Loading [MathJax]/extensions/tex2jax.js

0

0
0

文字

分享

0
0
0

磁刺激讓你看得更清晰

Jacky Hsieh
・2012/06/16 ・1017字 ・閱讀時間約 2 分鐘 ・SR值 550 ・八年級

法國腦部暨脊髓所研究中心(CNRS / Inserm / UPM)最近的一跨國研究指出,利用跨顱磁刺激(Transcranial Magnetic Stimulation,TMS)成功地促使受試者的視覺能力提升。他們利用TMS刺激右腦與知覺意識和定位空間注意力的腦區,使受試者更能清楚接受在螢幕上顯示的目標物。這篇發表在最新一期《公共科學圖書館(PLoS ONE)》的研究,也許是個可以提供一些視覺疾病康復的新型技術,甚而提供需要看得非常精細的作業增進其視覺接收的解析度。

跨顱磁刺激是一種非侵入式,可對於特定腦區施打磁脈衝(pulse)的技術,他利用電流產生磁場(安培右手定則)而磁力線對準特定腦區,進而無痛且短暫的影響該腦區的神經元活化情形。這項技術目前主要使用於腦科學在認知行為上的研究,科學家近年則致力於這項技術應用於普羅大眾增進特定腦區功能的可能性。

Antoni Valero-Cabré的研究將跨顱磁刺激施打在右側額葉眼動區(right frontal eye field,rFEF)這個腦區並不位在主要視覺區,但它參與了眼動的計畫歷程與視覺注意力在空間中的定位。第一個實驗,受試者必須區辨一個僅短暫閃現33毫秒,位於凝視點左或右的模糊的Gabor圖(註1)是向左斜或向右斜,其中有一些在目標顯示之前用TMS刺激rFEF(另外一些雖然沒有用TMS刺激,但為讓受試者在有無刺激下感覺相同,此時就會施打sham TMS,即讓受試者心裡感覺相同但沒有真實進行刺激的偽TMS刺激)。其結果發現,在TMS刺激後的視覺敏感度比sham TMS的結果提升了12%。實驗二與實驗一大致相同,惟目標出現前多了一個預告目標物顯示位置的指標,這個指標有四分之一的機率是錯的,四分之三是對的,結果發現TMS刺激後僅在指標是正確的時候增進視覺敏感度。

雖然視覺意識這樣的大腦功能,在健康受試者身上本來就很好,但透過TMS刺激似乎還可以顯著的「提升」。這項技術也許可以嘗試協助心血管疾病引發皮質損壞的病人,或是有視網膜疾病的患者;而實驗二更說明,不僅只TMS刺激,若有正確的指標更有助益。

-----廣告,請繼續往下閱讀-----

目前的實驗是在每一題出現前短暫的施打單次TMS(single pulse TMS),研究者也希望未來嘗試施打連續的TMS(repetitive TMS),讓其刺激的腦區可以維持較長的時間在「提升」(註2)後的狀態。

註1:筆者日前將「Gabor圖」翻作「正弦波紋理圖」,圖例可參閱原文看這一篇;還在找尋更適當的翻法,姑且就用「Gabor圖」吧!
註2:並非所有的TMS實驗結果都是「提升」,故加註引號。

資料來源:『Science Daily』:『Magnetic Stimulation to Improve Visual Perception』[5 June 2012]

-----廣告,請繼續往下閱讀-----
文章難易度
Jacky Hsieh
57 篇文章 ・ 0 位粉絲
中大認知所碩士。使用者經驗工程師。喜歡寫東西分享。

0

0
0

文字

分享

0
0
0
拆解邊緣AI熱潮:伺服器如何提供穩固的運算基石?
鳥苷三磷酸 (PanSci Promo)_96
・2025/05/21 ・5071字 ・閱讀時間約 10 分鐘

本文與 研華科技 合作,泛科學企劃執行。

每次 NVIDIA 執行長黃仁勳公開發言,總能牽動整個 AI 產業的神經。然而,我們不妨設想一個更深層的問題——如今的 AI 幾乎都倚賴網路連線,那如果哪天「網路斷了」,會發生什麼事?

想像你正在自駕車打個盹,系統突然警示:「網路連線中斷」,車輛開始偏離路線,而前方竟是萬丈深谷。又或者家庭機器人被駭,開始暴走跳舞,甚至舉起刀具向你走來。

這會是黃仁勳期待的未來嗎?當然不是!也因為如此,「邊緣 AI」成為業界關注重點。不靠雲端,AI 就能在現場即時反應,不只更安全、低延遲,還能讓數據當場變現,不再淪為沉沒成本。

什麼是邊緣 AI ?

邊緣 AI,乍聽之下,好像是「孤單站在角落的人工智慧」,但事實上,它正是我們身邊最可靠、最即時的親密數位夥伴呀。

當前,像是企業、醫院、學校內部的伺服器,個人電腦,甚至手機等裝置,都可以成為「邊緣節點」。當數據在這些邊緣節點進行運算,稱為邊緣運算;而在邊緣節點上運行 AI ,就被稱為邊緣 AI。簡單來說,就是將原本集中在遠端資料中心的運算能力,「搬家」到更靠近數據源頭的地方。

-----廣告,請繼續往下閱讀-----

那麼,為什麼需要這樣做?資料放在雲端,集中管理不是更方便嗎?對,就是不好。

當數據在這些邊緣節點進行運算,稱為邊緣運算;而在邊緣節點上運行 AI ,就被稱為邊緣 AI。/ 圖片來源:MotionArray

第一個不好是物理限制:「延遲」。
即使光速已經非常快,數據從你家旁邊的路口傳到幾千公里外的雲端機房,再把分析結果傳回來,中間還要經過各種網路節點轉來轉去…這樣一來一回,就算只是幾十毫秒的延遲,對於需要「即刻反應」的 AI 應用,比如說工廠裡要精密控制的機械手臂、或者自駕車要判斷路況時,每一毫秒都攸關安全與精度,這點延遲都是無法接受的!這是物理距離與網路架構先天上的限制,無法繞過去。

第二個挑戰,是資訊科學跟工程上的考量:「頻寬」與「成本」。
你可以想像網路頻寬就像水管的粗細。隨著高解析影像與感測器數據不斷來回傳送,湧入的資料數據量就像超級大的水流,一下子就把水管塞爆!要避免流量爆炸,你就要一直擴充水管,也就是擴增頻寬,然而這樣的基礎建設成本是很驚人的。如果能在邊緣就先處理,把重要資訊「濃縮」過後再傳回雲端,是不是就能減輕頻寬負擔,也能節省大量費用呢?

第三個挑戰:系統「可靠性」與「韌性」。
如果所有運算都仰賴遠端的雲端時,一旦網路不穩、甚至斷線,那怎麼辦?很多關鍵應用,像是公共安全監控或是重要設備的預警系統,可不能這樣「看天吃飯」啊!邊緣處理讓系統更獨立,就算暫時斷線,本地的 AI 還是能繼續運作與即時反應,這在工程上是非常重要的考量。

所以你看,邊緣運算不是科學家們沒事找事做,它是順應數據特性和實際應用需求,一個非常合理的科學與工程上的最佳化選擇,是我們想要抓住即時數據價值,非走不可的一條路!

邊緣 AI 的實戰魅力:從工廠到倉儲,再到你的工作桌

知道要把 AI 算力搬到邊緣了,接下來的問題就是─邊緣 AI 究竟強在哪裡呢?它強就強在能夠做到「深度感知(Deep Perception)」!

-----廣告,請繼續往下閱讀-----

所謂深度感知,並非僅僅是對數據進行簡單的加加減減,而是透過如深度神經網路這類複雜的 AI 模型,從原始數據裡面,去「理解」出更高層次、更具意義的資訊。

研華科技為例,旗下已有多項邊緣 AI 的實戰應用。以工業瑕疵檢測為例,利用物件偵測模型,快速將工業產品中的瑕疵挑出來,而且由於 AI 模型可以使用同一套參數去檢測,因此品管上能達到一致性,減少人為疏漏。尤其在高產能工廠中,檢測速度必須快、狠、準。研華這套 AI 系統每分鐘最高可處理 8,000 件產品,替工廠節省大量人力,同時確保品質穩定。這樣的效能來自於一台僅有膠囊咖啡機大小的邊緣設備—IPC-240。

這樣的效能來自於一台僅有膠囊咖啡機大小的邊緣設備—IPC-240。/ 圖片提供:研華科技

此外,在智慧倉儲場域,研華與威剛合作,研華與威剛聯手合作,在 MIC-732AO 伺服器上搭載輝達的 Nova Orin 開發平台,打造倉儲系統的 AMR(Autonomous Mobile Robot) 自走車。這跟過去在倉儲系統中使用的自動導引車 AGV 技術不一樣,AMR 不需要事先規劃好路線,靠著感測器偵測,就能輕鬆避開障礙物,識別路線,並且將貨物載到指定地點存放。

當然,還有語言模型的應用。例如結合檢索增強生成 ( RAG ) 跟上下文學習 ( in-context learning ),除了可以做備忘錄跟排程規劃以外,還能將實務上碰到的問題記錄下來,等到之後碰到類似的問題時,就能詢問 AI 並得到解答。

你或許會問,那為什麼不直接使用 ChatGPT 就好了?其實,對許多企業來說,內部資料往往具有高度機密性與商業價值,有些場域甚至連手機都禁止員工帶入,自然無法將資料上傳雲端。對於重視資安,又希望運用 AI 提升效率的企業與工廠而言,自行部署大型語言模型(self-hosted LLM)才是理想選擇。而這樣的應用,並不需要龐大的設備。研華的 SKY-602E3 塔式 GPU 伺服器,體積僅如後背包大小,卻能輕鬆支援語言模型的運作,實現高效又安全的 AI 解決方案。

但問題也接著浮現:要在這麼小的設備上跑大型 AI 模型,會不會太吃資源?這正是目前 AI 領域最前沿、最火熱的研究方向之一:如何幫 AI 模型進行「科學瘦身」,又不減智慧。接下來,我們就來看看科學家是怎麼幫 AI 減重的。

-----廣告,請繼續往下閱讀-----

語言模型瘦身術之一:量化(Quantization)—用更精簡的數位方式來表示知識

當硬體資源有限,大模型卻越來越龐大,「幫模型減肥」就成了邊緣 AI 的重要課題。這其實跟圖片壓縮有點像:有些畫面細節我們肉眼根本看不出來,刪掉也不影響整體感覺,卻能大幅減少檔案大小。

模型量化的原理也是如此,只不過對象是模型裡面的參數。這些參數原先通常都是以「浮點數」表示,什麼是浮點數?其實就是你我都熟知的小數。舉例來說,圓周率是個無窮不循環小數,唸下去就會是3.141592653…但實際運算時,我們常常用 3.14 或甚至直接用 3,也能得到夠用的結果。降低模型參數中浮點數的精度就是這個意思! 

然而,量化並不是那麼容易的事情。而且實際上,降低精度多少還是會影響到模型表現的。因此在設計時,工程師會精密調整,確保效能在可接受範圍內,達成「瘦身不減智」的目標。

當硬體資源有限,大模型卻越來越龐大,「幫模型減肥」就成了邊緣 AI 的重要課題。/ 圖片來源:MotionArray

模型剪枝(Model Pruning)—基於重要性的結構精簡

建立一個 AI 模型,其實就是在搭建一整套類神經網路系統,並訓練類神經元中彼此關聯的參數。然而,在這麼多參數中,總會有一些參數明明佔了一個位置,卻對整體模型沒有貢獻。既然如此,不如果斷將這些「冗餘」移除。

這就像種植作物的時候,總會雜草叢生,但這些雜草並不是我們想要的作物,這時候我們就會動手清理雜草。在語言模型中也會有這樣的雜草存在,而動手去清理這些不需要的連結參數或神經元的技術,就稱為 AI 模型的模型剪枝(Model Pruning)。

-----廣告,請繼續往下閱讀-----

模型剪枝的效果,大概能把100變成70這樣的程度,說多也不是太多。雖然這樣的縮減對於提升效率已具幫助,但若我們要的是一個更小幾個數量級的模型,僅靠剪枝仍不足以應對。最後還是需要從源頭著手,採取更治本的方法:一開始就打造一個很小的模型,並讓它去學習大模型的知識。這項技術被稱為「知識蒸餾」,是目前 AI 模型壓縮領域中最具潛力的方法之一。

知識蒸餾(Knowledge Distillation)—讓小模型學習大師的「精髓」

想像一下,一位經驗豐富、見多識廣的老師傅,就是那個龐大而強悍的 AI 模型。現在,他要培養一位年輕學徒—小型 AI 模型。與其只是告訴小型模型正確答案,老師傅 (大模型) 會更直接傳授他做判斷時的「思考過程」跟「眉角」,例如「為什麼我會這樣想?」、「其他選項的可能性有多少?」。這樣一來,小小的學徒模型,用它有限的「腦容量」,也能學到老師傅的「智慧精髓」,表現就能大幅提升!這是一種很高級的訓練技巧,跟遷移學習有關。

舉個例子,當大型語言模型在收到「晚餐:鳳梨」這組輸入時,它下一個會接的詞語跟機率分別為「炒飯:50%,蝦球:30%,披薩:15%,汁:5%」。在知識蒸餾的過程中,它可以把這套機率表一起教給小語言模型,讓小語言模型不必透過自己訓練,也能輕鬆得到這個推理過程。如今,許多高效的小型語言模型正是透過這項技術訓練而成,讓我們得以在資源有限的邊緣設備上,也能部署愈來愈強大的小模型 AI。

但是!即使模型經過了這些科學方法的優化,變得比較「苗條」了,要真正在邊緣環境中處理如潮水般湧現的資料,並且高速、即時、穩定地運作,仍然需要一個夠強的「引擎」來驅動它們。也就是說,要把這些經過科學千錘百鍊、但依然需要大量計算的 AI 模型,真正放到邊緣的現場去發揮作用,就需要一個強大的「硬體平台」來承載。

-----廣告,請繼續往下閱讀-----

邊緣 AI 的強心臟:SKY-602E3 的三大關鍵

像研華的 SKY-602E3 塔式 GPU 伺服器,就是扮演「邊緣 AI 引擎」的關鍵角色!那麼,它到底厲害在哪?

一、核心算力
它最多可安裝 4 張雙寬度 GPU 顯示卡。為什麼 GPU 這麼重要?因為 GPU 的設計,天生就擅長做「平行計算」,這正好就是 AI 模型裡面那種海量數學運算最需要的!

你想想看,那麼多數據要同時處理,就像要請一大堆人同時算數學一樣,GPU 就是那個最有效率的工具人!而且,有多張 GPU,代表可以同時跑更多不同的 AI 任務,或者處理更大流量的數據。這是確保那些科學研究成果,在邊緣能真正「跑起來」、「跑得快」、而且「能同時做更多事」的物理基礎!

二、工程適應性——塔式設計。
邊緣環境通常不是那種恆溫恆濕的標準機房,有時是在工廠角落、辦公室一隅、或某個研究實驗室。這種塔式的機箱設計,體積相對緊湊,散熱空間也比較好(這對高功耗的 GPU 很重要!),部署起來比傳統機架式伺服器更有彈性。這就是把高性能計算,進行「工程化」,讓它能適應台灣多樣化的邊緣應用場景。

三、可靠性
SKY-602E3 用的是伺服器等級的主機板、ECC 糾錯記憶體、還有備援電源供應器等等。這些聽起來很硬的規格,背後代表的是嚴謹的工程可靠性設計。畢竟在邊緣現場,系統穩定壓倒一切!你總不希望 AI 分析跑到一半就掛掉吧?這些設計確保了部署在現場的 AI 系統,能夠長時間、穩定地運作,把實驗室裡的科學成果,可靠地轉化成實際的應用價值。

-----廣告,請繼續往下閱讀-----
研華的 SKY-602E3 塔式 GPU 伺服器,體積僅如後背包大小,卻能輕鬆支援語言模型的運作,實現高效又安全的 AI 解決方案。/ 圖片提供:研華科技

台灣製造 × 在地智慧:打造專屬的邊緣 AI 解決方案

研華科技攜手八維智能,能幫助企業或機構提供客製化的AI解決方案。他們的技術能力涵蓋了自然語言處理、電腦視覺、預測性大數據分析、全端軟體開發與部署,及AI軟硬體整合。

無論是大小型語言模型的微調、工業瑕疵檢測的模型訓練、大數據分析,還是其他 AI 相關的服務,都能交給研華與八維智能來協助完成。他們甚至提供 GPU 與伺服器的租借服務,讓企業在啟動 AI 專案前,大幅降低前期投入門檻,靈活又實用。

台灣有著獨特的產業結構,從精密製造、城市交通管理,到因應高齡化社會的智慧醫療與公共安全,都是邊緣 AI 的理想應用場域。更重要的是,這些情境中許多關鍵資訊都具有高度的「時效性」。像是產線上的一處異常、道路上的突發狀況、醫療設備的即刻警示,這些都需要分秒必爭的即時回應。

如果我們還需要將數據送上雲端分析、再等待回傳結果,往往已經錯失最佳反應時機。這也是為什麼邊緣 AI,不只是一項技術創新,更是一條把尖端 AI 科學落地、真正發揮產業生產力與社會價值的關鍵路徑。讓數據在生成的那一刻、在事件發生的現場,就能被有效的「理解」與「利用」,是將數據垃圾變成數據黃金的賢者之石!

👉 更多研華Edge AI解決方案
👉 立即申請Server租借

-----廣告,請繼續往下閱讀-----
-----廣告,請繼續往下閱讀-----
文章難易度

討論功能關閉中。

0

0
1

文字

分享

0
0
1
人類是少數能看見斑馬條紋的物種!人類的視力到底有多好?——《五感之外的世界》
臉譜出版_96
・2023/09/18 ・1882字 ・閱讀時間約 3 分鐘

-----廣告,請繼續往下閱讀-----

長久以來,生物學家一直都在探討為什麼斑馬會有如此奇怪的黑白斑紋,直到他們談話的當下,卡羅依然在探究這個問題。他告訴梅林,其中最早出現、最廣為人知也令人意外的推測,是認為這些斑紋其實是斑馬的保護色。斑馬身上的黑白條紋毛色能夠擾亂掠食者(如獅子、鬣狗)的視線,讓牠們看不清楚斑馬的輪廓,也可以讓斑馬的身影融入周遭聳立的樹木之間,又能夠在斑馬跑動時讓其他動物感到視線模糊。

斑馬身上的斑紋在其跑動時會讓其他動物感到視線模糊。

但梅林對這些說法抱持著存疑的態度,她回想自己當初的反應:「我那時候表情應該很怪。我對他說:『大部分的肉食性動物都是在夜晚獵食,而且牠們的視覺根本不如人類靈敏,因此很有可能根本看不到那些斑紋。』」提姆這時驚訝地忍不住脫口而出:「什麼?」

斑馬紋隱身術

人類視覺處理細節的能力幾乎比其他任何動物都來得好;梅林也發現,正是因為這種特別敏銳的視力,人類才成了少數能夠看見斑馬條紋的物種。她和卡羅找了個光線明亮的日子,計算出擁有絕佳視力的人類能夠在一百八十二公尺左右之外的距離就分辨出斑馬身上的黑白條紋,獅子則得拉近到八十二公尺左右的距離才看得出來,鬣狗更是要到四十五公尺左右的距離才看得清楚。一旦到了掠食者最常打獵的黃昏或清晨時分,牠們則得再拉近約莫一半的距離才能看見斑馬身上的紋路。

所以梅林的想法沒錯:斑馬身上的條紋不可能是牠們用來匿蹤的保護色,因為掠食者都得靠得很近才看得到這些紋路,然而假如真的距離這麼近,這些天生的獵人早就聽見或聞到斑馬的蹤跡了,實在無需仰賴視力。在肉食動物與斑馬平時間隔的距離之下,這些紋路其實根本都融成了一片灰濛濛的顏色;對正在打獵的獅子來說,斑馬看起來跟驢子其實也沒什麼不同。

-----廣告,請繼續往下閱讀-----

人類其實視力超好的?

動物的視覺敏銳度以單位視角週期數(cycles per degree)為測量單位——這個概念剛好可以用剛剛的斑馬條紋來做例子。各位伸出手臂並豎起大拇指,你的指甲大約可以代表一單位視角;以你的手臂為距並涵蓋四周三百六十度的距離範圍來說,各位應該可以在指甲上畫了六十至七十條黑白條紋的情況下,依然辨識得出黑白條紋之間的區別。因此人類視覺敏銳度的單位視角週期數便約為六十至七十;目前的最高紀錄是來自澳洲的楔尾鵰(Aquila audax),牠們的視覺敏銳度之高,單位視角週期數高達一百三十八。

楔尾鵰擁有動物世界中最細的光受體,這也使牠們的視網膜裡可以密密麻麻地塞滿大量光受體;有了這些細窄的感光細胞,楔尾鵰敏銳視力的畫素大約是人類的兩倍,也因此可以在大約一點六公里之外的距離看見小小一隻大鼠。

然而老鷹和其他猛禽卻是少數視覺比人類敏銳得多的物種。感官生物學家愛倫諾.凱福斯(Eleanor Caves)搜羅了上百種動物的視覺敏銳度,發現人類的視力幾乎超越了所有物種。除了猛禽以外,就只有其他靈長類動物的視覺敏銳度能與我們比肩了。

人類的視力幾乎超越了所有物種。圖/pixabay

各種動物的視覺敏銳度以單位視角週期數表示如下:章魚為四十六、長頸鹿為二十七、馬為二十五、獵豹為二十三,視力表現還算不錯;而獅子卻只有十三,僅略高於人類法律中定義為全盲的單位視角週期數:十。然而其實除了上述物種之外,大部分動物的視覺敏銳度都低於人類視為全盲的門檻,其中包括半數的鳥類(令人意外的是,蜂鳥和倉鴞都在此行列之中),大部分的魚類與所有昆蟲;例如蜜蜂的單位視角週期數竟只有一,這也就表示你伸出去的那隻大拇指在蜜蜂眼裡就代表著一個畫素,至於拇指上畫的其餘細節在牠們眼中都是一團模糊。另外還約有百分之九十八的昆蟲視力比這還要更弱。

-----廣告,請繼續往下閱讀-----

凱福斯說:「人類真的很怪。我們的其他任何感覺根本連摸都摸不到可以稱為頂尖的邊,卻唯獨在視覺敏銳度上傲視群雄。」矛盾的是,人類雖有優良的視力,卻也因此失去了能夠欣賞其他環境界的視野,因為「我們以為自己看得到的,其他物種一定也能看見;認為那些對人類來說顯而易見顯眼的事物,對其他動物來說也一定難以忽視。但實際上卻並非如此。」凱福斯如此說道。

——本文摘自《五感之外的世界》,2023 年 8 月,臉譜出版,未經同意請勿轉載。

-----廣告,請繼續往下閱讀-----
臉譜出版_96
88 篇文章 ・ 255 位粉絲
臉譜出版有著多種樣貌—商業。文學。人文。科普。藝術。生活。希望每個人都能找到他要的書,每本書都能找到讀它的人,讀書可以僅是一種樂趣,甚或一個最尋常的生活習慣。

0

0
0

文字

分享

0
0
0
一摸就知道?人天生就可以辨識摸到的東西是什麼形狀嗎?——《為何三歲開始說謊?》
親子天下_96
・2023/09/17 ・1914字 ・閱讀時間約 3 分鐘

-----廣告,請繼續往下閱讀-----

人類天生可以連結視覺與觸覺經驗

這組研究團隊,是由法國的發展心理學家阿萊特.史翠麗(Arlette Streri)所領導。史翠麗的實驗室特色,就是使用嬰兒進行認知研究。值得注意的是,她們研究的不是一般的嬰兒,而是剛出生僅僅數十個小時的「極新」嬰兒。至於為什麼要使用這麼小的嬰兒,讀者應該也已經猜到原因:因為嬰兒的學習能力又強又快,只要一接觸這個世界,嬰兒的學習就已經開始。所以如果要回答涉及先天或後天的爭議問題,自然是使用愈小的嬰兒愈好。

為了回答莫里內的問題,史翠麗找來了二十四位出生不到五天的小嬰兒,她想知道,小嬰兒在僅透過觸覺感受過某物體的形狀後,能不能改用視覺辨識出同一個形狀的物體。她在實驗中,讓小嬰兒用右手抓握物體(並確保小嬰兒看不到該物體),其中有些小嬰兒抓握的是一個三角形的物體,另一些小嬰兒則是抓握一個圓柱形的物體。在抓握物體後,小嬰兒的眼前會出現兩個物體(一個三角形物體和一個圓柱形物體;其中一個是剛剛抓握過的物體,另一個是不曾抓握過的物體)。結果發現,小嬰兒對於不曾抓握過的物體,會有較久的凝視時間(Streri and Gentaz, 2003)。

為了驗證人類是否天生就能連結視覺與觸覺經驗,史翠麗找了二十四位新生兒來做測試。圖/Pexels

這項發現,看似給了莫里內問題的正方經驗論者一記重擊,因為實驗結果發現,小嬰兒在出生後短短五天內,好像就能將眼前的視覺形狀和抓握時的觸覺形狀連結在一起。而且嬰兒的這項能力,似乎不是透過學習而來,因為在嬰兒剛出生的這五天內,幾乎不可能摸過和看過實驗中所使用的三角形和圓柱形物體。

然而,這項結果仍然有人不服。比方說,經驗論者可以提出質疑:雖然嬰兒在出生後的五天內可能沒有看過三角形與圓柱形物體,但是他們可能已經透過其他方式學到了觸覺與視覺之間的局部緊密關聯性。例如嬰兒在剛出生時,就會不斷的揮手踢腳,他們不但可以看到自己的手部形狀(張掌或握拳),也可以透過觸覺去感受自己的手指、拳頭和指甲的形狀和感觸。這些基本的視覺與觸覺感受,可能就足以讓小嬰兒學習到尖銳與圓滑物體之間的視覺與觸覺差異,並因此導致上述的實驗結果。若真是如此,那麼這項實驗結果就無法拿來回應莫里內的問題,因為小嬰兒可能早在實驗前就已經學到觸覺與視覺之間的關聯性了。

-----廣告,請繼續往下閱讀-----

天生盲人恢復視力後的視覺認知狀態

由於史翠麗的實驗仍有瑕疵,因此無法對莫里內的問題給出一槌定讞的結論。不過在二○一○年左右,另一項契機開始逐漸浮現,而其中的主角,就是麻省理工學院的帕萬.辛哈教授(Pawan Sinha)。

帕萬.辛哈教授(Pawan Sinha)。
圖/美國在台協會 AIT

辛哈是美籍印度裔的知名視覺神經科學家,是我相當敬重的一位視覺科學前輩。他的實驗室,就位於我當年在麻省理工學院研究空間的隔壁,我也因此常有機會聽到辛哈和他的實驗室同仁談及研究計畫和成果。辛哈早年的研究主題,著重於人類大腦如何透過視覺進行學習,他在一九九九年剛到達麻省理工學院的腦與認知科學系任教時,仍不太確定自己該如何做出突破性的研究,但是在一次回印度探親的旅程中,他發現了一個可以同時在科學與社會福祉都有所貢獻的研究機會。

在印度,每一百個人中就有一位是盲人,而且印度孩童的失明比例還比西方國家高出三倍,其中很多孩童是先天性白內障,因為偏鄉缺乏醫療資源而導致失明。這些失明的孩童,一般都會經歷痛苦的人生。根據統計,印度失明孩童的受教育和受雇機率不到一○%,平均壽命也比一般孩童要少十五年,孩童時期的死亡率更是超過五○%。

在明白印度失明孩童的困境後,辛哈立下一個心願,他想透過自己的研究計畫來幫助這些孩子,並且同時進行有意義的科學實驗。就在這樣的背景下,他開始推動「光明」(Prakash)計畫,希望能在印度各地找出先天性白內障的孩童,幫他們免費進行白內障切除手術,然後同時研究他們恢復視覺後的認知與大腦變化。而辛哈的義舉,也讓爭論長達三百多年的莫里內思想實驗,出現了近乎完美的真實實驗契機:讓看不見的盲人恢復視力,然後檢視其視覺認知狀態,這不正是莫里內問題的初衷嗎?

-----廣告,請繼續往下閱讀-----

——本文摘自《為何三歲開始說謊?》,2023 年 7 月,親子天下出版,未經同意請勿轉載。

-----廣告,請繼續往下閱讀-----
親子天下_96
26 篇文章 ・ 25 位粉絲
【親子天下】起源於雜誌媒體和書籍出版,進而擴大成為華文圈影響力最大的教育教養品牌,也是最值得信賴的親子社群平台:www.parenting.com.tw。我們希望,從線上(online)到實體(offline),分齡分眾供應華人地區親子家庭和學校最合身體貼的優質內容、活動、產品與服務。