0

0
0

文字

分享

0
0
0

該如何讓孩子學會自動自發?認識自律發展三階段

雞湯來了
・2019/11/29 ・2182字 ・閱讀時間約 4 分鐘 ・SR值 460 ・五年級

  • 文/雞湯來了黃珮甄
    校稿/雞湯來了張芷晴、陳世芃
    製圖/雞湯來了黃珮甄
    編輯/雞湯來了蕭子喬
其實不管是不是孩子,賴床真的是充滿誘惑啊。圖/pixabay

「早上孩子總是愛賴床,自己也在忙碌還要三叫四請把他挖起床!」
「我家孩子做事總是慢吞吞,不論寫作業或洗澡、刷牙、睡覺這種小事都要拖到最後……」
「孩子一碰到3C就離不開,約定好的時間總是不遵守,搞到眼睛都要近視了……」

我家的孩子也有以上的壞習慣嗎?這樣的壞習慣總是讓自己跟孩子的生活亂糟糟?其實只是孩子還沒有達到「自律」階段。有人說「有自律才有自由」,又自律是通往成功的關鍵要素,到底自律是什麼?又該怎麼幫助孩子,才能讓他慢慢養成自律呢?

沒有孩子天生自律!認識自律發展三階段

瑞士著名的發展心理學家皮亞傑(Piaget),觀察兒童行為發現孩子的道德觀發展具有以下三個階段:無律階段(Stage of Anomy)、他律階段(Stage of Heternomous)以及自律階段(Stage of Autonomy)。

由此可知,自律是隨著孩子的發展慢慢養成,需從生物本能反應開始,漸漸的受他人約束,其後發展到能夠自我判斷、為自我行為負責的階段。

(點圖放大) 註:發展年齡為統計數據值僅作為參考,會依個體的狀況而有所差異,所以若孩子發展較慢或較快都無需擔心。

自律五要素:是種態度也是種歷程

彙整多位學者的論點,歸結出自律是一種為自己負責的態度,也是一種不斷自我覺察、修正的歷程,在過程具備 「強烈動機」、「擬定計畫」、「積極執行」、「時機地點」以及「省思修正」五個要素。

-----廣告,請繼續往下閱讀-----

整體來說,自律的人在面對任務時會充滿動機、想要達成,因此在事前會規劃如何執行,讓自己在操作時能有個方向。不過自律的人也不是一板一眼,他們在執行過程中保有持續修正的彈性。

自律是一種為自己負責的態度,也是一種不斷自我覺察、修正的歷程。圖/wikimedia

若一開始規劃的方式不合適,也會重新調整自己的步調,重新操作直到達成任務。以下舉「寫作業」為例:

能夠自動自發完成作業的孩子,代表的是他在學習上很自律,或許寫作業對他來說並不是件有趣的事,但將「寫作業」視為他必須要完成的任務,因此他會有動力要快點把這個任務達成的責任感。過程中他可能也嘗試過先玩耍再做作業,但最後他發現先完成作業,之後才可以好好做其他想做的事。

兩個方法教出自律的孩子

由上述可知,自律需要透過循序漸進的發展養成,勿操之過急,否則容易使孩子因為懼怕或挫折而停留在他律階段。

依照發展歷程來看,在進入小學前就可以開始培養自律的能力。圖/pxhere

依照發展來看,在進入小學前就可以開始培養,並在小學階段透過更多的學習任務進行練習,因此身為家長的我們是很重要的引導者。

-----廣告,請繼續往下閱讀-----
  1. 適時放手,給予學習空間
    人的本能是對世界的好奇與探索,因此從孩子出生後,就可以陪著孩子一起探索,鼓勵他好奇自發的反應,不急著讓孩子學會做事的方法或對錯。適時給予鼓勵跟獎勵,讓孩子可以從過程中學習怎麼做才順利,並且保持對世界、各種事情充滿熱誠的態度。這樣有助於讓孩子未來在面對事情時,更願意積極嘗試,不害怕會做錯,同時願意不斷嘗試、修正,調整到最適合的做法。
  2. 以身作則,身教加上引導
    在面對不熟悉的事情,孩子很自然的會透過模仿來進行學習,像是孩子會觀察爸媽一回家會做什麼,如果爸媽都在看電視、滑手機,在孩子的世界會認為,辛苦上課一整天後,我也想要放鬆。

自律是我們一生的功課,希望能引導孩子的同時,身為家長的我們就得先思考,自己需要做完的事情是否都完成了。

若無,則需要先調整自己的狀態;若是,可以帶著孩子思考,可以如何安排生活以達到自律,例如:自己需要完成的任務有哪些?可以怎麼安排?並跟孩子說,如果把需要做的事都完成了,就可以像爸爸媽媽這樣休息放鬆。透過以身作則,讓孩子透過模仿漸漸學習,成為自律好寶貝。

參考資料

  • 林建平(2005)。自律學習的理論與研究趨勢。國教新知,52(2),8-25。doi/10.6701/TEEJ.200506_52(2)
  • 張文哲(2013)。教育心理學:理論與實際。台北市:學副文化。
  • Pintrich, P. R. (2000). The role of goal orientation in self-regulated learning. In M., Boekaerts & P. R.,
  • Pintrich (Eds.), Handbook of self- regulation (pp. 13-39). San Diego: Academic Press.
  • Schunk, D. H. (1996). Learning theories: an educa- tional perspective. New Jersey: Pentice-Hall.
  • Stone, N. J. (2000).Exploring the relationship be-tween calibration and self-regulated learning.
  • Educational Psychology Review, Vol. 12, No. 4, 437-475.
  • Zimmerman, B. J., & Risemberg, R. (1992). Self- regulated learning in gifted students. Roeper Review, Vol. 15, 2, 98-101.
  • Zimmerman, B. J. (2000). Attaining self-regulation: A social cognitive perspective. In M. Boekaerts,P. R. Pintrich, & M. Zeidner (Eds.), Handbook of self-regulation (pp. 13- 39). New York: Academic.

本文轉載自雞湯來了,原文標題:從孩子發展弄懂自律的妙招

文章難易度
雞湯來了
51 篇文章 ・ 463 位粉絲
幸福,如何選擇?雞湯來了相信我們值得擁有更優質的家人關係。致力提供科學研究證實的家庭知識,讓您在家庭生活的日常、人生選擇的關卡,找到適合的方向。雞湯來了官網、雞湯來了FB

0

3
3

文字

分享

0
3
3
圖形處理單元與人工智慧
賴昭正_96
・2024/06/24 ・6944字 ・閱讀時間約 14 分鐘

-----廣告,請繼續往下閱讀-----

  • 作者/賴昭正|前清大化學系教授、系主任、所長;合創科學月刊

我擔心人工智慧可能會完全取代人類。如果人們能設計電腦病毒,那麼就會有人設計出能夠自我改進和複製的人工智慧。 這將是一種超越人類的新生命形式。

——史蒂芬.霍金(Stephen Hawking) 英國理論物理學家

大約在八十年前,當第一台數位計算機出現時,一些電腦科學家便一直致力於讓機器具有像人類一樣的智慧;但七十年後,還是沒有機器能夠可靠地提供人類程度的語言或影像辨識功能。誰又想到「人工智慧」(Artificial Intelligent,簡稱 AI)的能力最近十年突然起飛,在許多(所有?)領域的測試中擊敗了人類,正在改變各個領域——包括假新聞的製造與散佈——的生態。

圖形處理單元(graphic process unit,簡稱 GPU)是這場「人工智慧」革命中的最大助手。它的興起使得九年前還是個小公司的 Nvidia(英偉達)股票從每股不到 $5,上升到今天(5 月 24 日)每股超過 $1000(註一)的全世界第三大公司,其創辦人(之一)兼首席執行官、出生於台南的黃仁勳(Jenson Huang)也一躍成為全世界排名 20 內的大富豪、台灣家喻戶曉的名人!可是多少人了解圖形處理單元是什麼嗎?到底是時勢造英雄,還是英雄造時勢?

黃仁勳出席2016年台北國際電腦展
Nvidia 的崛起究竟是時勢造英雄,還是英雄造時勢?圖/wikimedia

在回答這問題之前,筆者得先聲明筆者不是學電腦的,因此在這裡所能談的只是與電腦設計細節無關的基本原理。筆者認為將原理轉成實用工具是專家的事,不是我們外行人需要了解的;但作為一位現在的知識分子或公民,了解基本原理則是必備的條件:例如了解「能量不滅定律」就可以不用仔細分析,即可判斷永動機是騙人的;又如現在可攜帶型冷氣機充斥市面上,它們不用往室外排廢熱氣,就可以提供屋內冷氣,讀者買嗎?

CPU 與 GPU

不管是大型電腦或個人電腦都需具有「中央處理單元」(central process unit,簡稱 CPU)。CPU 是電腦的「腦」,其電子電路負責處理所有軟體正確運作所需的所有任務,如算術、邏輯、控制、輸入和輸出操作等等。雖然早期的設計即可以讓一個指令同時做兩、三件不同的工作;但為了簡單化,我們在這裡所談的工作將只是執行算術和邏輯運算的工作(arithmetic and logic unit,簡稱 ALU),如將兩個數加在一起。在這一簡化的定義下,CPU 在任何一個時刻均只能執行一件工作而已。

-----廣告,請繼續往下閱讀-----

在個人電腦剛出現只能用於一般事物的處理時,CPU 均能非常勝任地完成任務。但電腦圖形和動畫的出現帶來了第一批運算密集型工作負載後,CPU 開始顯示心有餘而力不足:例如電玩動畫需要應用程式處理數以萬計的像素(pixel),每個像素都有自己的顏色、光強度、和運動等, 使得 CPU 根本沒辦法在短時間內完成這些工作。於是出現了主機板上之「顯示插卡」來支援補助 CPU。

1999 年,英偉達將其一「具有集成變換、照明、三角形設定/裁剪、和透過應用程式從模型產生二維或三維影像的單晶片處理器」(註二)定位為「世界上第一款 GPU」,「GPU」這一名詞於焉誕生。不像 CPU,GPU 可以在同一個時刻執行許多算術和邏輯運算的工作,快速地完成圖形和動畫的變化。

依序計算和平行計算

一部電腦 CPU 如何計算 7×5+6/3 呢?因每一時刻只能做一件事,所以其步驟為:

  • 計算 7×5;
  • 計算 6/3;
  • 將結果相加。

總共需要 3 個運算時間。但如果我們有兩個 CPU 呢?很多工作便可以同時(平行)進行:

-----廣告,請繼續往下閱讀-----
  • 同時計算 7×5 及 6/3;
  • 將結果相加。

只需要 2 個運算時間,比單獨的 CPU 減少了一個。這看起來好像沒節省多少時間,但如果我們有 16 對 a×b 要相加呢?單獨的 CPU 需要 31 個運算的時間(16 個 × 的運算時間及 15 個 + 的運算時間),而有 16 個小 CPU 的 GPU 則只需要 5 個運算的時間(1 個 × 的運算時間及 4 個 + 的運算時間)!

現在就讓我們來看看為什麼稱 GPU 為「圖形」處理單元。圖一左圖《我愛科學》一書擺斜了,如何將它擺正成右圖呢? 一句話:「將整個圖逆時針方向旋轉 θ 即可」。但因為左圖是由上百萬個像素點(座標 x, y)組成的,所以這句簡單的話可讓 CPU 忙得不亦樂乎了:每一點的座標都必須做如下的轉換

x’ = x cosθ + y sinθ

y’ = -x sinθ+ y cosθ

-----廣告,請繼續往下閱讀-----

即每一點均需要做四個 × 及兩個 + 的運算!如果每一運算需要 10-6 秒,那麼讓《我愛科學》一書做個簡單的角度旋轉,便需要 6 秒,這豈是電動玩具畫面變化所能接受的?

圖形處理的例子

人類的許多發明都是基於需要的關係,因此電腦硬件設計家便開始思考:這些點轉換都是獨立的,為什麼我們不讓它們同時進行(平行運算,parallel processing)呢?於是專門用來處理「圖形」的處理單元出現了——就是我們現在所知的 GPU。如果一個 GPU 可以同時處理 106 運算,那上圖的轉換只需 10-6 秒鐘!

GPU 的興起

GPU 可分成兩種:

  • 整合式圖形「卡」(integrated graphics)是內建於 CPU 中的 GPU,所以不是插卡,它與 CPU 共享系統記憶體,沒有單獨的記憶體組來儲存圖形/視訊,主要用於大部分的個人電腦及筆記型電腦上;早期英特爾(Intel)因為不讓插卡 GPU 侵蝕主機的地盤,在這方面的研發佔領先的地位,約佔 68% 的市場。
  • 獨立顯示卡(discrete graphics)有不與 CPU 共享的自己專用內存;由於與處理器晶片分離,它會消耗更多電量並產生大量熱量;然而,也正是因為有自己的記憶體來源和電源,它可以比整合式顯示卡提供更高的效能。

2007 年,英偉達發布了可以在獨立 GPU 上進行平行處理的軟體層後,科學家發現獨立 GPU 不但能夠快速處理圖形變化,在需要大量計算才能實現特定結果的任務上也非常有效,因此開啟了為計算密集型的實用題目編寫 GPU 程式的領域。如今獨立 GPU 的應用範圍已遠遠超出當初圖形處理,不但擴大到醫學影像和地震成像等之複雜圖像和影片編輯及視覺化,也應用於駕駛、導航、天氣預報、大資料庫分析、機器學習、人工智慧、加密貨幣挖礦、及分子動力學模擬(註三)等其它領域。獨立 GPU 已成為人工智慧生態系統中不可或缺的一部分,正在改變我們的生活方式及許多行業的遊戲規則。英特爾在這方面發展較遲,遠遠落在英偉達(80%)及超微半導體公司(Advance Micro Devices Inc.,19%,註四)之後,大約只有 1% 的市場。

-----廣告,請繼續往下閱讀-----
典型的CPU與GPU架構

事實上現在的中央處理單元也不再是真正的「單元」,而是如圖二可含有多個可以同時處理運算的核心(core)單元。GPU 犧牲大量快取和控制單元以獲得更多的處理核心,因此其核心功能不如 CPU 核心強大,但它們能同時高速執行大量相同的指令,在平行運算中發揮強大作用。現在電腦通常具有 2 到 64 個核心;GPU 則具有上千、甚至上萬的核心。

結論

我們一看到《我愛科學》這本書,不需要一點一點地從左上到右下慢慢掃描,即可瞬間知道它上面有書名、出版社等,也知道它擺斜了。這種「平行運作」的能力不僅限於視覺,它也延伸到其它感官和認知功能。例如筆者在清華大學授課時常犯的一個毛病是:嘴巴在講,腦筋思考已經不知往前跑了多少公里,常常為了追趕而越講越快,將不少學生拋到腦後!這不表示筆者聰明,因為研究人員發現我們的大腦具有同時處理和解釋大量感官輸入的能力。

人工智慧是一種讓電腦或機器能夠模擬人類智慧和解決問題能力的科技,因此必須如人腦一樣能同時並行地處理許多資料。學過矩陣(matrix)的讀者應該知道,如果用矩陣和向量(vector)表達,上面所談到之座標轉換將是非常簡潔的(註五)。而矩陣和向量計算正是機器學習(machine learning)演算法的基礎!也正是獨立圖形處理單元最強大的功能所在!因此我們可以了解為什麼 GPU 會成為人工智慧開發的基石:它們的架構就是充分利用並行處理,來快速執行多個操作,進行訓練電腦或機器以人腦之思考與學習的方式處理資料——稱為「深度學習」(deep learning)。

黃仁勳在 5 月 22 日的發布業績新聞上謂:「下一次工業革命已經開始了:企業界和各國正與英偉達合作,將價值數萬億美元的傳統資料中心轉變為加速運算及新型資料中心——人工智慧工廠——以生產新商品『人工智慧』。人工智慧將為每個產業帶來顯著的生產力提升,幫助企業降低成本和提高能源效率,同時擴大收入機會。」

附錄

人工智慧的實用例子:下面一段是微軟的「copilot」代書、谷歌的「translate」代譯之「one paragraph summary of GPU and AI」。讀完後,讀者是不是認為筆者該退休了?

-----廣告,請繼續往下閱讀-----

GPU(圖形處理單元)和 AI(人工智慧)之間的協同作用徹底改變了高效能運算領域。GPU 具有平行處理能力,特別適合人工智慧和機器學習所需的複雜資料密集運算。這導致了影像和視訊處理等領域的重大進步,使自動駕駛和臉部辨識等技術變得更加高效和可靠。NVIDIA 開發的平行運算平台 CUDA 進一步提高了 GPU 的效率,使開發人員能夠透過將人工智慧問題分解為更小的、可管理的、可同時處理的任務來解決這些問題。這不僅加快了人工智慧研究的步伐,而且使其更具成本效益,因為 GPU 可以在很短的時間內執行與多個 CPU 相同的任務。隨著人工智慧的不斷發展,GPU 的角色可能會變得更加不可或缺,推動各產業的創新和新的可能性。大腦透過神經元網路實現這一目標,這些神經元網路可以獨立但有凝聚力地工作,使我們能夠執行複雜的任務,例如駕駛、導航、觀察交通信號、聽音樂並同時規劃我們的路線。此外,研究表明,與非人類動物相比,人類大腦具有更多平行通路,這表明我們的神經處理具有更高的複雜性。這個複雜的系統證明了我們認知功能的卓越適應性和效率。我們可以一邊和朋友聊天一邊走在街上,一邊聽音樂一邊做飯,或一邊聽講座一邊做筆記。人工智慧是模擬人類腦神經網路的科技,因此必須能同時並行地來處理許多資料。研究人員發現了人腦通訊網路具有一個在獼猴或小鼠中未觀察獨特特徵:透過多個並行路徑傳輸訊息,因此具有令人難以置信的多任務處理能力。

註解

(註一)當讀者看到此篇文章時,其股票已一股換十股,現在每一股約在 $100 左右。

(註二)組裝或升級過個人電腦的讀者或許還記得「英偉達精視 256」(GeForce 256)插卡吧?

(註三)筆者於 1984 年離開清華大學到 IBM 時,就是參加了被認為全世界使用電腦時間最多的量子化學家、IBM「院士(fellow)」Enrico Clementi 的團隊:因為當時英偉達還未有可以在 GPU 上進行平行處理的軟體層,我們只能自己寫軟體將 8 台中型電腦(非 IBM 品牌!)與一大型電腦連接來做平行運算,進行分子動力學模擬等的科學研究。如果晚生 30 年或許就不會那麼辛苦了?

-----廣告,請繼續往下閱讀-----

(註四)補助個人電腦用的 GPU 品牌到 2000 年時只剩下兩大主導廠商:英偉達及 ATI(Array Technology Inc.)。後者是出生於香港之四位中國人於 1985 年在加拿大安大略省成立,2006 年被超微半導體公司收購,品牌於 2010 年被淘汰。超微半導體公司於 2014 年 10 月提升台南出生之蘇姿豐(Lisa Tzwu-Fang Su)博士為執行長後,股票從每股 $4 左右,上升到今天每股超過 $160,其市值已經是英特爾的兩倍,完全擺脫了在後者陰影下求生存的小眾玩家角色,正在挑戰英偉達的 GPU 市場。順便一題:超微半導體公司現任總裁(兼 AI 策略負責人)為出生於台北的彭明博(Victor Peng);與黃仁勳及蘇姿豐一樣,也是小時候就隨父母親移居到美國。

(註五)

延伸閱讀

  • 熱力學與能源利用」,《科學月刊》,1982 年 3 月號;收集於《我愛科學》(華騰文化有限公司,2017 年 12 月出版),轉載於「嘉義市政府全球資訊網」。
  • 網路安全技術與比特幣」,《科學月刊》,2020 年 11 月號;轉載於「善科教育基金會」的《科技大補帖》專欄。
文章難易度

討論功能關閉中。

賴昭正_96
43 篇文章 ・ 56 位粉絲
成功大學化學工程系學士,芝加哥大學化學物理博士。在芝大時與一群留學生合創「科學月刊」。一直想回國貢獻所學,因此畢業後不久即回清大化學系任教。自認平易近人,但教學嚴謹,因此穫有「賴大刀」之惡名!於1982年時當選爲 清大化學系新一代的年青首任系主任兼所長;但壯志難酬,兩年後即辭職到美留浪。晚期曾回台蓋工廠及創業,均應「水土不服」而鎩羽而歸。正式退休後,除了開始又爲科學月刊寫文章外,全職帶小孫女(半歲起);現已成七歲之小孫女的BFF(2015)。首先接觸到泛科學是因爲科學月刊將我的一篇文章「愛因斯坦的最大的錯誤一宇宙論常數」推薦到泛科學重登。

1

8
1

文字

分享

1
8
1
想到數學就先後退三步,對數學恐懼的我們就注定學不好數學嗎?——《思維風暴》
PanSci_96
・2020/05/15 ・3703字 ・閱讀時間約 7 分鐘 ・SR值 550 ・八年級

-----廣告,請繼續往下閱讀-----

  • 作者/西摩爾.派普特 (Seymour Papert);譯者/張安昇、駱莊奇

柏拉圖在他的學院門口放了個標識,「只有幾何學家可入」。時代變了,多數試圖進入柏拉圖精神世界的人既不懂數學,對他的禁令也心安理得地視而不見。「人文文化」和「科學文化」之間精神分裂式的鴻溝使他們認為柏拉圖是個哲學家,哲學就屬於文科,就像數學就屬於理科。

人文與科學就這麼一分為二。圖/giphy

「人文」和「科學」之間的巨大鴻溝貫穿於我們的語言、世界觀、社會組織構架、教育系統,在近年來甚至影響神經生理學理論。這一鴻溝還能自生自存:文化越分裂,分裂的各方越朝著相反的方向生長,進一步擴大分裂。

如我之前所說,電腦可以打破這兩種文化間的間隔。雖然文科學者覺得自己的工作是洞悉人性,冷冰冰的科學技術也幫不上忙。理科學者覺得文科太空泛,不具備科學研究要求的嚴謹性。但在我看來,電腦的出現可以從認知層面減少這兩種文化間的疏離。

-----廣告,請繼續往下閱讀-----

當代文化對數學的集體恐懼其實來自於其疏離性。「人文主義」數學的誕生說明數學可以和人文研究相結合。在這本書中,我試圖解釋電腦如何讓數學知識更為人性化,讓兒童喜歡上數學。我想探討的不止是數學這門學科,更是重新看待學習過程的視角。

你是害怕數學,還是對學習感到恐懼?

許多成年人消極看待自己的能力短處,最常見的莫過於「放棄數學」了。數學沒學好的直接影響是就業受限,但其間接影響更為深遠。他們建立了一種世界觀,不同的知識被割裂開來,中間出現無法穿越的鐵幕。

我這裡主要想做的工作,不是要挑戰一塊塊知識領土的主權完整,而是清除人們跨學科思考的障礙。我不是要混淆數學和文學,他們雖然是不同的學科,但數學和文學在思維方式上的差異並沒有人們想的那麼大。所以在這本書裡我用了「數學國」這樣一個概念。在數學國,數學就是自然語言。

我用這個概念闡釋電腦的出現將如何把人文與數學/科學相結合。從數學國這個概念出發,我將論證電腦如何改變兒童數學教學方式,乃至於從根本上改變我們處理知識和學習的方式。

是讀書太困難,還是你恐懼學習?圖/giphy

-----廣告,請繼續往下閱讀-----

在我看來有兩種「數學恐懼症」。一種是對數學的恐懼已經達到心理學上「恐懼症」的程度,另一種與其說是害怕數學,不如說是害怕學習1

在我們的文化中,患上厭學病的人不少於患厭數學病的人。兒童一開始讀書都很有幹勁,結果學習時受挫不斷,尤其是在學數學的時候。這磨滅了他們的熱情,使他們從一開始熱愛學習、喜歡數學,變得厭學且害怕數學。

我們要探索這一轉變是如何發生的,而電腦將如何避免兒童厭學,就要先回顧兒童學習的過程。兒童學得快是無庸置疑。以口語詞彙為例,兩歲時他們只會幾百個單詞,四年後一年級的孩子已經會說數千個單詞了。顯然,他們每天都在學習新詞彙。

孩子不是生來就有跟成人一樣思維

相對於詞彙量的積累,他們學數學的進度就沒那麼直觀了。皮亞傑畢生研究兒童智力的產生和發展,他的發現之一是成人往往不能理解兒童學習的內容和深入程度,因為從成人視角,從理所當然的知識結構出發,我們就看不見兒童究竟學到了什麼。皮亞傑的守恆(conservations)2理論就很好地解釋了這一點(見下圖)。

液體的守恆。圖片來自《思維風暴》

-----廣告,請繼續往下閱讀-----

大人可以一眼看出把液體從一個容器倒進另一個容器裡,液體總量不變(灑出或殘餘在原杯中的少量水可忽略不計),這就是質量守恆。然而經皮亞傑的研究之後,人們才知道質量守恆這麼簡單的道理四歲的孩子可能完全不理解3。存量不因容器而改變,這個道理兒童要經過一定程度的智力發育才能理解。

此外還有數量守恆,大人知道計數時只要點清楚有多少件物品,用一個數字反映物品的件數,按什麼順序清點不會影響最終數額。但是兒童就不能把數額和物品脫離,他們的認識能力和世界觀無法理解為什麼不同的算數過程得到的結果都是相同的。

守恆的概念背後有一套看不見的龐大數學知識體系,需要兒童自己學習。要是叫四、五歲的孩子憑直覺回答,他們會說兩點之間距離最短的路線不一定是直線,兩點之間走得慢不見得就比走得快更花時間。他們這麼想不僅是因為缺乏「這項知識」,而是無法把最短線段、行走方式這兩個概念分離開來。

孩子也在用自己的視角認識這個世界。圖/giphy

-----廣告,請繼續往下閱讀-----

我們不能說孩子們無法理解這些概念是因為沒知識。皮亞傑發現兒童其實有一套自己的邏輯,雖然他們給的不是習以常見的答案,他們也能自圓其說。這些道理是兒童自發習得的,自成體系也非常完善。

習得的過程包括至少兩階段:早在學齡前時期兒童就有一套關於世界的理論;隨著他們成長,這套理論慢慢接近成人思維。這就是我所說的皮亞傑式學習法,它有效(所有孩子都學得了),成本低(不需要老師和教學大綱),人性化(不需要外部的獎懲措施,兒童自然而然就學會了)。

而許多人越長大越失去這種學習能力。有一部分人幾乎完全放棄學習,很少進行刻意學習。他們覺得自己沒有學習能力,也感受不到學習的快樂。這給個人和社會帶來巨大損失:在精神上和物質上,學習恐懼症都是個人發展的攔路虎。

其實你有能力,但卻被自己打敗!

唉……我就是沒辦法。圖/giphy

大多數人沒有學習恐懼症,但他們或多或少會否定自己在某些方面的能力,說自己「就是學不好法語,聽都聽不懂」;「我肯定不會做生意,我對數字沒概念」;「我怎麼會雙板滑雪啊,我就是肢體不協調」。這些論調被他們奉為信條不斷重複,越發認定自己就是不行。

-----廣告,請繼續往下閱讀-----

對於學習恐懼症的受害者來說,他們就認定自己學不了。這一章和第三章中的一系列實驗表明在友好的學習環境下,給予恰當的情緒支持和智力支持,四肢不協調的人也會雜耍,對數學沒概念的人不僅能學好,還會愛上數學。

自我強化的力量是很可怕的,要是一個人堅信自己不懂數學,一看到跟數學相關的事就躲,自暴自棄的下場就是進一步強化「不懂數學」的信念。最糟糕的是,這樣的信念不僅存在於個體中,更植根進我們的文化裡。

我們的文化把人分成了「聰明人」和「笨蛋」。每個人都會偏科,不同科目的學習能力強弱構成一個人的社會身分。有的人叫「數學天才」,有的人叫「數學白癡」。兒童最開始的學習經歷往往決定了他們的偏科傾向。哪科沒學好,一受挫就覺得自己成了笨蛋,或者某科白癡(最常見的就是數學白癡)。他們一認定了自己是笨蛋,再不斷強化這個信念,自己也很難跳出這個死循環。

拍一拍,看看腦子會不會比較好用(?)圖/giphy

每個人的學習能力不同,各有各的局限。我們很難破除這種說法,不僅因為這個說法已被廣泛接受,還因為它貌似科學,心理學家也設計了學習能力量表對此進行證明。但我們用以下這個思維實驗,質疑現有測試學習能力的手段,究竟測到什麼。

-----廣告,請繼續往下閱讀-----

現有的數學能力測試真的能分辨出真正的數學恐懼症患者嗎?

我們換一個角度,要是每天逼孩子花一小時在方格紙上畫舞步,參加舞步繪圖測試,考試沒通過就不能跳舞。孩子們會不會被逼成「跳舞恐懼症」?我們可以說那些通過舞步繪圖測試的孩子就是「舞蹈學習能力強」?反之,孩子們不情不願地做算術題,沒日沒夜地練習然後通過測試,這就算「數學能力強」了嗎?不太對吧。

有人說這麼類比不恰當,應該用心理學方法收集「科學依據」。然而當代教育心理學研究的,都是身處現實世界「反數學國」的兒童,是怎麼學數學,或者更恰當的說怎麼放棄學數學。我們可以用另一個寓言來比喻這種研究方法。

想像一下,十九世紀的時候有個人覺得馬車太慢,想要改進交通工具。他深信要創造新的交通工具,首先要研究透澈現有交通工具。他仔細研究各類馬車的異同,研究不同輪子、軸承和套馬方式怎麼提高馬車的速度。我們知道後來真的誕生了新的交通工具——汽車和飛機。

汽車和飛機是怎麼來的?是通過研究馬車怎樣跑得快就發明出來的嗎?並不是。

我們今天的教學研究探討的是現有的教學方法。很多研究探討了學生在理科教育上頗為受挫的現實問題,人性化地提出「好的」教學法需要適應學生學不好理科這一現實。

-----廣告,請繼續往下閱讀-----

雖然這聽起來頗為人道,但我認為正是這樣的想法讓教育機制停滯不前。這就像研究什麼樣的軸承可以提升馬車車速,而真正解決問題的是用汽車取代馬車。教育界需要發明出自己的「汽車」——突破性的教學法,而這也是本書的主題。

註解:

  1. Mathematic 的詞根 math、或 mathetic 出自希臘,有學習之意,例如 polymath 指博學之人。
  2. 譯注:心理和教育學界則常譯為「保留」。
  3. 自從有人類以來就有孩子,但我們居然要等待皮亞傑的出現,來解釋兒童如何思考,以及成人是如何忘記自己作為兒童時是如何思考。這不禁讓人聯想到佛洛伊德的認知壓抑理論。

——本書摘自《MINDSTORMS:Children,Computers,And Powerful Ideas 思維風暴:兒童如何用電腦建構無限可能》,2020 年 3 月,台科大圖書

所有討論 1

0

1
0

文字

分享

0
1
0
錯誤可以增長大腦!重新定義犯錯,讓孩子更喜歡數學──《幫孩子找到自信的成長型數學思維》
臉譜出版_96
・2019/04/01 ・3463字 ・閱讀時間約 7 分鐘 ・SR值 472 ・五年級

-----廣告,請繼續往下閱讀-----

如何改變學生對犯錯的看法?

老師或家長能夠採取的行動當中,最有效的就是改變在孩子出錯和答錯時所表現的態度。最近我收到一個令我很感動的影片,是一位老師寄來的,這位老師參加過我的線上課程,而從這個學年開始,把錯誤的重要性和價值教給一班成績不好的學生。這班學生在一年之間改頭換面,讓自己從過去的失敗中重振,和數學重新建立興趣。

這個老師寄來的影片是這些學生的反響,在影片中,他們說到「錯誤可以增長大腦」這個觀念讓自己完全改變了。他們說,過去他們覺得自己是個失敗者,這種思維阻礙了他們進步,新來的老師給他們很多觀念和教法,讓他們擺脫長久以來對數學的恐懼,用新的態度跟數學打交道。如果我們讓學生知道錯誤是正面的,就能給他們一種如釋重負的解脫感。

如何重新定位錯誤

在我開給老師和家長的線上課程中,我分享了關於錯誤的新觀念,也提出一個難題給大家當作課堂活動。我請上課的人設計一個新的活動,這個活動要能夠在教室或家裡重新定位「錯誤」這件事。

有位老師的回應我很喜歡,她告訴我她會在上課一開始,要學生把一張紙揉成紙團,然後一邊想著數學做錯時的感受,一邊朝黑板丟紙團。她請這些學生藉由丟紙團來發洩他們的感受─通常是挫折感。

-----廣告,請繼續往下閱讀-----

在教室重新定位「錯誤」這件事,紙團上的紋路就代表學生的大腦增長。圖/臉譜出版社提供

接著,她要學生撿回自己的紙團,把它攤平,然後用色筆描出紙上所有的摺痕,這些紋路就代表他們的大腦增長。最後,她要這些學生把這張紙收進文件夾,保管一整個學年,隨時提醒他們錯誤的重要性。

幾年前我開始和金.哈莉維爾(Kim Halliwell)合作,她善於鼓舞學生,是維斯塔聯合學區(Vista Unified School district)的老師,我和該學區的一群老師已經密切合作兩年多,哈莉維爾也是其中一位。去年我去參觀哈莉維爾的教室,看到牆上貼滿學生畫的漂亮大腦圖畫,畫紙上寫滿了跟大腦成長和錯誤有關的正面訊息。

漂亮大腦圖畫,畫紙上寫滿了跟大腦成長和錯誤有關的正面訊息。 圖/臉譜出版社提供

-----廣告,請繼續往下閱讀-----

哈莉維爾向我解釋,他們先一起複習跟大腦成長有關的訊息,然後她要學生挑出自己最喜歡的部分,寫在自己的畫裡。

分享錯誤並了解錯誤帶來的好處

另外一個在課堂上讚揚錯誤的方法,是要求學生交功課,形式不拘─即使是測驗卷也行(但給學生做測驗的次數越少越好),然後老師再特別標出他們「最喜歡的錯」。老師應該跟學生分享,而且這些錯應該是觀念錯誤,而非數字算錯。

接下來老師還可以跟全班分享,同時讓大家討論錯誤是從哪裡產生的,以及為什麼是錯的。這也是加深重要觀念的好時機。有學生犯錯是好事,因為他們正處於努力認知的階段,他們的大腦在放電與增長。分享並討論錯誤也是有好處的,因為只要有一個學生犯某個錯,也會有其他人出同樣的錯,所以讓每個人都重新思考錯誤是非常有幫助的

如果替學生的數學功課打分數(我在後面會討論到,這是毫無益處的做法),而且一犯錯就扣分,學生就會接收到對犯錯和數學學習很負面的訊息。若要灌輸成長型思維,傳達數學學習的普遍正面觀念,老師應該盡可能捨棄測驗和打分數;假如非得繼續測驗打分數,針對錯誤的地方就應該給一樣的分數或是更高分,同時附上一個訊息,指出這個錯是學習和大腦成長的絕佳機會

-----廣告,請繼續往下閱讀-----

錯誤是學習和大腦成長的絕佳機會。圖/kisspng

透過一對一互動建立成長型思維

在課堂上公開重視錯誤雖然重要,但老師也必須一對一給予正面訊息。我的女兒剛開始上學的那幾年,老師給予的都是相當負面的回饋,讓她在很小的時候就產生僵固型思維。她四、五歲時患有聽力障礙,就因為這樣,老師認定她能力不足,所以給她做簡單的功課。當時她才四歲,但心裡非常明白,回家後問我為什麼老師給其他小朋友做的功課比較難。

我們知道,學生在學校會花很多時間弄清楚老師對他們的評價,所以我的女兒感覺得到她的老師不很看重她,正因如此,她開始相信自己很笨。但自從三年前,她進了一間很棒的小學就讀,這間學校的老師很快就發現她的僵固型思維,看出這種思維讓她退縮。現在她十二歲,整個人脫胎換骨,變得很喜歡數學。

改變僵固行思維,開始喜歡數學。圖/pixabay

-----廣告,請繼續往下閱讀-----

我的女兒念四年級的時候,仍然持著僵固型思維,有一次我和她在她的學校旁聽三年級生上課。老師把兩個數字問題寫在白板上,我的女兒答對一題,另一題答錯。當她發現自己答錯之後,馬上表現出負面情緒,說自己數學很差,連三年級生都不如。我便乘機傳遞很直接又重要的東西給她。

我說:「妳知不知道剛才發生了什麼事?妳答錯的時候,妳的大腦會增大,可是答對時腦袋裡什麼事也沒發生;大腦沒有增大。」這就是老師在學生犯錯時,可以跟他們進行的一對一互動。她瞪大眼睛看著我,我知道她明白了這個觀念的重要性。現在她上六年級了,已經是個很不一樣的學生:她欣然接受錯誤,肯定自己。有這種改變並不是因為教她更多數學或其他功課,而是教她要有成長型思維。

皮亞傑:「對學習來說讓心智模型產生不平衡狀態是必要的。」而錯誤能引發不平衡狀態。

瑞士心理學家尚.皮亞傑(Jean Piaget)圖/wikimedia

在一九三○年代,世界頂尖的瑞士心理學家尚.皮亞傑(Jean Piaget)駁斥了「學習即熟記程序」的看法;他指出,真正的學習是需要去理解觀念如何結合在一起。他提到,學生的心智模型會規畫統整觀念的方式,當這些心智模型對學生來說有道理時,他們就處於平衡(equilibrium)狀態(可參考 Piaget, 1958 , 1970 等)。

-----廣告,請繼續往下閱讀-----

當學生遇到新觀念時,他們會努力地把新的觀念放進現有的心智模型,但若是看起來放不進去,或是他們既有的模型需要改變,就會進入不平衡(disequilibrium)狀態。處於不平衡狀態的人明白新的資訊無法納入他們的學習模型,不過因為新資訊解釋得通,所以也沒辦法摒棄,於是他們就必須盡力更改模型。

不平衡的過程會讓學習者很不自在,但皮亞傑主張,不平衡狀態才能帶來真正的智慧。皮亞傑告訴我們,學習是從平衡狀態進入不平衡狀態的過程,在平衡狀態,一切觀念都融合得很好,而在不平衡狀態,則有新的觀念無法融入。皮亞傑指出,這個過程對於學習來說是必要的(Haack, 2011)。

重視錯誤、學會與不平衡狀態共處

在第 4 章談到數學演練和哪些演練形式有益、哪些無益的時候,我還會多加說明。現行數學教育的一大問題就是,學生接收到重複簡單的觀念並不會幫助他們進入關鍵的不平衡狀態。我們很清楚,能容忍模稜兩可的人會讓不平衡狀態更容易過渡到平衡狀態──這是我們必須給學生經歷更多數學上的模稜兩可與冒險的另一個理由。

針對錯誤與不平衡狀態的研究對數學課堂有極大的影響,不只是影響了處理錯誤的方式,還包括給學生的功課。如果我們希望學生犯錯,就必須給他們具挑戰性、有難度的作業,引發不平衡狀態。這種功課也應該要附帶與錯誤有關的正向訊息,讓學生在解決難題、犯錯及繼續下去時能夠覺得自在

-----廣告,請繼續往下閱讀-----

這對很多老師來說會是重大的轉變,因為他們目前在數學課上設計給學生的活動,是為了確保他們能夠順利完成,因而給學生一些通常能正確作答的問題。這就表示,學生並未充分施展能力,沒有獲得足夠的機會學習並讓大腦成長。

不平衡狀態對於學習來說是必要的。圖/flikr

和杜維克一起參與工作坊的時候,我常聽到她告訴家長,要讓孩子知道:把功課做對並不是特別優秀的事,因為這表示他們不是在學習。

杜維克提到,假如孩子回家之後說他們在上課或小考時答對了所有的題目,家長應該要說:「噢,真是可惜,那表示你沒機會學到東西。」這雖然是個激進的回饋,不過我們有必要給學生強烈的訊息,去壓過他們經常在學校得到的想法──做得對最重要、正確是智力的表現。我和杜維克都企圖扭轉老師的目標,讓他們少重視正確成果,多重視錯誤。

-----廣告,請繼續往下閱讀-----

 

本文摘錄自《幫孩子找到自信的成長型數學思維》, 2018 年 12 月,臉譜 出版

 

 

 

臉譜出版_96
88 篇文章 ・ 255 位粉絲
臉譜出版有著多種樣貌—商業。文學。人文。科普。藝術。生活。希望每個人都能找到他要的書,每本書都能找到讀它的人,讀書可以僅是一種樂趣,甚或一個最尋常的生活習慣。