0

0
0

文字

分享

0
0
0

美拉尼西亞(Melanesia)的金髮爆炸頭(Blond Afros)

葉綠舒
・2012/06/23 ・527字 ・閱讀時間約 1 分鐘 ・SR值 490 ・五年級

立即填寫問卷,預約【課程開賣早鳥優惠】與送你【問卷專屬折扣碼】!

圖片來源:ScienceNow

如果你以為只有白人會有黑色以外的髮色,那麼你就錯了。位於澳洲東北方 1800 公里處的所羅門群島(Solomon Islands),約有 10% 的島民頂著一頭金髮黑人捲。

過去曾有人發表過這些金髮爆炸頭是因為太陽太大或是海水漂白等等…當然這些全部都是毫無根據的想像/謬論,不過最近的研究發現,不同於白人的髮色是由多對基因遺傳,所羅門群島上的金髮黑人捲是來自於一個基因的點突變。這個基因(TYRP1)稱為酪氨酸酶相關蛋白 1(tyrosinasae-related protein 1),當它的其中一個氨基酸因為點突變成為半胱氨酸(cysteine)而非原來的精氨酸(arginine)時,造成這個蛋白失去功能,於是就有了金髮爆炸頭。

這個研究顯示了白人以外的種族,髮色的決定或許較單純;不過,因為這個突變產生的基因是隱性遺傳,所以在其他非白人種族裡都不大容易看見。

至於為何能在所羅門群島看見呢?應該是因為當地族群不大的關係,由於人不多且過去數百年來島民間一直有互相婚配的情況發生,但與島外居民發生婚配的機率不多(因為太遠),所以一旦有突變發生,由於髮色的突變與生存優勢無關,因此得以保留下來。

參考文獻

The Origin of Blond Afros in Melanesia—ScienceNow [ 2012/5/3]

本文原發表於作者部落格

文章難易度
葉綠舒
262 篇文章 ・ 8 位粉絲
做人一定要讀書(主動學習),將來才會有出息。

0

2
0

文字

分享

0
2
0
種族大爆發!數萬年前的人類大遷徙如何影響我們的社會?——《人類的旅程》
商業周刊
・2022/10/22 ・2852字 ・閱讀時間約 5 分鐘

人類如何發展成多元族群?

自從三十萬年前智人在非洲現身,多元化便幫助人類適應非洲各地不同的環境。這期間大部分時候,適應成功漸漸產生更好的獵人和採集者,使食物供給增加,人口明顯上升。

之後每個人可享有的生存空間和自然資源減少,早在六萬至九萬年前的某個時間,智人開始大規模出走非洲大陸,尋找更多肥沃的生存土地。由於這種外移過程有連續性,便自然產生一種相關:定居的地方離非洲越遠,人口多元化就越低。智人離開非洲越遠,其社會的文化、語言、行為、體格多元化程度就越低。這種現象反映著連續始祖效應(serial founder effect)。

什麼是「連續始祖效應」?

假設有個島上,住著五種主要品種的鸚鵡:藍、黃、黑、綠、紅,牠們在島上適應存活的能力相當。當颱風來襲,有幾隻鸚鵡被吹到很遠的荒漠小島。這一子群鸚鵡不太可能涵蓋所有五個品種。假定牠們以紅、黃、藍居多,不久滿布新島上的幼雛將遺傳牠們的毛色。於是新島上形成的鸚鵡群就不及原棲息地的多樣化。要是後來又有很小一群鸚鵡,從第二島移往第三島,這一群的多樣化更不及前二島。所以只要鸚鵡從母島移出的速度快過原島上可能產生突變的速度,則牠們(相繼)移得越遠,就越不多樣。

人類移出非洲也是類似模式。起先有一群人離開非洲,定居在附近肥沃地帶,他們只帶走非洲母體人口多樣化的一部分。等這群最早的移民成長到新環境無法支撐他們再擴大,便會有一群人離開,去尋找別的處女地,定居在更遠的地方,其多元化將更低。人類向非洲以外散布,以致各洲都有人類蹤跡的這段期間,同樣的過程一再重複:人口增加,新群體再移出,去追尋更綠的草地,但多樣化僅及母體人口的一部分。

儘管有移民改變方向,這顯而易見,不過這種移居模式的影響是,離開非洲來到西亞的人群不像原本在非洲的人口那樣多樣化,其後代又繼續向東移往中亞,最後來到大洋洲和美洲,或是向西北移往歐洲,多其樣性也越來越比不上留在原地的人。解剖學上的現代人類,從非洲的搖籃向外擴張,為世界各地文化、語言、行為、形體多元化的程度不同,刻下深刻且不可磨滅的印記。

人類移出非洲對多元化的影響。
虛線箭頭代表移出的大約路徑,小圓圈代表一種假設的社會特質有各種變異。每向外移一次,離開的人只帶走母體人口多元化的一部分。圖/《人類的旅程》

這種與非洲離得越遠、人口整體多元程度就降低,部分反映在較遠的在地民族基因較不多樣化上。根據對二百六十七種不同人口做基因多元化的比較測量,這些人口大都可找出原屬的本土族群和地理上的發源地。結果很明顯,距東非最近的本土族群基因最多樣化。多樣化最低的是中南美洲的本土族群,他們從陸路移出非洲的距離最長。多元化與移出東非的距離成負相關,這種模式不僅出現在各大洲之間,在各洲內部也是如此。

自東非移出距離與地理上本土族群多元化。圖/《人類的旅程》

體質與認知人類學領域提供更多這種證據。研究人體體型的特徵,比方與牙齒特徵、骨盆特徵、產道形狀相關的骨骼架構,以及研究文化特徵,例如不同語言的基本詞語單位(「音素」〔phonemes〕),都證實有源自東非的連續始祖效應存在;同樣是距東非越遠,體形和文化特徵的多樣化越低。

人口多元化表現的形式是多方面的,若要適當探究整體多元化程度對國家經濟繁榮的影響,當然需要比基因學家和人類學家所提供的更廣泛許多的測量標準。此外,這標準也需要獨立於經濟發展的程度之外,以便用於評估多元化對國家財富的因果效應。這會是什麼樣的測量標準呢?

測量人類多樣性的標準是什麼?

測量人口多元化慣用的標準,往往只擷取人口中族裔或語言群體的比例代表。這類標準因此有二大缺點;一是某些族裔和語言群體的關係較密切。由等比例丹麥人和瑞典人組成的社會,或許不如由等比例丹麥人和日本人組成的社會那麼多元。另一缺點是,族裔和語言群體的內部也不盡然完全同質。全由日本人組成的國家與全由丹麥人組成的國家,多元化程度不見得相同。事實上,族裔團體內在的多樣性通常比不同群體的多樣性要大上十倍。

因此要全面測量一國人口的整體多元化,至少應當再多加二個多元化的面向。一是族裔或次民族群體內在的多元化,如美國的愛爾蘭裔和蘇格蘭裔人口。其次是比對任一組族裔或次民族群體之間的多元化程度,例如,比起美國的愛爾蘭裔和墨西哥裔人口,愛爾蘭裔和蘇格蘭裔的文化較為相近。

鑑於移出東非的距離與可觀察特質的多元化之間存在緊密的負相關,這個遷徙距離可用於代表地球上每個地方的歷史多元化程度。我們依據各地人口的祖先與遷徙出非洲的距離有多遠,可以建構推算今日各國人口整體多元化的指數,列入考量的包括 (1) 國內各次群體的祖先人數多寡;(2) 依據各次群體的祖先走出東非時遷徙的距離,來推測其多元化;(3) 每一次群體配對後,由兩方祖先和地理發源地的遷徙距離來推算多元化程度。

這樣用統計學測量來推算多元化水準有二大優點。一是史前遠離非洲有多遠,顯然完全與當今的經濟繁榮水準無關,所以這種測量法可用於估計多元化對生活水準的因果效應。其次是如上文所強調,有越來越多體質與認知人類學領域的證據顯示,遠離非洲的遷徙距離深深影響到許多表現在身體及行為上的特質的多元化;所以我們有把握,用這種測量法推算的多元化類別會產生社會結果。

要是用這種指數測量多元化不精準(採隨機方式進行),原因比方說是未能適當考量各洲的內部移民,則根據統計學理論,我們多半會因此否定、而非確認多元化影響經濟繁榮的假設。也就是說,如果我們犯錯,是因為過於謹慎。

人口特質多元性和能不能賺大錢有關係!?

最後很重要的一點是,我們是針對個別社會的特徵測量多元化。這測量的是某一社會的人口特質有多少不同種類,無論這些特質是什麼,或是不同社會間有什麼差別。因此它不會、也不能用於暗示某些特質比別的特質對經濟成功更有利。反而它可以掌握到某個社會的人口特質多元化,對經濟繁榮有何潛在影響。事實上,把地理與歷史干擾因子納入考量,遠離非洲的遷徙距離本身似乎並未影響全球各地如身高體重等特徵的平均水準。它主要是影響群體中的個人與平均水準的差異。

有了這強有力的測量法可測定每一群人口的整體多樣性,我們終於可以探究數萬年前遠離非洲的大出走,以及它對人類多元化的影響,是否如此源遠流長,以致居然還能左右當前的全球生活水準。

———本書摘自《人類的旅程》,2022 年 10 月,商業周刊,未經同意請勿轉載

商業周刊
12 篇文章 ・ 3 位粉絲

0

2
0

文字

分享

0
2
0
天選之人!為什麼地球上只有我們是高智慧生命體?——《人類的旅程》
商業周刊
・2022/10/21 ・2959字 ・閱讀時間約 6 分鐘

人類最早的足跡

爬著蜿蜒的山路,前往位於現代以色列的迦密山洞穴,不難想像史前時代這一帶的壯麗環境。

地中海型氣候應是四季宜人,氣溫只會小幅變動。附近青翠的山谷裡,穿山越嶺曲折流過的溪流,應是飲用水的來源。山脈旁的森林應適合狩獵鹿、瞪羚、犀牛、野豬。再向外,在毗連狹長海岸平原及撒馬利亞山脈的開闊荒野地帶,應生長著史前品種的穀物及果樹。四周的溫暖氣候、多樣性生態及生食材料,應使迦密山洞穴成為萬千年來,無數狩獵採集族群的理想家園。

這些古代洞穴,如今是聯合國教科文組織(UNESCO)的人類演化世界遺產,從中挖掘出的遺物確實證明,在數十萬年間,這裡曾有一連串史前人類棲息地,同時智人與尼安德塔人(Neanderthals,譯注:遺跡最早在德國尼安德河谷被發現的史前人類)可能曾經相遇,引人遐思。

1920 年查爾斯.R.奈特( Charles R. Knight )所畫的,想像中的史前人類。 圖/wikimedia

在此地和世上其他遺址的考古發現,顯示遠古及早期現代人類,是緩慢但持續學會新技能,善於用火,打造出越來越精細的刀刃、手斧、黑燧石及石灰石工具,也創作藝術作品。這些文化與技術進步,逐漸成為人類特徵,使我們有別於其他物種,而關鍵的推力之一,是人類腦部的進化。

人腦為什麼能發展得如此特別?

人類的腦部非比尋常:容量大且經壓縮,比所有其他物種的腦部都複雜。人腦的大小在過去六百萬年裡長大三倍,這種變化大都發生於二十至八十萬年前,以智人出現前為主。

在人類歷史的長河中,人腦的能力為何能擴展到如此強大?答案乍看之下或許不言而喻:頭腦發達顯然使人類可以達到地球上沒有其他生物辦得到的安全與繁榮水準。然而,事實真相要錯綜複雜得多。要是像人腦那樣的腦部,真的如此明確有益於生存,那其他物種經過數十億年演化,為何未發展出類似的腦部?

我們暫且來看看其間的差別。以眼部為例,它是沿幾條演化路徑獨立發展。有脊椎動物(兩棲類、鳥類、魚類、哺乳類、爬蟲類)的眼部,頭足類動物(烏賊、章魚、墨魚)的眼部,還有較簡單形式:單眼,見於蜜蜂、蜘蛛、水母、海星等無脊椎動物。這種現象稱為趨同演化(convergent evolution),就是不同物種各自演化出相似的特徵,而非來自共同祖先的既有特徵。眼部之外的例子不勝枚舉,像是昆蟲、鳥類、蝙蝠都有翅膀,魚類(鯊魚)與海生哺乳類(海豚)為適應水下生活而體形類似。

顯然不同物種是各自發展而獲得近似的有利特徵,但是能夠創作文學、哲學、藝術傑作,或發明耕犁、輪子、指南針、印刷機、蒸汽引擎、電報、飛機、網際網路的頭腦,卻是例外。這種頭腦只演化過一次,在人體上。

人腦隨著演化發展與進化。圖/pixabay

這麼強大的腦部,具有明顯的優勢,為何在自然界絕無僅有?

這個謎題的解答,有部分要歸咎於腦部的兩大缺點。一來人腦需消耗龐大能量。它只占人體二%的重量,卻要消耗二○%的能量。其次人腦很大,使新生兒頭部很難通過產道。因此比其他動物的腦部,人腦更壓縮或更「褶皺」,並且人類嬰兒出生時,腦子只有「半熟」,需要好多年的微調才能成熟。

所以人類嬰兒無生活能力:許多動物的幼兒出生後不久就會走路,也很快就能自己覓食,人類卻需要兩年時間才能穩穩地走路,至於物質上自給自足,還要很多年。既然有這些缺點,那當初是什麼因素導致人腦的發展?

研究者曾認為,或許有數種力量共同促成這一過程。

生態假說(ecological hypothesis)主張,人腦是出於人類暴露在環境挑戰下而進化。當氣候起伏不定,附近動物的數量隨之增減,腦部較發達的史前人類更能夠找到新的食物來源,設計捕獵採集策略,發展烹煮及儲存技術,使他們在棲息地生態條件不斷變動下依舊能夠生存並興旺。

反之,社會假說(social hypothesis)主張,在複雜的社會結構中日益需要合作、競爭、交易,這促成更精進的腦部,才更有能力去理解他人的動機,預期他人的反應,於是成為演化優勢。同理,能夠說服、操弄、恭維、敘述、娛人,這些都有利於個人社會地位,也有它本身的好處:刺激大腦發展及說話、論述能力。

文化假說(cultural hypothesis)則強調人類吸收及儲存資訊的能力,使資訊能夠代代相傳。依此觀點,人腦的獨特優勢之一是能夠有效率地學習他人經驗,養成有利的習慣與偏好,不必仰賴緩慢許多的生物適應過程,即可促進在各種環境下存活。換言之,人類嬰兒雖然身體上無能為力,但是頭腦裡備有獨特的學習能力,包括能夠領會及保留,曾幫助祖先存活、也將協助後代興盛的行為規範,那就是文化。

另一種可能進一步推動腦部發展的機制,是性選擇(sexual selection)。即使對腦部本身沒有明顯的演化優勢,但人類也許形成了對頭腦較發達的配偶的偏好。這些先進的頭腦或許具有對保護及養育子女很重要的隱形特質,有意找這種配偶的人,從可辨認的特徵像是智慧、口才、思慮敏捷或幽默感,能夠推斷出這些特質。

科技進步下越來越聰明的大腦!

人類獨有的進步以人腦進化為主要推力,尤其在於它有助於帶來技術進步:以日益精進的方式,把周遭自然物質及資源轉為我們所用。技術進步又塑造繼起的演化過程,使人類得以更成功的適應不斷變動的環境,從而進一步推動新科技及加以利用。這種重複且具強化作用的機制引導著科技加速向前邁進。

隨著技術進步大腦也更快速發展。圖/pixabay

尤其有人主張,越來越熟諳用火的早期人類開始烹煮食物,因而減少咀嚼和消化所需的能量,以致熱量充裕,並空出原本由顎骨和肌肉占據的頭顱空間,更加刺激腦部成長。這種良性循環或許促進烹飪技術更多創新,繼而又使腦部進一步成長。

不過腦部並非人類與其他哺乳類唯一有別的器官。人的手也是其一。與腦合作的雙手,也在一定程度上為回應技術而演化,尤其受益於製作及使用狩獵工具、針、烹飪器皿。

特別當人類長於雕刻石頭、製作木矛等技術時,能夠強力使用並正確加以改良的人,存活的可能性就增加。擅長狩獵的人能夠更可靠地養家活口,扶養更多子女長大成人。相關技能的世代傳承,使人口中能幹的獵人比例增加。再來,進一步創新的好處,如更堅硬的矛和後來更強的弓、更尖的箭等,又提高狩獵技藝的演進優勢。

類似性質的正面回饋循環,見於整個人類歷史:環境變遷與技術創新,促進人口成長,引發人類去適應變化中的棲息地和新工具,這些適應增強人類操縱環境、創造新技術的能力。在後面會看到,這種循環是理解人類歷程,解開成長謎團的關鍵。

———本書摘自《人類的旅程》,2022 年 10 月,商業周刊,未經同意請勿轉載

商業周刊
12 篇文章 ・ 3 位粉絲

1

4
2

文字

分享

1
4
2
【2022 年諾貝爾生理或醫學奬】復現尼安德塔人消逝的 DNA,也映襯我們何以為人
寒波_96
・2022/10/06 ・8169字 ・閱讀時間約 17 分鐘

人對自身歷史的好奇歷久彌新。最近十年古代 DNA 研究大行其道,光是發表於 Cell、Nature、Science 的論文就多到要辛苦讀完,加上其他期刊更是眼花撩亂。「古代遺傳學」的衝擊毋庸置疑,開創者帕波(Svante Pääbo)足以名列歷史偉人;然而,得知 2022 年諾貝爾生理或醫學獎由他一人獨得 ,還是令人吃驚——諾貝爾獎竟然會頒給人類演化學家?

諾貝爾獎有物理獎、有化學獎,但是沒有生物學獎,而是「生理或醫學獎」。帕波獲獎的理由是:「發現滅絕人類的基因組以及研究人類演化」。乍看和生理或醫學沒有關係,深入思考……好像還真的沒有什麼關係。

偷用強者我朋友的感想:「應該就是選厲害的。第一個和生理或醫學無關的生理或醫學獎得主,聽起來滿屌的」。

帕波直接的貢獻非常明確,在他的努力下,重現消失數萬年的尼安德塔人(Neanderthal)基因組。他為什麼想要這樣做,過程中經歷什麼困難,發現又有什麼意義呢?

喜愛古埃及的演化遺傳學家

帕波公元 1955 年在瑞典出生,獲獎時 67 歲。他從小對古埃及有興趣,大學時選擇醫學仍不忘古埃及,但是一生都在追求新奇的帕波,嫌埃及研究的步調太慢,後來走上科學研究之路。1980 年代初博士班時期,他使用當時最高端的分子生物學手段探討免疫學,成果發表於 Cell 等頂尖期刊,可謂免疫學界的頂級新秀。

然而,他始終無法忘情逝去的世界。1984 年美國的科學家獲得斑驢的 DNA 片段,轟動一時。斑驢已經滅絕一百年,能夠由其遺骸取得古代 DNA,令博士生帕波大為震撼。他很快決定結合自己的專業與興趣,嘗試由古埃及木乃伊取得 DNA,並且獨立將結果發表於 Nature 期刊。

古代 DNA。圖/取自 參考資料 1

博士畢業後,帕波義無反顧地轉換領域,遠渡美國追隨加州柏克萊大學的威爾森(Allan Wilson)。威爾森在 1970 年代便開始探討分子演化,後來又根據不同人類族群間粒線體 DNA 的差異,估計非洲以外的人群,分家只有幾萬年,支持智人出非洲說。

帕波正式投入相關研究後意識到,從古代樣本取樣 DNA 的汙染問題相當嚴重。這邊「汙染」的意思是,並非抓到樣本內真正的古代 DNA 目標,而是周圍環境、實驗操作者等來源的 DNA;包括他自己之前的木乃伊 DNA,很可能也不是真正的古代 DNA。另一大問題是,生物去世後 DNA 便會開始崩潰,經歷成千上萬年後,樣本中即使仍有少量遺傳物質殘存,含量也相當有限。

帕波投入不少心血改善問題。例如那時新發明的 PCR 能精確並大量複製 DNA,他馬上用於自己的題目(更早前是利用細菌,細菌繁殖時順便生產 DNA)。多年嘗試後,他決定放棄埃及木乃伊(埃及木乃伊的基因組在 2017 年成功),改以遺傳與智人差異較大的尼安德塔人為研究對象。

取得數萬年前尼安德塔人的 DNA

根據現有的證據,尼安德塔人是距今約 4 萬到 40 多萬年前的古人類。確認為尼安德塔人的第一件化石,於 1856 年在德國的尼安德谷發現,並以此得名(之前 2 次更早出土化石卻都沒有意識到)。這是我們所知第一種,不是智人的古代人類(hominin)。

對於古人類化石,一百多年來都是由考古與型態分析。帕波帶著遺傳學工具投入,不但增進考古和古人類學的知識,也拓展了遺傳學的領域。他後來前往德國的慕尼黑大學,幾年後又被挖角到馬克斯普朗克研究所,領導萊比錫新成立的人類演化部門,多年來培養出整個世代的科學家,也改變我們對人類演化的認知。

不同個體的粒線體 DNA 之間差異,智人與黑猩猩最多,智人與智人最少,智人與尼安德塔人介於期間。圖/取自 參考資料 2

帕波在 1996 年首度取得尼安德塔人的 DNA 片段,來自粒線體。他為了確認結果,邀請一位美國小女生重複實驗,驗證無誤,她就是後來也成為一方之霸的史東(Anne Stone)。比較這段長度 105 個核苷酸的片段,尼安德塔人與智人間的差異,明顯超過智人與智人。

然而,粒線體只有 16500 個核苷酸,絕大部分遺傳訊息其實藏在細胞核的染色體中。想認識尼安德塔人的遺傳全貌,非得重現細胞核的基因組。

可是一個細胞內有數百套粒線體,只有 2 套基因組,因此粒線體 DNA 的含量為細胞核數百倍;而且染色體合計超過 30 億個核苷酸,數量無比龐大。可以說,細胞核基因組可供取材的 DNA 量少,需要復原的訊息又多,比粒線體更難好幾個次元。

方法學與時俱進:從 PCR 到次世代定序

一開始,帕波與合作者使用 PCR,但是帕波知道這是死路一條。取樣 DNA 會破壞材料,尼安德塔人的化石有限;PCR 一次又只能復原幾百核苷酸,要完成 30 億的目標遙遙無期。

帕波持續努力克服難關。2000 年人類基因組首度問世,採取「霰彈槍」定序法,大幅提升效率;也就是將 DNA 序列都打碎,一次定序一大堆片段,再由電腦程式拼湊。帕波因此和 454 生命科學公司合作,改用新的次世代定序法,偵測化石中的古代 DNA。2006 年發表的論文可謂里程碑,報告次世代定序得知的 100 萬個尼安德塔人核苷酸,足以進行一些基因體學的分析。

帕波當時在美國的合作者魯賓(Edward Rubin)持續使用 PCR,雙方分歧愈來愈大,終於分道揚鑣。所以很可惜地,2010 年尼安德塔人基因組論文發表時,魯賓沒有參與到最後。這是人類史上第一次,取得滅絕生物大致完整的基因組,也是帕波獲頒諾貝爾獎的直接理由。

帕波戰隊。圖/取自 The Neandertal Genome Project

鐵證:尼安德塔人與智人有過遺傳交流

這份拼湊多位尼安德塔人的基因組,儘管品質不佳,卻足以解答一個問題:尼安德塔人與智人有過混血嗎?答案是有,卻和本來想的不一樣。尼安德塔人沒有長居非洲,主要住在歐洲、西南亞、中亞,也就是歐亞大陸的西部。假如與智人有過混血,歐洲人應該最明顯。結果並非如此。

帕波的組隊能力無與倫比,他廣邀各領域的菁英參與計畫,不只取得 DNA 資料,也陸續研發許多分析資料的手法,其中以哈佛大學的瑞克(David Reich)最出名。

分析得知,非洲以外,歐洲、東亞、大洋洲的人,基因組都有 1% 到 4% 能追溯到尼安德塔人(後來修正為 2% 左右)。所以雙方傳承至今的混血,發生在智人離開非洲以後,又向各地分家以前;並非尼安德塔人主要活動的歐洲。

首度由 DNA 定義古代新人類:丹尼索瓦人

復原古代基因組的工作相當困難,不過引進次世代定序後,從不可能的任務降級為難題,尼安德塔人重出江湖變成時間問題。出乎意料,同樣在 2010 年,帕波戰隊又發表另外 2 篇論文,描述一種前所未知的古人類:丹尼索瓦人(Denisovan)。不是藉由化石,而是首度由 DNA 得知新的古代人種。

根據細胞核基因組,尼安德塔人、丹尼索瓦人的親戚關係最近,智人比較遠,三群人類間有過多次遺傳交流。圖/取自 參考資料 1

丹尼索瓦人得名於出土化石的遺址(地名來自古時候當地隱士的名字),位於西伯利亞南部的阿爾泰地區,算是中亞。帕波對這兒並不陌生,之前俄羅斯科學家在這裡發現過尼安德塔人化石,而且由於乾燥與寒冷,預計化石中的古代 DNA 保存狀況應該不錯。

帕波戰隊對丹尼索瓦洞穴中的一件小指碎骨定序,首先拼裝出粒線體,驚訝地察覺到這不是智人,卻也不是尼安德塔人,接下來的細胞核基因組重複證實此事。它們變成前後 2 篇論文,帕波出名的不喜歡物種爭論,不使用學名,所以直稱其為「丹尼索瓦人」。

還有幾顆丹尼索瓦洞穴出土的牙齒也尋獲粒線體,而且這些臼齒特別大,型態前所未見。奇妙的是,丹尼索瓦人粒線體、基因組的遺傳史不一樣;和智人、尼安德塔人相比,尼安德塔人的粒線體比較接近智人,細胞核基因組卻比較接近丹尼索瓦人。

這反映古代人類群體間的遺傳交流相當複雜,不只是智人、尼安德塔人,也不只有過一次。後來又在丹尼索瓦洞穴發現一位爸爸是丹尼索瓦人、媽媽是尼安德塔人的混血少女,更是支持不同人群遺傳交流的直接證據。

遠觀丹尼索瓦洞穴。圖/取自論文〈Age estimates for hominin fossils and the onset of the Upper Palaeolithic at Denisova Cave〉的 Supplementary information

回溯分歧又交織的人類演化史

重現第一個尼安德塔人基因組後,帕波戰隊持續改進定序與分析的技術,也獲得更多樣本,深入不同族群的分家年代、彼此間的混血比例等問題,新知識不斷推陳出新。

丹尼索瓦人方面,如今仍無法確認他們的活動範圍,不過很可能是歐亞大陸偏東部的廣大地區。一如尼安德塔人,丹尼索瓦人也與智人有過遺傳交流。

最初估計某些大洋洲人配備 4% 到 6% 的丹尼索瓦人血緣,後來修正為 2% 左右(不同方法估計的結果不一樣,總之和尼安德塔血緣差不多)。不同智人具備丹尼索瓦 DNA 的比例差異頗大,某些大洋洲人之外,東亞族群也具備些許,歐亞大陸西部的人卻幾乎沒有。

到帕波獲得諾貝爾獎為止,古代 DNA 最早的紀錄是超過一百萬年的西伯利亞古代象。圖/最早古代 DNA,超過一百萬年的西伯利亞象

至今年代最古早的人類 DNA,來自西班牙的胡瑟裂谷(Sima de los Huesos),距今 43 萬年左右(最早的是超過一百萬年的古代象,由受到帕波啟發的其餘團隊發表)。根據 DNA 特徵,胡瑟裂谷人的細胞核基因組更接近尼安德塔人,可以視作初期的尼安德塔人族群。然而,他們的粒線體卻更像丹尼索瓦人。

帕波開發的研究方法,不只針對消逝的智人近親,也能用於古代智人與其他生物,累積一批數萬年前智人的基因組。釐清近期的混血事件外,還能探討不同人群當初分家的時期。估計尼安德塔人、丹尼索瓦人約在 40 多萬年前分家,他們和智人的共同祖先,又能追溯到距今 50 到 80 萬年的範圍。

智人何以為智人?遠古血脈的傳承,磨合,新適應

消逝幾萬年的尼安德塔人、丹尼索瓦人,皆為智人的極近親。由於數萬年前的遺傳交流,仍有一部分近親血脈流傳於智人的體內。這些血脈經過數萬年,早已融入成為我們的一部分。

人,人,人,人呀。圖/取自 參考資料 2

智人的某些基因與基因調控,受到遠古混血影響。最出名的案例,莫過於青藏高原族群(圖博人或藏人)的 EPAS1 基因繼承自丹尼索瓦人,比智人版本的基因更有利於適應缺氧。另外也觀察到許多案例,與免疫、代謝等功能有關。

近年 COVID-19(武漢肺炎、新冠肺炎)席捲世界,觀察到感染者的症狀輕重受到遺傳差異影響;其中至少兩處 DNA 片段,一處會增加、另一處降低住院的機率,都可以追溯到尼安德塔人的遠古混血。

非洲外每個人都有 1% 到 2% 血緣來自尼安德塔人,不同人遺傳到的片段不一樣。將不同智人個體的片段拼起來,大概能湊出 40% 尼安德塔人基因組(不同算法有不同結果),也就是說,當初進入智人族群的尼安德塔 DNA 變異,不少已經失傳。

失傳可能是機率問題,某一段 DNA 剛好沒有智人繼承。但是也可能是由於尼安德塔 DNA 變異,對智人有害或是遺傳不相容,而被天擇淘汰。遺傳重組之故,智人基因組上每個位置,繼承到尼安德塔變異的機率應該差不多;可是相比於體染色體,X 染色體的比例卻明顯偏低;這意謂智人的 X 染色體,不適合換上尼安德塔版本。

例如 2022 年發表的論文,比較 TKTL1 基因上的差異對智人、尼安德塔人神經發育的影響。圖/取自〈Human TKTL1 implies greater neurogenesis in frontal neocortex of modern humans than Neanderthals

智人之所以異於非人者幾希?藉由比較智人的極近親尼安德塔人,能深入思考這個大哉問。是哪些遺傳改變讓智人誕生,後來又衍生出什麼不可取代的遺傳特色?另一方面也能反思,某些我們以為專屬智人的特色,其實並非智人的專利。

分析遺傳序列,畢竟只是鍵盤辦案,一向雄心壯志的帕波,當然想要更進一步解答疑惑。比方說,尼安德塔人、智人間某處 DNA 差異對神經發育有什麼影響?體外培養細胞、模擬器官發育的新穎技術,如今也被帕波引進人類演化學的領域。

瑞典與愛沙尼亞之子,德國製造,替人類做出卓越貢獻的人

回顧完帕波到得獎時的精彩成就,他的工作與生理或醫學有哪些關係,各位讀者可以自行判斷。我還是覺得沒什麼直接關係,如遠古混血影響病毒感染的重症機率這種事,那些 DNA 變異最初是否源自尼安德塔人,其實無關緊要。不過多少還是有些影響,像是為了研究古代基因組而研發出的基因體學分析方法,應該也能用於生醫領域。

《尋找失落的基因組》台灣翻譯本。

帕波 2014 年時發表回憶錄《尋找失落的基因組》,自爆許多內幕。台灣的翻譯出過兩版,可惜目前絕版了。我在 2015 年、2019 年各寫過一篇介紹。書中有許多值得玩味之處,不同讀者會看到不同重點,有興趣可以找來閱讀,看看有什麼啟發。

主題是諾貝爾獎就不能不提,帕波得獎也讓諾貝爾新添一組父子檔,他的爸爸伯格斯特龍(Sune Karl Bergström)是 1982 年生理或醫學獎得主。為什麼父子不同姓?因為他是隨母姓的私生子,父子間非常不熟。

他的媽媽卡琳.帕波(Karin Pääbo)是愛沙尼亞移民瑞典的化學家,2007 年去世前曾在訪問提及,她兒子在 13、14 歲時從埃及旅遊回來,對科學產生興趣。帕波獲頒諾貝爾獎後受訪提到,可惜媽媽已經去世,無法與她分享榮耀。移民異國討生活的單親媽媽,能夠養育出得到諾貝爾獎的兒子,也可謂偉大成就。

人類演化的議題弘大淵博,但是究其根本,依然要回歸到一代一代的傳承。每個人都無比渺小,卻也是全人類中的一份子,親身參與其中。諾貝爾生理或醫學獎 2022 年的頒獎選擇,乍看突兀,仔細思索卻頗有深意。帕波的研究也許很不生理或醫學,卻再度強化諾貝爾奬設立的精神:「獎勵替人類做出卓越貢獻的人」。

  • 帕波得獎後接受電話訪問:

延伸閱讀

參考資料

  1. Press release: The Nobel Prize in Physiology or Medicine 2022. NobelPrize.org. Nobel Prize Outreach AB 2022. Wed. 5 Oct 2022.
  2. Advanced information. NobelPrize.org. Nobel Prize Outreach AB 2022. Wed. 5 Oct 2022.
  3. Geneticist who unmasked lives of ancient humans wins medicine Nobel
  4. Ancient DNA pioneer Svante Pääbo wins Nobel Prize in Physiology or Medicine
  5. Nature 論文蒐集「Nobel Prize in Physiology or Medicine 2022
  6. Estonian descendant Svante Pääbo awarded Nobel prize

本文亦刊載於作者部落格《盲眼的尼安德塔石匠》暨其 facebook 同名專頁

所有討論 1
寒波_96
174 篇文章 ・ 668 位粉絲
生命科學碩士、文學與電影愛好者、戳樂黨員,主要興趣為演化,希望把好東西介紹給大家。部落格《盲眼的尼安德塔石器匠》、同名粉絲團《盲眼的尼安德塔石器匠》。