0

0
1

文字

分享

0
0
1

「超解析三維光學顯微技術」透視果蠅全腦,可望更瞭解記憶機制!

PanSci_96
・2019/11/15 ・1535字 ・閱讀時間約 3 分鐘 ・SR值 566 ・九年級
相關標籤:

2014 年的諾貝爾化學獎頒給發明「超解析螢光顯微鏡」的三位科學家,此發明讓光學顯微鏡突破了解析度極限。

近期,中央研究院應用科學研究中心陳壁彰助研究員,與國立清華大學生命科學院院長暨腦科學中心主任江安世院士,共同開發了「透化層光定位顯微鏡」讓超解析顯微技術更進一步,從觀測細胞層級一舉推展到能看清楚大一萬倍的組織層級(如:果蠅全腦),此技術可望為組織生理與病理學研究帶來新的突破,更有潛力揭開大腦記憶機制的神祕面紗。

陳壁彰師承 2014 年諾貝獎得主貝吉格(Eric Betzig)博士,如今與江安世合作,將生物組織在顯微鏡下變得透明,以掌握單一蛋白質分子的數量及空間分布。這項技術能一次解構果蠅全腦的多巴胺神經網路,並看見記憶蛋白在特定神經細胞突觸上的新生。研究論文已於今(2019)年 10 月 18 日刊登在《自然通訊》(Nature Communications)。

從果蠅大腦,分析記憶機制

左:超解析全腦果蠅全腦多巴胺神經多尺度圖像。中:超解析之果蠅眼部單一神經。右:超解析全腦囊泡單胺運轉蛋白在神經上的分佈。圖/中研院提供

果蠅大腦的蕈狀體(mushroom body)與記憶息息相關。

研究團隊對比有受記憶訓練沒有受記憶訓練的果蠅蕈狀體,觀察其中「囊泡單胺運轉蛋白質」(vesicular monoamine transporter)的分布後,發現只有在部分的突觸會有此種蛋白質增加。這表示,在單一一顆神經細胞中,記憶不僅會存在細胞本體,更會儲存在神經細胞溝通的橋樑之間。

超解析三維光學顯微的技術突破

此研究發現是「超解析三維光學顯微技術」首次應用成果。

陳壁彰表示,這項最新技術可視為他今年稍早發表在 Communications Biology 研究的進階版。該研究利用層光定位顯微鏡,達到小於 100 奈米(nm)的三維空間解析度,除可看見細胞核孔的大小,更具有三維活體超分辨的解析力。

-----廣告,請繼續往下閱讀-----

在這技術基礎上,江安世將其用於觀察完整的果蠅大腦,也就是在比單一細胞大將近一萬倍的組織中,定位其中所有蛋白質分子。然而,要將貝吉格博士的超解析螢光技術從二維細胞影像推進到三維組織研究,存在許多難題,例如:不透明的果蠅大腦光線穿透率很低、螢光染料難以均勻分布,以及層光顯微鏡觀察對象受限於很薄的單層細胞等。

超解析顯微鏡工作原理。左:當所有螢光蛋白同時亮起,顯微鏡解析度不足以解析各自蛋白位置。右:若分開激發,則可經由計算中心位置,進而重組出螢光蛋白奈米等級尺度影像。圖/中研院提供

為了解決這些問題,有賴跨領域實驗室之間的交流合作。

  • 江安世院士發明全腦組織透化方法,將果蠅腦變透明,讓可見光得以穿透
  • 中研院物理所的胡宇光特聘研究員,針對螢光分子的嫁接進行修飾
  • 李定國院士在影像運算上給予指導
  • 應科中心陳培菱研究員具有處理超解析率影像的經驗
  • 張書維副研究員參與模擬光學系統
  • 最後,朱麗安博士與呂杰翰博士完成系統架設、實驗操作與結果分析,完成論文。

研究團隊終於讓「透化層光定位顯微鏡」成功在深約 0.5 mm 的大腦空間中,看見蛋白質分子的分布情形。

而這項技術也讓影像解析的速度大幅提升。

原本一個晚上僅能解析一層二維的細胞影像,但經由團隊中台灣大學劉彥廷同學撰寫的平行運算軟體,將運算速度大幅提升,如今一天即可解析一隻果蠅全腦的三維影像,並可隨心所欲地在果蠅大腦中的任何神經元進行蛋白質數量的統計分析。

-----廣告,請繼續往下閱讀-----
  • 本文改寫自中研院新聞稿,原標題為〈透視全腦!超解析三維光學顯微技術 可望更瞭解記憶機制〉
  • Chu, L. A., Lu, C. H., Yang, S. M., Liu, Y. T., Feng, K. L., Tsai, Y. C., … & Lee, T. K. (2019). Rapid single-wavelength lightsheet localization microscopy for clarified tissue. Nature communications, 10(1), 1-10.
  • 本論文共同第一作者為朱麗安博士及呂杰翰博士,本研究團隊包括楊舜閔、劉彥廷、蔡允齊、王文呈、張煒堃、馮冠霖。
-----廣告,請繼續往下閱讀-----
文章難易度
PanSci_96
1238 篇文章 ・ 2374 位粉絲
PanSci的編輯部帳號,會發自產內容跟各種消息喔。

0

1
0

文字

分享

0
1
0
美國將玉米乙醇列入 SAF 前瞻政策,它真的能拯救燃料業的高碳排處境嗎?
鳥苷三磷酸 (PanSci Promo)_96
・2024/09/06 ・2633字 ・閱讀時間約 5 分鐘

本文由 美國穀物協會 委託,泛科學企劃執行。

你加過「酒精汽油」嗎?

2007 年,從台北的八座加油站開始,民眾可以在特定加油站選加「E3 酒精汽油」。

所謂的 E3,指的是汽油中有百分之 3 改為酒精。如果你在其他國家的加油站看到 E10、E27、E100 等等的標示,則代表不同濃度,最高到百分之百的酒精。例如美國、英國、印度、菲律賓等國家已經開放到 E10,巴西則有 E27 和百分之百酒精的 E100 選項可以選擇。

圖片來源:Hanskeuken / Wikipedia

為什麼要加酒精呢?

單論玉米乙醇來說,碳排放趨近於零。為什麼呢?因為從玉米吸收二氧化碳與水進行光合作、生長、成熟,接著被採收,發酵成為玉米乙醇,最後燃燒成二氧化碳與水蒸氣回到大氣中。這一整趟碳循環與水循環,淨排放都是 0,是個零碳的好燃料來源。

-----廣告,請繼續往下閱讀-----
圖片來源:shutterstock

當然,我們無法忽略的是燃料運輸、儲藏、以及製造生產設備時產生的碳足跡。即使如此,美國農業部經過評估分析,2017 發表的報告指出,玉米乙醇生命週期的碳排放量比汽油少了 43%。

「玉米乙醇」納入 SAF(永續航空燃料)前瞻性指引的選項之一

航空業占了全球碳排的 2.5%,而根據國際民用航空組織(ICAO)的預測,這個數字還會成長,2050 年全球航空碳排放量將會來到 2015 年的兩倍。這也使得以生質原料為首的「永續航空燃料」SAF,開始成為航空業減碳的關鍵,及投資者關注的新興科技。

只要燃料的生產符合永續,都可被歸類為 SAF。目前美國材料和試驗協會規範的 SAF 包含以合成方式製造的合成石蠟煤油 FT-SPK、透過發酵與合成製造的異鏈烷烴 SIP。以及近年討論度很高,以食用油為原料進行氫化的 HEFA,以及酒精航空燃料 ATJ(alcohol-to-jet)。

圖片來源:shutterstock

每種燃料的原料都不相同,因此需要的技術突破也不同。例如 HEFA 是將食用油重新再造成可用的航空燃料,因此製造商會從百萬間餐廳蒐集廢棄食用油,再進行「氫化」。

-----廣告,請繼續往下閱讀-----

就引擎來說,我們當然也希望用到穩定的油。因此需要氫化來將植物油轉化為如同動物油般的飽和脂肪酸。氫化會打斷雙鍵,以氫原子佔據這些鍵結,讓氫在脂肪酸上「飽和」。此時因為穩定性提高,不易氧化,適合保存並減少對引擎的負擔。

至於酒精加工為酒精航空燃料 ATJ 的流程。乙醇會先進行脫水為乙烯,接著聚合成約 6~16 碳原子長度的長鏈烯烴。最後一樣進行氫化打斷雙鍵,成為長鏈烷烴,性質幾乎與傳統航空燃料一模一樣。

ATJ 和 HEFA 雖然都會經過氫化,但 ATJ 的反應中所需要的氫氣大約只有一半。另外,HEFA 取用的油品來源來自餐廳,雖然是幫助廢油循環使用的好方法,但供應多少比較不穩定。相對的,因為 ATJ 來源是玉米等穀物,通常農地會種植專門的玉米品種進行生質乙醇的生產,因此來源相對穩定。

但不論是哪一種 SAF,都有積極發展的價值。而航空業也不斷有新消息,例如阿聯酋航空在 2023 年也成功讓波音 777 以 100% 的 SAF 燃料完成飛行,締下創舉。

-----廣告,請繼續往下閱讀-----
圖片來源:shutterstock

汽車業也需要作出重要改變

根據長年推動低碳交通的國際組織 SLoCaT 分析,在所有交通工具的碳排放中,航空業佔了其中的 12%,而公路交通則占了 77%。沒錯,航空業雖然佔了全球碳排的 2.5%,但真正最大宗的碳排來源,還是我們的汽車載具。

但是這個新燃料會不會傷害我們的引擎呢?有人擔心,酒精可能會吸收空氣中的水氣,對機械設備造成影響?

其實也不用那麼擔心,畢竟酒精汽油已經不只是使用一、二十年的東西了。美國聯邦政府早在 1978 就透過免除 E10 的汽油燃料稅,來推廣添加百分之 10 酒精的低碳汽油。也就是說,酒精汽油的上路試驗已經快要 50 年。

有那麼多的研究數據在路上跑,當然不能錯過這個機會。美國國家可再生能源實驗室也持續進行調查,結果發現,由於 E10 汽油摻雜的比例非常低,和傳統汽油的化學性質差異非常小,這 50 年來的車輛,只要符合國際標準製造,都與 E10 汽油完全相容。

-----廣告,請繼續往下閱讀-----

解惑:這些生質酒精的來源原料是否符合永續的精神嗎?

在環保議題裡,這種原本以為是一片好心,最後卻是環境災難的案例還不少。玉米乙醇也一樣有相關規範,例如歐盟在再生能源指令 RED II 明確說明,生質乙醇等生物燃料確實有持續性,但必須符合「永續」的標準,並且因為使用的原料是穀物,因此需要確保不會影響糧食供應。

好消息是,隨著目標變明確,專門生產生質酒精的玉米需求增加,這也帶動品種的改良。在美國,玉米產量連年提高,種植總面積卻緩步下降,避開了與糧爭地的問題。

另外,單位面積產量增加,也進一步降低收穫與運輸的複雜度,總碳排量也觀察到下降的趨勢,讓低碳汽油真正名實相符。

隨著航空業對永續航空燃料的需求抬頭,低碳汽油等生質燃料或許值得我們再次審視。看看除了鋰電池車、氫能車以外,生質燃料車,是否也是個值得加碼投資的方向?

-----廣告,請繼續往下閱讀-----

參考資料

-----廣告,請繼續往下閱讀-----
文章難易度

討論功能關閉中。

鳥苷三磷酸 (PanSci Promo)_96
205 篇文章 ・ 311 位粉絲
充滿能量的泛科學品牌合作帳號!相關行銷合作請洽:contact@pansci.asia

0

0
0

文字

分享

0
0
0
臺灣的水真的沒辦法生飲嗎?
鳥苷三磷酸 (PanSci Promo)_96
・2024/09/13 ・6474字 ・閱讀時間約 13 分鐘

本文由 Amway 委託,泛科學企劃執行。 

根據衛福部建議,我國成人每天應該飲用約1500至2000 c.c. 的水,但在日本與歐美許多國家,只要一打開水龍頭,就能馬上擁有一杯能喝下肚的水。臺灣自詡為科技大國,為什麼卻無法擁有讓人安心的 Tap water?

冤有頭債有主,造成我們不敢生飲水的最大原因,其實不在自來水廠。從自來水廠出來的自來水,早已去除水源中的化學有機污染物、有害重金屬及致病性微生物,完全符合「飲用水水質標準」。在非常嚴密的檢驗和監控下,照理來說,你我都能夠非常安心的直接飲用這些自來水。然而,就連對水質信心滿滿的自來水廠,也大力呼籲民眾「不要直接飲用自來水」,這是怎麼一回事?

圖片來源:shutterstock

從水廠到家裡的自來水會經過哪些污染源?

首先,是管線老舊。不只是老舊管線內壁會積聚沉澱物和生物膜,管線本身若有生鏽、腐蝕的情形,還會在水中增加的鐵鏽和金屬離子。

-----廣告,請繼續往下閱讀-----

臺灣管線老舊的程度到底有多嚴重呢?根據台水公司108年的資料顯示,我國自來水管線長度超過6萬3千公里,其中超過48%的管線已經超過使用年限。再加上施工、地震、車輛超載等原因,使得管線容易破裂、漏水,進而影響水質。

除了管線品質外,蓄水池與水塔的清潔和維護也是影響自來水品質的重要因素。根據環境部指出,有高達7成以上的自來水污染事件,都是因為住戶疏忽清洗水塔的重要性,導致細菌和泥沙在儲水設施中繁衍和沉積。然而,超過45%的台灣民眾沒有定期清洗蓄水池和水塔的習慣。

這邊也要特別提醒,管線破損與蓄水池的污染,不只會讓飲用水再次受到重金屬與細菌的污染,更讓我們需要當心「新興污染物」的威脅。

什麼是「新興污染物」?

所謂新興污染物,指的是那些對環境有潛在威脅,但還沒有受到國家或國際法律廣泛監管的化學物質總稱。他們來自各種日常化工用品,並且透過城市、工業、家庭廢水進入河川與水體中。

-----廣告,請繼續往下閱讀-----

根據聯合國環境署的說明,「符合新興污染物資格的化合物清單很長,而且越來越長」。這些污染物其實離我們並不遠,是我們周遭常見的物質,例如抗生素、止痛藥、消炎藥、類固醇和荷爾蒙等藥物類,驅蟲劑、微塑膠、防腐劑、殺蟲劑、除草劑等環境荷爾蒙類,還有工業化學類的界面活性劑、火焰阻燃劑、工業添加劑、汽油添加劑、PFAS、鐵氟龍等等。

其中的全氟及多氟烷基物質PFAS,因為耐腐蝕、抗高溫,在自然環境中幾乎無法分解,又被稱為「永久性化學物質」。容易在環境及人體內累積,具有生物累積和生物放大性。而且PFAS衍伸的化合物超過一萬種,在防水、防油的紙袋、紡織品、化妝品中都很常看到。

PFAS成員全氟辛酸PFOA在2023年,被聯合國的國際癌症研究機構IARC,從2B級「可能對人類致癌」提升為一級「充分證據顯示對人類致癌」。另一個成員全氟辛烷磺酸PFOS則列為2B級致癌物。而環境部也在2024年,更針對PFOA、PFOS訂定飲用水濃度指引值。

PFOA 已被列入 IARC 第1類致癌物質,圖:Wikipedia

麻煩的是,這些新興污染物在都市中大多還未納入常規監測項目,我們對於他們對環境與人體的影響也還未全盤了解。甚至很多污染物,可能是十年前都還沒出現的。我們也不知道十年後,新興污染物的名單上,還會增加哪些名字。我們能做的事,就是盡量避免再避免。而徹底解決管線破損,與城市污水滲入蓄水池的可能性,我們才能避免這些新興污染物,進入到我們的飲用水中。

-----廣告,請繼續往下閱讀-----

使用淨水器過濾,會是淨化水質更好的方法嗎?

淨水器比起單純加熱煮沸,裡面包含了許多科技結晶,確實可以一口氣解決所有問題。但相對的,材料的選用與設計,就會更直接影響水質的好壞。

例如今天要介紹的eSpring益之源淨水器Pro,裡面用的濾材,是很常聽見的「活性碳」。

活性碳的作用是「過濾」,就像麵粉通過篩網,可以篩掉較大的顆粒。活性碳的製備,很多來自木材、椰子殼等高碳含量的原料。在經過高溫碳化,並通過活化劑或化學藥劑處理之後,會形成多孔結構,這些不規則的微小孔隙可以有效過濾水中的污染物。然而,活性碳的作用遠不止如此!其實,活性碳的過濾原理是「吸附」雜質。

活性碳是常見的濾材,圖:Wikipedia

有研究透過光譜和密度泛函理論(DFT)分析顯示,活性碳表面的含氧官能團,如羧基(carboxyl groups)和酚基(phenol groups),能夠與鉛離子(Pb(II))形成穩定的化合物,達到淨水的效果。這意味著活性碳能有效吸附和去除水中的重金屬,如鉛、銅、汞等重金屬,從而保證飲用水的安全性。

-----廣告,請繼續往下閱讀-----

也就是說,活性碳不僅通過物理吸附去除水中的懸浮物和大分子,還可以通過化學吸附來處理更複雜的污染物。除了重金屬以外,眾多的有機物、臭味分子甚至是餘氯,也都在活性碳的守備範圍內。一篇發表在《Reviews in Chemical Engineering》的論文也指出,面對日益增加的新興污染物,活性碳也正是一種具有前景的選擇之一,尤其農藥、個人保健與衛生藥(PPCPs)以及內分泌干擾物質(EDC)與活性碳有很強的吸附性,能有效的過濾這些新興污染物。

更進一步,科學家們正在研究各種農業廢棄物和不同的活化方式。他們發現,透過不同的原料和活化方式,活性碳表面官能基和結構的差異可以提高對不同污染物的吸附能力。例如,當使用鷹嘴豆、甜菜甘蔗渣或咖啡渣作為前驅物時,這些活性碳材料展現出對銅離子、鉻離子、染料及其他重金屬和有機污染物的優異吸附能力。

接下來,如果你的淨水器功能只有過濾,能確保的只有有機物與重金屬的去除,細菌可能還是存在。

當我們談論淨水器的功能時,許多人誤以為只要經過過濾就能確保水質的安全。實際上,這樣的理解並不全面。如果淨水器的功能僅限於過濾,它能確保的只有去除水中的有機物質和重金屬,然而,過濾並不能消除所有細菌,因此水中的微生物仍然可能殘留。這就是為什麼,即便過濾器

-----廣告,請繼續往下閱讀-----

之外,還需要強效殺菌來進一步保證水質。

紫外線是我們日常生活中常見且高效的殺菌工具,從居家用的烘碗機到手術室、圖書館的空氣或表面消毒,紫外線技術的應用無所不在。在淨水系統中,特別是UV-C 紫外線(波長範圍100-280nm)被證明能夠有效殺滅水中的微生物。許多先進的淨水器配備 UV-C LED ,這種燈能夠針對細菌、病毒進行消毒。

圖片來源:Amway

怎樣算是一個合格的淨水器?

美國國家衛生基金會(NSF)制定了一系列針對淨水器的性能、安全性和耐用性的標準,稱為NSF/ANSI標準。

針對台灣飲用水可能遇到的問題:細菌、重金屬、新興污染物、餘氯,各有專門的訂定標準。

-----廣告,請繼續往下閱讀-----
NSF/ANSI 標準指的是美國國家科學基金會下美國國家標準協會的所訂定的標準,

eSpring益之源淨水器Pro通過的第一跟二項標準是NSF/ANSI 53和401標準,53項針對的是健康相關的污染物,包含重金屬如鉛、銅、汞等有害金屬離子,還包括一些有機污染物如揮發性有機化合物(VOCs)。401項則是針對來自農藥、藥物等新興的有機污染物,因為在傳統的水處理過程中難以去除,因此特別訂定。

第三項,則是針對UV-C LED紫外線滅菌艙殺菌效果的NSF/ANSI 55標準。這個標準不僅規定了紫外線強度,還包括了水流量和微生物減少效果的測試與持久性,確保淨水器具有足夠的殺菌消毒能力。根據實驗數據,UV-C  LED紫外線能夠有效消滅高達99.9999% 的細菌,99.99% 的病毒,以及99.9% 的囊胞菌,為飲用水提供極高的安全保障。

最後一項標準是NSF/ANSI 42,他針對的餘氯和其他會影響味道與氣味的雜質。也就是像eSpring益之源淨水器Pro有通過第42項標準的,在確保飲用安全的標準之上,還能讓你的水更好喝哦。

這邊也要補充,除了第42、53、以及401項規定的標準,eSpring益之源淨水器Pro還請NSF做了標準之外的各項過濾性能檢測,總共有超過170種污染物的過濾符合標準,包含各種化學物質、重金屬、生物性、農藥、藥物、甚至是近年大家關注的石綿、氡氣與塑膠微粒,都在可被有效過濾的列表之中。這真的很重要,如同一開始我們講的,隨著工業文明的發展,新興污染物的名單只會越來越長而不會減少,多做幾項檢測,絕對是更安心的。如果你的淨水器已經用了很久,但擔心新興污染物沒有在獵捕名單內,可以考慮換成有通過更高標準的淨水器哦。

-----廣告,請繼續往下閱讀-----

另外,一些品牌雖然也有NSF認證,但很多都只有零件認證。eSpring益之源淨水器Pro不只針對濾心,還通過「全機認證」,確保從淨水器流出來的每一滴水都符合標準。

進一步了解商品: eSpring益之源淨水器Pro

參考資料:

-----廣告,請繼續往下閱讀-----

討論功能關閉中。

鳥苷三磷酸 (PanSci Promo)_96
205 篇文章 ・ 311 位粉絲
充滿能量的泛科學品牌合作帳號!相關行銷合作請洽:contact@pansci.asia

0

0
0

文字

分享

0
0
0
突破治療瓶頸:新一代 BTK 抑制劑重燃生機
careonline_96
・2024/09/13 ・2307字 ・閱讀時間約 4 分鐘

-----廣告,請繼續往下閱讀-----

年近八十歲的陳老先生(化名),某天因胃不適而去做胃鏡檢查,意外發現罹患胃部邊緣區淋巴瘤,且蔓延到淋巴結、脾臟,全身都受到影響。高雄長庚血液腫瘤科副科主任王銘崇醫師指出,「由於患者的腎功能與心肺功能較差,所以治療藥物的選擇較有限,使用傳統治療成效也較不理想,遺憾不到一年的時間就離世了。」

邊緣區淋巴瘤(MZL,marginal zone lymphoma)是一種源自 B 細胞的非何杰金氏淋巴瘤,王銘崇醫師解釋,臨床上將 B 細胞淋巴瘤區分為低惡性度、中惡性度、高惡性度,而 MZL 是屬於低惡性度的 B 細胞淋巴瘤,腫瘤生長與分裂緩慢,部分患者不需立即接受治療,而是採「觀察及等待」。王銘崇醫師指出,MZL 較常發生在中老年人,根據國際學術期刊全球患者發生部位可分為三種亞型,結外邊緣區粘膜相關淋巴組織淋巴瘤(MALT)佔超過 60%、脾邊緣區淋巴瘤(SMZL)約佔 20% 、結內邊緣區淋巴瘤(NMZL)約佔 10%[1],而根據其發生的部位不同,會造成相異的症狀,不過多數「沒有症狀」,患者較多是在接受其他檢查時意外發現。

資料提到之佔比來源1 圖/照護線上

低惡性度淋巴瘤也不可輕忽!好發部位影響預後應積極治療

邊緣區淋巴瘤(MZL)患者的預後與腫瘤生長部位有關,王銘崇醫師說,若腫瘤長在胃部,積極配合治療,患者的生命期和一般人沒有太大的差別;但長在肺部可能影響呼吸,有胸痛、咳嗽,甚至咳血等症狀較危及性命;或為結內邊緣區淋巴瘤(NMZL)可能干擾造血功能,而影響存活。王銘崇醫師表示,臨床醫師與病理科醫師會根據臨床症狀、骨髓檢查、影像檢查等資訊,來決定邊緣區淋巴瘤的亞型,但也提醒腫瘤可能隨著時間轉移至其他部位,民眾不可輕忽,需持續追蹤觀察。

BTK 抑制劑助力 MZL 提供治療選擇

邊緣區淋巴瘤(MZL)的治療與腫瘤位置有關,根據臨床追蹤觀察,評估患者是否需要立即接受治療。王銘崇醫師指出,局限性的邊緣區淋巴瘤,可以考慮手術治療將腫瘤切除,然後再做放射治療;廣泛性的邊緣區淋巴瘤,可能需要全身性治療,包括單株抗體治療、化學治療、標靶治療、免疫調節劑等。

-----廣告,請繼續往下閱讀-----
邊緣區淋巴瘤如何治療
圖/照護線上

近年來,針對 BTK 靶點而發展出的 BTK 抑制劑標靶藥物,已被運用於治療相關癌症。BTK 抑製劑為抑制 BTK 活性的藥物,由於邊緣區淋巴瘤(MZL)是源自 B 細胞的惡性腫瘤,而 B 細胞表面會有一個 B 細胞受體,該受體一旦被激發,細胞的激酶 BTK 就會被激活,促進癌細胞的生長發育與轉移,把 BTK 靶點的活性抑制住,就能控制癌細胞的生長。

跟上國際治療趨勢 新一代口服BTK抑制劑有望對心臟提供更好的保護

新一代口服BTK抑制劑突破邊緣區淋巴瘤治療困境
圖/照護線上

邊緣區淋巴瘤(MZL)目前無法痊癒,患者必須定期追蹤檢查。王銘崇醫師指出,如果一開始治療效果就不好,或是治療後在兩年內復發,將被歸類為復發且難治型 R/R MZL 病人,「這類型患者的比例大概在一成左右,不過也與第一線的治療藥物有關,根據臨床癌症研究期刊 ( Clinical Cancer Research ) 於 2021 年所發表的研究報告指出—若使用新一代口服 BTK 抑制劑的反應率將大幅提升,部分患者可以得到完全緩解。[2] 」

而目前國際上對於邊緣區淋巴瘤(MZL)的治療共識肯定 BTK 抑制劑應用於 B 細胞惡性淋巴瘤的臨床優勢。為能對患者的心臟提供更好的保護與支持,目前美國國家癌症資訊網(NCCN)國際治療指引已將新一代 BTK 抑制列為用於治療 R/R MZL 優先選擇[3]。王銘崇醫師感嘆,「如果案例陳大哥有機會接受新型治療,也許會有不同的命運。」,現已有新一代口服標靶BTK抑制劑問世,提供多一種治療方案,有望提高患者生活品質,為 MZL 患者一大福音。

參考資料:

  • [1] Smith A, Crouch S, Lax S, Li J, Painter D, Howell D, et al. Lymphoma incidence, survival and prevalence 2004–2014: sub-type analyses from the UK’s Haematological Malignancy Research Network. Br J Cancer. 2015; 112(9): 1575–1584.
  • [2] Opat S, Tedeschi A, Linton K, McKay P, Hu B, Chan H, Jin J, Sobieraj-Teague M, Zinzani PL, Coleman M, Thieblemont C, Browett P, Ke X, Sun M, Marcus R, Portell CA, Ardeshna K, Bijou F, Walker P, Hawkes EA, Mapp S, Ho SJ, Talaulikar D, Zhou KS, Co M, Li X, Zhou W, Cappellini M, Tankersley C, Huang J, Trotman J. The MAGNOLIA Trial: Zanubrutinib, a Next-Generation Bruton Tyrosine Kinase Inhibitor, Demonstrates Safety and Efficacy in Relapsed/Refractory Marginal Zone Lymphoma. Clin Cancer Res. 2021 Dec 1;27(23):6323-6332. doi: 10.1158/1078-0432.CCR-21-1704. Epub 2021 Sep 15. PMID: 34526366; PMCID: PMC9401507.
  • [3] Experimental Hematology & Oncology (2023) 12:92 https://doi.org/10.1186/s40164-023-00448-5
-----廣告,請繼續往下閱讀-----

討論功能關閉中。

careonline_96
496 篇文章 ・ 275 位粉絲
台灣最大醫療入口網站