研究作者多倫多大學物理系博士候選人 Carling Hay 表示,「我們的發現了一種新的方法來區分海平面歷史記錄中的各種海平面痕跡,如海浪、潮汐、海洋環流的變化、海洋的熱膨脹等過程所造成的海平面痕跡。」這項研究發表於美國國家科學院院刊(Proceedings of the National Academy of Sciences, PNAS)。
Hay 與哈佛大學的 Jerry Mitrovica、Eric Morow、羅格斯大學的 Robert E. Kopp 找出之前沒有被應用到這個問題的統計技術,並利用在工程、經濟、氣象學常用的資料分析技術來開發新的方法。然後研究人員透過應用這種方法於合成資料集(synthetic data sets)來進行測試及改良。也就是說,合成資料集是以等量噪音作為真實資料,且已知融化訊號(melting signals)的資料集。這種測試對於實際海平面記錄的方法應用提供重要的導引。
Hay 表示,「我們現在正將我們的方法應用於海平面歷史記錄,以提供在整個 20 世紀格陵蘭島(Greenland)及南極西部冰層的總海平面上升程度及冰層融化速度的新估計。初步結果顯示在後半世紀,隨著氣溫的上升,全球平均海平面上升加速的有趣證據。一旦我們完成歷史記錄的研究,下一步將納入衛星遙測海平面變化。」
研究結果在題為「利用資料同化技術來估計全球海平面上升的原因(Estimating the sources of global sea level rise with data assimilation techniques)」的論文中公布。
-----廣告,請繼續往下閱讀-----
這項研究的經費來自於加拿大高等研究所(Canadian Institute for Advanced Research)、哈佛大學、美國能源部(US Department of Energy)的美國科學促進科學協會(American Association for the Advancement of Science Fellowship Program)獎助計劃。
1990 年,融合蛋白 CD4 免疫黏附素(CD4 immunoadhesin)誕生。這項設計,是為了對付令人類聞風喪膽的 HIV 病毒。
-----廣告,請繼續往下閱讀-----
我們知道 T 細胞是人體中一種非常重要的白血球。在這些 T 細胞中,大約有六到七成表面帶有一個叫做「CD4」的輔助受體。CD4 會和另一個受體 TCR 一起合作,幫助 T 細胞辨識其他細胞表面的抗原片段,等於是 T 細胞用來辨認壞人的「探測器」。表面擁有 CD4 受體的淋巴球,就稱為 CD4 淋巴球。
麻煩的來了。 HIV 病毒反將一軍,竟然把 T 細胞的 CD4 探測器,當成了自己辨識獵物的「標記」。沒錯,對 HIV 病毒來說,免疫細胞就是它的獵物。HIV 的表面有一種叫做 gp120 的蛋白,會主動去抓住 T 細胞上的 CD4 受體。
而另一端的 Fc 區域則有兩個重要作用:一是延長融合蛋白在體內的存活時間;二是理論上能掛上「這裡有敵人!」的標籤,這種機制稱為抗體依賴性細胞毒殺(ADCC)或免疫吞噬作用(ADCP)。當免疫細胞的 Fc 受體與 Fc 區域結合,就能促使免疫細胞清除被黏住的病毒顆粒。
不過,這裡有個關鍵細節。
在實際設計中,CD4免疫黏附素的 Fc 片段通常會關閉「吸引免疫細胞」的這個技能。原因是:HIV 專門攻擊的就是免疫細胞本身,許多病毒甚至已經藏在 CD4 細胞裡。若 Fc 區域過於活躍,反而可能引發強烈的發炎反應,甚至讓免疫系統錯把帶有病毒碎片的健康細胞也一併攻擊,這樣副作用太大。因此,CD4 免疫黏附素的 Fc 區域會加入特定突變,讓它只保留延長藥物壽命的功能,而不會與淋巴球的 Fc 受體結合,以避免誘發免疫反應。
從 DNA 藍圖到生物積木:融合蛋白的設計巧思
融合蛋白雖然潛力強大,但要製造出來可一點都不簡單。它並不是用膠水把兩段蛋白質黏在一起就好。「融合」這件事,得從最根本的設計圖,也就是 DNA 序列就開始規劃。
我們體內的大部分蛋白質,都是細胞照著 DNA 上的指令一步步合成的。所以,如果科學家想把蛋白 A 和蛋白 B 接在一起,就得先把這兩段基因找出來,然後再「拼」成一段新的 DNA。
Sun, S. J., Dziuba, M. K., Jaye, R. N., & Duffy, M. A. (2023). Temperature modifies trait-mediated infection outcomes in a Daphnia–fungal parasite system. Philosophical Transactions of the Royal Society B, 378(1873), 20220009.
Rohr, J. R., & Cohen, J. M. (2020). Understanding how temperature shifts could impact infectious disease. PLoS biology, 18(11), e3000938.
Harvell, C. D., Mitchell, C. E., Ward, J. R., Altizer, S., Dobson, A. P., Ostfeld, R. S., & Samuel, M. D. (2002). Climate warming and disease risks for terrestrial and marine biota. Science, 296(5576), 2158-2162.
Miner, B. E., De Meester, L., Pfrender, M. E., Lampert, W., & Hairston Jr, N. G. (2012). Linking genes to communities and ecosystems: Daphnia as an ecogenomic model. Proceedings of the Royal Society B: Biological Sciences, 279(1735), 1873-1882.
Ozersky, T., Nakov, T., Hampton, S. E., Rodenhouse, N. L., Woo, K. H., Shchapov, K., … & Moore, M. V. (2020). Hot and sick? Impacts of warming and a parasite on the dominant zooplankter of Lake Baikal. Limnology and Oceanography, 65(11), 2772-2786.