對於家有單側聽損小朋友的家長而言,因為孩子有一耳是正常聽力,配戴助聽器這個選擇,便經常會讓他們有些疑慮及卻步。家長 A 和家長 B 的說法並不罕見,甚至某些醫師或專業人士也會有類似的想法,例如可能會告訴家長「還有一耳是正常的,影響不大、沒有關係」。不過,其實每個孩子的聽損程度不同,我們沒有辦法斷定到底戴還是不戴才是標準答案。
因此,在幫孩子做決定前,我們可以先對單側聽損有更深入的了解。簡而言之,一耳的聽力正常,另一耳異常,就屬於單側聽損。若要詳細說明,則根據 The Educational Audiology Association (2017) 針對兒童單側聽損的定義,一耳聽力正常,而另一耳在不同頻率的聲音要到 20 分貝以上的音量才聽得到,即為單側聽損1。
我們再進一步細想家長 A 與家長 B 的描述: (I) 為何需要配戴聽覺輔具; (II) 小孩不戴聽覺輔具,學業成績照樣很好。
Bess, F. H., Tharpe, A. M., & Gibler, A. M. (1986). Auditory performance of children with unilateral sensorineural hearing loss.Ear and Hearing, 7(1), 20-26.
Rothpletz, A. M., Wightman, F. L., & Kistlera, D. J. (2012). Informational Masking and Spatial Hearing in Listeners With and Without Unilateral Hearing Loss.Journal of Speech, Language, and Hearing Research, 55(2), 511-531.
Lieu, J. E. C. (2004). Speech-language and educational consequences of unilateral hearing loss in children.Archives of Otolaryngology–Head & Neck Surgery, 130(5), 524-530.
Yoshinaga-Itano, C., Johnson, C. D. C., Carpenter, K., & Brown, A. S. (2008, May). Outcomes of children with mild bilateral hearing loss and unilateral hearing loss. Seminars in Hearing, 29, 196-211.
Tharpe, A. M. (2008). Unilateral and mild bilateral hearing loss in children: past and current perspectives.Trends in Amplification, 12(1), 7-15.
Winiger, A. M., Alexander, J. M., & Diefendorf, A. O. (2016). Minimal hearing loss: From a failure-based approach to evidence-based practice.American Journal of Audiology, 25(3), 232-245.
Fitzpatrick, E. M., Al-Essa, R. S., Whittingham, J., & Fitzpatrick, J. (2017). Characteristics of children with unilateral hearing loss.International Journal of Audiology, 56(11), 819-828.
1990 年,融合蛋白 CD4 免疫黏附素(CD4 immunoadhesin)誕生。這項設計,是為了對付令人類聞風喪膽的 HIV 病毒。
-----廣告,請繼續往下閱讀-----
我們知道 T 細胞是人體中一種非常重要的白血球。在這些 T 細胞中,大約有六到七成表面帶有一個叫做「CD4」的輔助受體。CD4 會和另一個受體 TCR 一起合作,幫助 T 細胞辨識其他細胞表面的抗原片段,等於是 T 細胞用來辨認壞人的「探測器」。表面擁有 CD4 受體的淋巴球,就稱為 CD4 淋巴球。
麻煩的來了。 HIV 病毒反將一軍,竟然把 T 細胞的 CD4 探測器,當成了自己辨識獵物的「標記」。沒錯,對 HIV 病毒來說,免疫細胞就是它的獵物。HIV 的表面有一種叫做 gp120 的蛋白,會主動去抓住 T 細胞上的 CD4 受體。
而另一端的 Fc 區域則有兩個重要作用:一是延長融合蛋白在體內的存活時間;二是理論上能掛上「這裡有敵人!」的標籤,這種機制稱為抗體依賴性細胞毒殺(ADCC)或免疫吞噬作用(ADCP)。當免疫細胞的 Fc 受體與 Fc 區域結合,就能促使免疫細胞清除被黏住的病毒顆粒。
不過,這裡有個關鍵細節。
在實際設計中,CD4免疫黏附素的 Fc 片段通常會關閉「吸引免疫細胞」的這個技能。原因是:HIV 專門攻擊的就是免疫細胞本身,許多病毒甚至已經藏在 CD4 細胞裡。若 Fc 區域過於活躍,反而可能引發強烈的發炎反應,甚至讓免疫系統錯把帶有病毒碎片的健康細胞也一併攻擊,這樣副作用太大。因此,CD4 免疫黏附素的 Fc 區域會加入特定突變,讓它只保留延長藥物壽命的功能,而不會與淋巴球的 Fc 受體結合,以避免誘發免疫反應。
從 DNA 藍圖到生物積木:融合蛋白的設計巧思
融合蛋白雖然潛力強大,但要製造出來可一點都不簡單。它並不是用膠水把兩段蛋白質黏在一起就好。「融合」這件事,得從最根本的設計圖,也就是 DNA 序列就開始規劃。
我們體內的大部分蛋白質,都是細胞照著 DNA 上的指令一步步合成的。所以,如果科學家想把蛋白 A 和蛋白 B 接在一起,就得先把這兩段基因找出來,然後再「拼」成一段新的 DNA。