擴增頻寬,然而這樣的基礎建設成本是很驚人的。如果能在邊緣就先處理,把重要資訊「濃縮」過後再傳回雲端,是不是就能減輕頻寬負擔,也能節省大量費用呢?

第三個挑戰:系統「可靠性」與「韌性」。
如果所有運算都仰賴遠端的雲端時,一旦網路不穩、甚至斷線,那怎麼辦?很多關鍵應用,像是公共安全監控或是重要設備的預警系統,可不能這樣「看天吃飯」啊!邊緣處理讓系統更獨立,就算暫時斷線,本地的 AI 還是能繼續運作與即時反應,這在工程上是非常重要的考量。

所以你看,邊緣運算不是科學家們沒事找事做,它是順應數據特性和實際應用需求,一個非常合理的科學與工程上的最佳化選擇,是我們想要抓住即時數據價值,非走不可的一條路!

邊緣 AI 的實戰魅力:從工廠到倉儲,再到你的工作桌

知道要把 AI 算力搬到邊緣了,接下來的問題就是─邊緣 AI 究竟強在哪裡呢?它強就強在能夠做到「深度感知(Deep Perception)」!

-----廣告,請繼續往下閱讀-----

所謂深度感知,並非僅僅是對數據進行簡單的加加減減,而是透過如深度神經網路這類複雜的 AI 模型,從原始數據裡面,去「理解」出更高層次、更具意義的資訊。

研華科技為例,旗下已有多項邊緣 AI 的實戰應用。以工業瑕疵檢測為例,利用物件偵測模型,快速將工業產品中的瑕疵挑出來,而且由於 AI 模型可以使用同一套參數去檢測,因此品管上能達到一致性,減少人為疏漏。尤其在高產能工廠中,檢測速度必須快、狠、準。研華這套 AI 系統每分鐘最高可處理 8,000 件產品,替工廠節省大量人力,同時確保品質穩定。這樣的效能來自於一台僅有膠囊咖啡機大小的邊緣設備—IPC-240。

這樣的效能來自於一台僅有膠囊咖啡機大小的邊緣設備—IPC-240。/ 圖片提供:研華科技

此外,在智慧倉儲場域,研華與威剛合作,研華與威剛聯手合作,在 MIC-732AO 伺服器上搭載輝達的 Nova Orin 開發平台,打造倉儲系統的 AMR(Autonomous Mobile Robot) 自走車。這跟過去在倉儲系統中使用的自動導引車 AGV 技術不一樣,AMR 不需要事先規劃好路線,靠著感測器偵測,就能輕鬆避開障礙物,識別路線,並且將貨物載到指定地點存放。

當然,還有語言模型的應用。例如結合檢索增強生成 ( RAG ) 跟上下文學習 ( in-context learning ),除了可以做備忘錄跟排程規劃以外,還能將實務上碰到的問題記錄下來,等到之後碰到類似的問題時,就能詢問 AI 並得到解答。

你或許會問,那為什麼不直接使用 ChatGPT 就好了?其實,對許多企業來說,內部資料往往具有高度機密性與商業價值,有些場域甚至連手機都禁止員工帶入,自然無法將資料上傳雲端。對於重視資安,又希望運用 AI 提升效率的企業與工廠而言,自行部署大型語言模型(self-hosted LLM)才是理想選擇。而這樣的應用,並不需要龐大的設備。研華的 SKY-602E3 塔式 GPU 伺服器,體積僅如後背包大小,卻能輕鬆支援語言模型的運作,實現高效又安全的 AI 解決方案。

但問題也接著浮現:要在這麼小的設備上跑大型 AI 模型,會不會太吃資源?這正是目前 AI 領域最前沿、最火熱的研究方向之一:如何幫 AI 模型進行「科學瘦身」,又不減智慧。接下來,我們就來看看科學家是怎麼幫 AI 減重的。

-----廣告,請繼續往下閱讀-----

語言模型瘦身術之一:量化(Quantization)—用更精簡的數位方式來表示知識

當硬體資源有限,大模型卻越來越龐大,「幫模型減肥」就成了邊緣 AI 的重要課題。這其實跟圖片壓縮有點像:有些畫面細節我們肉眼根本看不出來,刪掉也不影響整體感覺,卻能大幅減少檔案大小。

模型量化的原理也是如此,只不過對象是模型裡面的參數。這些參數原先通常都是以「浮點數」表示,什麼是浮點數?其實就是你我都熟知的小數。舉例來說,圓周率是個無窮不循環小數,唸下去就會是3.141592653…但實際運算時,我們常常用 3.14 或甚至直接用 3,也能得到夠用的結果。降低模型參數中浮點數的精度就是這個意思! 

然而,量化並不是那麼容易的事情。而且實際上,降低精度多少還是會影響到模型表現的。因此在設計時,工程師會精密調整,確保效能在可接受範圍內,達成「瘦身不減智」的目標。

當硬體資源有限,大模型卻越來越龐大,「幫模型減肥」就成了邊緣 AI 的重要課題。/ 圖片來源:MotionArray

模型剪枝(Model Pruning)—基於重要性的結構精簡

建立一個 AI 模型,其實就是在搭建一整套類神經網路系統,並訓練類神經元中彼此關聯的參數。然而,在這麼多參數中,總會有一些參數明明佔了一個位置,卻對整體模型沒有貢獻。既然如此,不如果斷將這些「冗餘」移除。

這就像種植作物的時候,總會雜草叢生,但這些雜草並不是我們想要的作物,這時候我們就會動手清理雜草。在語言模型中也會有這樣的雜草存在,而動手去清理這些不需要的連結參數或神經元的技術,就稱為 AI 模型的模型剪枝(Model Pruning)。

-----廣告,請繼續往下閱讀-----

模型剪枝的效果,大概能把100變成70這樣的程度,說多也不是太多。雖然這樣的縮減對於提升效率已具幫助,但若我們要的是一個更小幾個數量級的模型,僅靠剪枝仍不足以應對。最後還是需要從源頭著手,採取更治本的方法:一開始就打造一個很小的模型,並讓它去學習大模型的知識。這項技術被稱為「知識蒸餾」,是目前 AI 模型壓縮領域中最具潛力的方法之一。

知識蒸餾(Knowledge Distillation)—讓小模型學習大師的「精髓」

想像一下,一位經驗豐富、見多識廣的老師傅,就是那個龐大而強悍的 AI 模型。現在,他要培養一位年輕學徒—小型 AI 模型。與其只是告訴小型模型正確答案,老師傅 (大模型) 會更直接傳授他做判斷時的「思考過程」跟「眉角」,例如「為什麼我會這樣想?」、「其他選項的可能性有多少?」。這樣一來,小小的學徒模型,用它有限的「腦容量」,也能學到老師傅的「智慧精髓」,表現就能大幅提升!這是一種很高級的訓練技巧,跟遷移學習有關。

舉個例子,當大型語言模型在收到「晚餐:鳳梨」這組輸入時,它下一個會接的詞語跟機率分別為「炒飯:50%,蝦球:30%,披薩:15%,汁:5%」。在知識蒸餾的過程中,它可以把這套機率表一起教給小語言模型,讓小語言模型不必透過自己訓練,也能輕鬆得到這個推理過程。如今,許多高效的小型語言模型正是透過這項技術訓練而成,讓我們得以在資源有限的邊緣設備上,也能部署愈來愈強大的小模型 AI。

但是!即使模型經過了這些科學方法的優化,變得比較「苗條」了,要真正在邊緣環境中處理如潮水般湧現的資料,並且高速、即時、穩定地運作,仍然需要一個夠強的「引擎」來驅動它們。也就是說,要把這些經過科學千錘百鍊、但依然需要大量計算的 AI 模型,真正放到邊緣的現場去發揮作用,就需要一個強大的「硬體平台」來承載。

-----廣告,請繼續往下閱讀-----

邊緣 AI 的強心臟:SKY-602E3 的三大關鍵

像研華的 SKY-602E3 塔式 GPU 伺服器,就是扮演「邊緣 AI 引擎」的關鍵角色!那麼,它到底厲害在哪?

一、核心算力
它最多可安裝 4 張雙寬度 GPU 顯示卡。為什麼 GPU 這麼重要?因為 GPU 的設計,天生就擅長做「平行計算」,這正好就是 AI 模型裡面那種海量數學運算最需要的!

你想想看,那麼多數據要同時處理,就像要請一大堆人同時算數學一樣,GPU 就是那個最有效率的工具人!而且,有多張 GPU,代表可以同時跑更多不同的 AI 任務,或者處理更大流量的數據。這是確保那些科學研究成果,在邊緣能真正「跑起來」、「跑得快」、而且「能同時做更多事」的物理基礎!

二、工程適應性——塔式設計。
邊緣環境通常不是那種恆溫恆濕的標準機房,有時是在工廠角落、辦公室一隅、或某個研究實驗室。這種塔式的機箱設計,體積相對緊湊,散熱空間也比較好(這對高功耗的 GPU 很重要!),部署起來比傳統機架式伺服器更有彈性。這就是把高性能計算,進行「工程化」,讓它能適應台灣多樣化的邊緣應用場景。

三、可靠性
SKY-602E3 用的是伺服器等級的主機板、ECC 糾錯記憶體、還有備援電源供應器等等。這些聽起來很硬的規格,背後代表的是嚴謹的工程可靠性設計。畢竟在邊緣現場,系統穩定壓倒一切!你總不希望 AI 分析跑到一半就掛掉吧?這些設計確保了部署在現場的 AI 系統,能夠長時間、穩定地運作,把實驗室裡的科學成果,可靠地轉化成實際的應用價值。

-----廣告,請繼續往下閱讀-----
研華的 SKY-602E3 塔式 GPU 伺服器,體積僅如後背包大小,卻能輕鬆支援語言模型的運作,實現高效又安全的 AI 解決方案。/ 圖片提供:研華科技

台灣製造 × 在地智慧:打造專屬的邊緣 AI 解決方案

研華科技攜手八維智能,能幫助企業或機構提供客製化的AI解決方案。他們的技術能力涵蓋了自然語言處理、電腦視覺、預測性大數據分析、全端軟體開發與部署,及AI軟硬體整合。

無論是大小型語言模型的微調、工業瑕疵檢測的模型訓練、大數據分析,還是其他 AI 相關的服務,都能交給研華與八維智能來協助完成。他們甚至提供 GPU 與伺服器的租借服務,讓企業在啟動 AI 專案前,大幅降低前期投入門檻,靈活又實用。

台灣有著獨特的產業結構,從精密製造、城市交通管理,到因應高齡化社會的智慧醫療與公共安全,都是邊緣 AI 的理想應用場域。更重要的是,這些情境中許多關鍵資訊都具有高度的「時效性」。像是產線上的一處異常、道路上的突發狀況、醫療設備的即刻警示,這些都需要分秒必爭的即時回應。

如果我們還需要將數據送上雲端分析、再等待回傳結果,往往已經錯失最佳反應時機。這也是為什麼邊緣 AI,不只是一項技術創新,更是一條把尖端 AI 科學落地、真正發揮產業生產力與社會價值的關鍵路徑。讓數據在生成的那一刻、在事件發生的現場,就能被有效的「理解」與「利用」,是將數據垃圾變成數據黃金的賢者之石!

👉 更多研華Edge AI解決方案
👉 立即申請Server租借

-----廣告,請繼續往下閱讀-----
-----廣告,請繼續往下閱讀-----
文章難易度

討論功能關閉中。

0

5
2

文字

分享

0
5
2
柔軟的導電革命:前所未見的無序高分子導體
linjunJR_96
・2022/12/30 ・1995字 ・閱讀時間約 4 分鐘

只有金屬會導電?

怎麼樣的材料能導電?這個問題的答案或許將永遠改寫。

怎麼樣的材料能導電?金屬?這個問題的答案或許將永遠改寫。圖/pexels

芝加哥大學的研究團隊發現了一種新的合成材料,擁有塑膠般柔軟的非晶體結構,同時又有金屬般的導電性質。

講到導體,首先會想到的是老字號的金屬家族。金銀銅鐵這類材料是由單一金屬原子排列成整齊的晶格,自由電子可以穿梭其中。大約從十八世紀開始,科學家便知道常見的金屬可以用來傳導電荷,並將物質分為導體和橡膠這類的絕緣體。利用金屬電纜和元件,人們打造了公共電力網和電力火車頭,將人類社會帶進了電氣時代。

利用金屬電纜和元件,人們打造了公共電力網和電力火車頭,將人類社會帶進了電氣時代。圖/pexels

相隔許久後,二十世紀後半幾次意外的實驗讓科學家發現聚乙炔這種高分子聚合物在摻雜了些許碘原子之後,也能表現出良好的導電性。這完全顛覆了人們對於導體的認知:

-----廣告,請繼續往下閱讀-----

原來除了金屬材料之外,塑膠聚合物也可以作為導體。

和傳統無機材料比起來,導電聚合物的製程簡單便宜,也有較好的可塑性,被俗稱為「導電塑膠」。這種突破性的材料帶來了新一波的電子產品,像是有機發光二極體(OLED)螢幕、有機太陽能電池、以及有機半導體科技等等。

儘管有著導電塑膠的響亮名號,但是導電聚合物和金屬導體一樣,都有緊密整齊的晶格結構,讓特定能量的電子可以順暢地流通。事實上,現代的固態理論認定固態材料必須要有這些整齊排列的晶格,才能有效地傳導電力。像是玻璃、黏土、橡膠這些結構無序的非晶體材料則肯定無法導電。

從左到右分別是有序的晶體、無序的非晶體、和氣體。圖/ Encyclopædia Britannica

再一次超越想像,無序材料也能導電

不過芝加哥大學博士生 Jiaze Xie(現為普林斯頓大學博士後研究員)近期發現了另外一種可能性。他選擇了 TTFtt 這種高分子作為嘗試的目標。TTF 結構本身在數年前就已經被發現可以作為導電高分子的組成單元,但因為合成技術困難,並沒有受到研究圈的關注。Jiaze Xie 將鎳原子鑲在碳原子和硫原子組成的長鏈上,合成出全新的 NiTTFtt,開始了一系列的實驗。

在實驗室中,NiTTFtt 展現了不錯的導電性。但最令人驚訝的是,X 射線繞射結果顯示它的分子結構是無序的,沒有整齊的晶格結構。它是一種理論上不該存在的「無序高分子」導體。

-----廣告,請繼續往下閱讀-----

事實上,NiTTFtt 的質地就像是小朋友的玩具黏土一樣,只要將一坨 NiTTFtt 黏在電路上,就可以開始導電。這表示它有著幾乎無人能敵的可塑性。除此之外,它還十分的穩定。實驗人員將它加熱到攝氏兩百多度、放在潮濕的空氣中幾十天、在它身上滴強酸強鹼,想盡各種方式考驗它,但它的導電性在各種條件下幾乎都能保持穩定,顯示其實際應用的潛力不容小覷。

這種被現有理論排除的材料為什麼有辦法存在呢?研究團隊利用掃描式電子顯微鏡和 X 光繞射的探測結果建構出了下圖的原子結構模型,企圖對這種前所未見的材料提出解釋。

每個綠色的鎳原子為基準可以看出一個個扁平的組成單元,他們首先組成長長的一維長條。圖/參考資料

以每個綠色的鎳原子為基準可以看出一個個扁平的組成單元。他們首先組成長長的一維長條(左),平行堆疊成千層派一樣的結構(中),並橫向排列形成立體的材料(右)。注意到每個長條排列的方向雖然一樣,但是並不需要有規律的秩序。

透過理論計算和電腦模擬,研究團隊發現長條之間即使經過平移或是扭曲,電子活動的範圍還是能維持足夠的重疊,讓電子能夠穿過不規則排列的千層派結構。也就是說,NiTTFtt 的特殊原子結構使得其導電性能在非結晶結構下屹立不搖。

-----廣告,請繼續往下閱讀-----

獨一無二的特性,或許可以帶來更多的突破

NiTTFtt 獨一無二的材料性質顛覆了固態物理的既有認知,讓這份研究登上了《自然》期刊。由於電子產品是如此無所不在,任何關於導電材料的發展都會帶來無限的可能性。NiTTFtt 的可塑性以及耐溫耐濕耐酸鹼的超人特性開啟了許多傳統導體無法想像的機會。

研究團隊向全世界示範了有機分子只要有適當的結構,就可以在非結晶排列下維持金屬般的導體性質。他們也期待「無序高分子」導體能夠像金屬導體和導電聚合物兩位大前輩一樣,為人類社會帶來革命性的科技突破。

-----廣告,請繼續往下閱讀-----

0

5
2

文字

分享

0
5
2
來自137 億年前的訊息!透過重力波,一窺「宇宙誕生」的真相──《大人的宇宙學教室:透過微中子與重力波解密宇宙起源》
台灣東販
・2022/08/09 ・4055字 ・閱讀時間約 8 分鐘

重力波不只能提供星體的資訊!

說到重力波,一般人可能會想到黑洞、中子星、超新星這三個引發話題的星體。不過,只有在這些星體事件發生的「瞬間」,才會產生重力波,就像宇宙中的一場秀一樣。而當重力波通過後,就無法再偵測到這些資訊。

discoveries GIF
圖/GIPHY

譬如,LIGO 在 2015 年 9 月捕捉到的就是「來自 13 億光年外星體的重力波」。不過,和宇宙年齡相比,這其實是相對較年輕的星體事件。

我們有沒有辦法捕捉到很久很久以前,宇宙剛誕生時產生的重力波,也就是暴脹時期產生的重力波呢?

為什麼宇宙正在急速膨脹?

138 億年前,宇宙在超高溫、超高壓下,以「火球」的樣貌誕生,這就是所謂的「大霹靂」。在這之後,隨著宇宙的急速膨脹,溫度與密度逐漸下降,然後演變現在的樣貌。

這就是大霹靂宇宙論,也是目前多數學者支持的標準宇宙論。

-----廣告,請繼續往下閱讀-----

那麼,為什麼會產生「火球宇宙」這個超高溫、超高壓的世界呢?為什麼宇宙不是一直保持原樣(不是保持相同大小),而是會急速膨脹呢?目前有一個較被接受的說法,那就是前面提過許多次的「暴脹理論

在這個理論中,宇宙初期並沒有任何物質或光,而是一個充滿能量的真空。透過這些真空能量,宇宙用比光速還快的速度,呈指數函數膨脹。

而在暴脹時期結束後,這些真空能量轉變成了光(火球),於是產生了超高溫、超高壓的宇宙,這就是所謂的大霹靂。

目前科學界的研究和觀測結果大多支持大霹靂學說。圖/NASA

不過,如果空間中存在許多能量的話,應該會存在像重力這樣使空間收縮的力才對。為什麼空間會以超越光速的速度迅速膨脹,進入暴脹時期呢?

-----廣告,請繼續往下閱讀-----

學者們用「暴脹子場」這種量子場中的真空能量,說明暴脹時期。

暴脹子場是個未證實存在的純量場。就目前而言,它的存在仍處於假說階段。

目前已知的純量場,譬如 2012 年時,由瑞士日內瓦的歐洲核子研究組織 CERN 在 LHC 實驗中發現並發表,由希格斯玻色子產生的希格斯場。研究者們也因此而獲得 2013 年諾貝爾物理學獎,各位應該還記憶猶新。

137億歲的宇宙,至今仍然不斷膨脹

暴脹子場與希格斯場在質量與粒子的結合力上,都有著很大的差異。暴脹子場的真空中,會產生長時間的負壓。而這個負壓會造成宇宙加速膨脹。

這點與目前的暗能量機制十分類似。有人猜想暗能量可能是未發現的純量場。與暴脹時期相同,目前的宇宙中可能存在著未知純量場的真空能量,就像暗能量般,佔了全宇宙能量的 70%。

-----廣告,請繼續往下閱讀-----

宇宙中佔了 30% 能量之物質,與佔了 0.1% 的光會產生引力,但比不過真空能量所產生的斥力,所以目前宇宙正在加速膨脹。

宇宙仍在不斷的擴大。圖/NASA

順帶一提,即使物質與光的能量佔宇宙的 100%,宇宙也只是減速膨脹而已,並不會收縮回去。因為膨脹初期的速度過快,所以宇宙只會持續膨脹下去。

宇宙誕生的第一步——「原始重力波」

暴脹時期結束後,空間能量會迅速轉變成物質能量,使宇宙轉變成超高溫、超高壓、充滿輻射的狀態。這就是大霹靂「火球」。暴脹理論說明了幾點。

首先是前面提到的「膨脹速度超越光速的宇宙」

-----廣告,請繼續往下閱讀-----

這造成了我們現在看到的(宇宙視界內的)宇宙溫度擁有各向同性,在 10 萬分之 1 的精度下,為絕對溫度 2.723K(約 3K 的宇宙微波背景輻射(CMB))。

在大霹靂學說中,宇宙微波背景輻射是宇宙誕生時所遺留下來的熱輻射。圖/ESA

第二,這個急速膨脹,使宇宙的形狀在幾何學上變得相當平坦,就像膨脹的氣球一樣。

再者,暴脹子場的量子擾動,是宇宙初期物質擾動的來源,也就是3K宇宙微波背景輻射所觀測到的溫度擾動。暴脹子場也含有量子的擾動。這些小小的擾動在短時間內暴脹過程中,急速膨脹,延伸至宇宙視界的彼端,造成現今宇宙中不同區域的密度差異,這也是形成星系的種子

CMB 觀測到的「溫度擾動」,正是暴脹時期產生之暴脹子場的量子擾動。

-----廣告,請繼續往下閱讀-----

另外,在重力波方面,暴脹時期不僅會產生前述密度(溫度)的擾動,也會產生「時空擾動」。急速膨脹的過程中,真空會一直變化,成對產生重力子,這與黑洞周圍產生霍金幅射的機制類似。

學者們認為這種重力波現今仍存在,稱其為「原始重力波」。因為整個宇宙都存在這種重力波,所以也叫做背景重力波。若能檢出這種背景重力波,不只能成為暴脹理論的證據,也會是宇宙起源相關研究的一大步。

原始重力波就像是背景雜訊一樣,在宇宙四處飄蕩

黑洞雙星的合併會產生重力波,不過當重力波通過地球,被 LIGO 觀測到時,該事件便已結束。不只是黑洞,中子星雙星的合併、超新星爆發也一樣。

不過,暴脹時期產生的重力波並非如此。當時整個宇宙充滿了重力波。不過這種重力波就像白噪音般的存在,很難分析這種波的狀態,所以也叫做背景重力波。若依波的種類來分,可以將其算在駐波。如何找到這種駐波,是我們現在的課題。

-----廣告,請繼續往下閱讀-----
重力波可以分成兩種,來自近期星體活動的重力波,以及來自宇宙誕生的背景重力波。圖/台灣東販

與光波不同,重力波的偏振方式可以分成十字形(+)與交叉形(×)2 種,如下圖所示。十字形的偏振會往縱向與橫向伸縮、交叉形偏振則會往斜向伸縮,如其名所示。這兩種波疊合後,會變成圖中右方的樣子,往外傳播。

隨著時間的經過,來自黑洞的重力波會持續前進;但暴脹時期產生的重力波為「背景重力波」,是一種駐波,就像噪音一樣充滿在整個宇宙中。如果能發現這種波,就能證明暴脹理論。

重力波由十字形、交叉型兩種偏振方式所組成。圖/台灣東販

宇宙之窗:暴脹子場是什麼?

暴脹時期產生的「暴脹子場」究竟是什麼樣的東西呢?

重複一次,暴脹子場被認為是某種未知、很重的純量場,其質量上限在 1013GeV 以下。目前這個低能量宇宙中,已經不存在暴脹子場。即使透過粒子對撞,產生目前可達到的最高能量(數 10TeV,相當於數 10 京度的溫度),也沒辦法產生這種場。

-----廣告,請繼續往下閱讀-----

每種基本粒子都有著伴隨其出現的「量子場」。

譬如希格斯場會伴隨著希格斯玻色子出現。就希格斯場這種純量場而言,其存在機率最高的期望值稱做場值(真空值),是希格斯玻色子的位置。而場值周圍存在所謂的量子擾動。這種量子擾動只有在微觀尺度下有意義。

在我們生活的巨觀尺度下,幾乎察覺不到任何量子擾動,所以我們平常的生活並不會意識到它們。

我們周圍有許多電路會用到二極體。在微觀尺度下看這些電路,會看到粒子般的電子周圍有量子擾動,這種量子擾動對二極體來說相當重要。

在這種量子擾動下,電流只能沿著電路中可跳躍量子擾動的方向流動,二極體才有如此特別的性質,可見量子論也是現代科技中的重要理論。

所以說,考慮初期宇宙中暴脹子場的量子擾動,可以知道當宇宙還很小時,暴脹並非在宇宙中的各個地方同時間發生。宇宙中各個地方開始暴脹與結束暴脹的時間都不一樣。

量子擾動除了會造成時間擾動,在某些條件下,我們也可以在巨觀視界下感受到密度和溫度的擾動。圖/台灣東販

量子擾動會造成時間擾動,不過在暴脹這種急速膨脹後,會轉變成超越視界的古典擾動,所以我們會在巨觀視界下觀察到,各個地方都有著不同的密度。這就是所謂的「密度擾動」或「溫度擾動」。

總而言之,最初產生量子擾動後,隨著空間的急速膨脹而迅速延伸,轉變成了空間性的密度擾動。

備註

  • 暴脹理論與大霹靂的名稱

1981 年,佐藤勝彥在大統一模型的框架下,提出真空相變會造成宇宙呈指數函數膨脹的理論。同年,古斯也發表了同樣的想法。自宇宙誕生的瞬間起(依大統一理論,約為 10−38 秒後~10−36 秒後)宇宙會以超越光速的速度,呈指數函數膨脹,然後轉變成大霹靂的「火球」宇宙。

1980 年時,為修正愛因斯坦的重力觀點,學者們提出了以指數函數膨脹中的宇宙。

而在 20 世紀初,多數學者認為「宇宙永遠不會改變」(宇宙穩態論),沒有開始,沒有結束,大小也永遠不會改變。不過宇宙穩態論的擁護者霍伊爾(Fred Hoyle)曾在某個廣播節目中說「宇宙的開始?那是大霹靂的觀點(the ‘big bang’ idea)」,於是「大霹靂」這個名稱就定了下來。

當時連愛因斯坦都相信宇宙穩態論,否定膨脹宇宙。不過在觀測結果陸續出爐後,哈伯(Edwin Hubble)、勒梅特(Georges Lemaître)等人成功說服了愛因斯坦接受宇宙正在膨脹。

——本文摘自《大人的宇宙學教室:透過微中子與重力波解密宇宙起源》,2022 年 6 月,台灣東販,未經同意請勿轉載。

-----廣告,請繼續往下閱讀-----
台灣東販
5 篇文章 ・ 3 位粉絲
台灣東販股份有限公司是在台灣第1家獲許投資的國外出版公司。 本公司翻譯各類日本書籍,並且發行。 近年來致力於雜誌、流行文化作品與本土原創作品的出版開發,積極拓展商品的類別,期朝全面化,多元化,專業化之目標邁進。