0

1
1

文字

分享

0
1
1

中秋抬頭賞月,你能找到幾種動物?談月面光影的「空想性錯視」

臺北地方異聞工作室_96
・2019/09/12 ・2627字 ・閱讀時間約 5 分鐘 ・SR值 512 ・六年級

-----廣告,請繼續往下閱讀-----

  • 文/青悠
    大學與研究所時候園藝與奇幻雙修,畢業後轉了個彎成為臺北地方異聞工作室成員,在妖怪中打滾的同時偶爾充當真人植物圖鑑。《唯妖論:臺灣神怪本事》和《尋妖誌》的共同作者。

中秋佳節,月圓人團圓,在家人團聚一堂,或許吃飯,或許烤肉的夜晚,闔家賞月可說是最應景的活動了。如果天公作美,抬頭看著月亮,想起那些從小聽到大的故事,像是生活在月亮上的蟾蜍、玉兔、嫦娥,還有吳剛,想必都會想瞇起眼睛,試試能不能在月亮表面的光亮與陰影之間,找出那些傳說生物的蹤跡。

月亮與兔子的意像放在一起,是個很常見的畫面。圖/ by MJ Jin @ Pixabay

人類成功登月距今,正好五十年。西元 1969 年,阿波羅 11 號登月時,休士頓和登月太空人間有過這麼一段閒聊:

「注意一下中國女人還有兔子。」休士頓說,「根據古老的傳說,有個叫『嫦娥』的女人偷了丈夫的不死藥之後,在月亮上住了四千年了。也找找她的兔子同伴,牠總是站月桂樹下,很容易看到,只是不知道叫什麼名字。」

「好,我們會密切留意那位兔女郎。」太空人這樣回答道。

不過,當登月小艇在寧靜海南端著陸,並進行接下來的探勘和採集時,只見月球表面一片砂土岩屑,當然啦,沒有見到嫦娥,也沒有找到據說很容易看到的桂樹和玉兔。

月亮動物園:兔子、獅子、螃蟹、蟾蜍

其實根據傳說,月亮上可不只有嫦娥與月兔。古今中外,人們對「月亮上究竟有什麼」的各式說法,簡直是想像力的大集結。月球表面凹凸不平,地勢落差和地質成分的不同,造成光線反射差異,視覺上便有了亮暗的分別。從地表觀測,明亮的地方是月球表面的山脈高地,主成分為斜長岩,陰暗的部分通常則是地勢較低處,如主成分為玄武岩的月海還有隕石坑。

-----廣告,請繼續往下閱讀-----
月球上的凹凸不平加上光影,造成了各種月面上的圖像。By NASA Goddard Space Flight Center – Flickr: Moon Map, CC BY 2.0,

而這些光亮與陰影構成的圖樣,伴隨著人們對夜空天體的崇拜,交織出一個又一個的故事。

譬如,在嫦娥與月兔之前,中國先是認為月亮上有蟾蜍。有人說是因為月表外觀像是蟾蜍皮膚的聯想,也有人指出月上陰影的確有個蟾蜍的形狀。至於月兔,中國、日本和韓國等地都有類似的說法,只不過中國的月兔搗著藥,日本和韓國的月兔則搗著麻糬或年糕,要是讓他們月亮上圈出月兔的形狀,除了兔子本體,還能順道指出盛藥或麻糬的容器。除了蟾蜍和兔子,據說阿拉伯地區認為月亮上有獅子,而南歐則看到月亮上有螃蟹。這麼多動物齊聚一堂,幾乎可以當月球是座動物園了。

同樣是月亮,你看見了什麼呢?by Pietz, CC BY-SA 3.0,

除了動物,人像的聯想也不少。據說,北歐地區將月亮陰影看成老奶奶看書的側臉。歐洲也有種說法,認為月亮上有個背柴的人影,那個人是因為偷竊或其他罪行而遭受懲罰,才被放逐到月亮上。另外有些人則說,月亮上有女人的側臉,而女人臉孔下方的醒目隕石坑「第谷坑」,則是她項鍊上的寶石。

圖像的聯想已經夠讓人眼花撩亂了,不過還沒完──人們甚至認為月亮上有文字。什葉派穆斯林就認為,穆罕默德的堂弟及女婿「阿里」的名字被寫到了月亮上。這位阿里是伊斯蘭教史中的重要人物,名字被書寫在月亮上的說法,更昭示了其神聖性。

-----廣告,請繼續往下閱讀-----

神奇的是,由於月球自轉與公轉週期相同,被地球潮汐鎖定,其實始終以同一面朝著地表,因此,地球上看到的月球表面模樣也大致相似,只是角度、方向略有不同罷了。明明如此,人們卻能從中看出那麼多不一樣的東西,想來還真是十分有趣。

由於月球自轉與公轉周期相同,我們看到的一直是同一面月亮。圖為月蝕的合成圖。圖 by Lee_seonghak @Pixabay

空想性錯視:將無意義畫面看成熟悉事物

話說回來,人們在月亮看見各式各樣的東西,其實可能不只是因為想像力太過豐富,有部分也得歸功於「空想性錯視(pareidolia)」作祟。

所謂空想性錯視,指的是人們將接收到的畫面等刺激,辨識成有意義圖像或符號的現象。那些被識別出來的圖像或符號,並非真正存在,只不過是人腦產生了錯認。錯認通常是將雜訊識別成較熟悉的事物,這種情況不僅只發生在視覺,有時候,人們也在聲音中聽見類似的錯聽。這現象在日常生活中倒也不算少見,大家多少都有過這樣的經驗吧——走在夜晚的路上,猛一回頭,卻將樹叢看成了潛伏的人影,因此嚇一大跳。又或者看著某張照片上的斑紋暗影,覺得越看越奇怪,接著突然發現那些圖案竟然組成了幽靈或鬼怪……不知多少靈異的傳說是這樣繪聲繪影地傳播開來的。

從雲隙中看見愛心或鳳凰,也是空想性錯視的情況。圖/oo11o@pixabay

最著名的空想性錯視,應當要屬人腦在影像中辨識出人臉的強烈傾向。這個傾向有可能是種演化優勢,因為要是能迅速地從環境中找出另一個人的面孔,並看出面孔所代表的情緒與意圖,就能有助於應對危險、利於生存。這個技能如此重要,人腦寧可錯看,也不願放過。對臉孔的空想性錯視於是一代一代地傳了下來,留在現代人類的大腦之中了。

-----廣告,請繼續往下閱讀-----
圖為火星地表照片,中間偏上即是「火星上的人臉」。Image credit: NASA/JPL

說起來,既然人們可以在腦中將簡單幾筆線條組成面孔,甚至還能判讀那副面孔的情緒狀態,相較之下,月亮上深深淺淺的光影能被認成人臉或其他東西,似乎也不過就是稀鬆平常的事了。

人類登上月亮已經半世紀了,對太空科學的探索和瞭解,也拆解了某些傳說和神話,但即使如此,也絲毫不能減損那些浪漫情懷。相信人們對月亮的好奇和幻想仍然永無止盡,當我們抬頭賞月,腳踩地球表面,想像力——或是空想性錯視,仍能帶領我們,飛向那精彩神奇的月球世界。

參考資料

  1. What is pareidolia?
  2. Pareidolia: The science behind seeing faces in everyday objects
  3. Moon Lore
  4. Man in the Moon
  5. Lunar pareidolia
  6. Apollo 11 Flight Journal: Day 5, Preparations for Landing
  7. 《星星宇宙小圖鑑:跟著可愛角色學習,展開神秘的太空旅程!》
文章難易度
臺北地方異聞工作室_96
23 篇文章 ・ 256 位粉絲
妖怪就是文化!北地異工作室長期從事臺灣怪談、民俗、文史的考據和研究,並將之轉化成吸引人的故事和遊戲。成員來自政大與臺大奇幻社,從大學時期就開始一起玩實境遊戲和寫小說,熱愛書本、電影和實地考察。 歡迎來我們的臉書專頁追蹤我們的近況~https://www.facebook.com/TPE.Legend

0

0
0

文字

分享

0
0
0
人體吸收新突破:SEDDS 的魔力
鳥苷三磷酸 (PanSci Promo)_96
・2024/05/03 ・1194字 ・閱讀時間約 2 分鐘

-----廣告,請繼續往下閱讀-----

本文由 紐崔萊 委託,泛科學企劃執行。 

營養品的吸收率如何?

藥物和營養補充品,似乎每天都在我們的生活中扮演著越來越重要的角色。但你有沒有想過,這些關鍵分子,可能無法全部被人體吸收?那該怎麼辦呢?答案或許就在於吸收率!讓我們一起來揭開這個謎團吧!

你吃下去的營養品,可以有效地被吸收嗎?圖/envato

當我們吞下一顆膠囊時,這個小小的丸子就開始了一場奇妙的旅程。從口進入消化道,與胃液混合,然後被推送到小腸,最後透過腸道被吸收進入血液。這個過程看似簡單,但其實充滿了挑戰。

首先,我們要面對的挑戰是藥物的溶解度。有些成分很難在水中溶解,這意味著它們在進入人體後可能無法被有效吸收。特別是對於脂溶性成分,它們需要透過油脂的介入才能被吸收,而這個過程相對複雜,吸收率也較低。

-----廣告,請繼續往下閱讀-----

你有聽過「藥物遞送系統」嗎?

為了解決這個問題,科學家們開發了許多藥物遞送系統,其中最引人注目的就是自乳化藥物遞送系統(Self-Emulsifying Drug Delivery Systems,簡稱 SEDDS),也被稱作吸收提升科技。這項科技的核心概念是利用遞送系統中的油脂、界面活性劑和輔助界面活性劑,讓藥物與營養補充品一進到腸道,就形成微細的乳糜微粒,從而提高藥物的吸收率。

自乳化藥物遞送系統,也被稱作吸收提升科技。 圖/envato

還有一點,這些經過 SEDDS 科技處理過的脂溶性藥物,在腸道中形成乳糜微粒之後,會經由腸道的淋巴系統吸收,因此可以繞過肝臟的首渡效應,減少損耗,同時保留了更多的藥物活性。這使得原本難以吸收的藥物,如用於愛滋病或新冠病毒療程的抗反轉錄病毒藥利托那韋(Ritonavir),以及緩解心絞痛的硝苯地平(Nifedipine),能夠更有效地發揮作用。

除了在藥物治療中的應用,SEDDS 科技還廣泛運用於營養補充品領域。許多脂溶性營養素,如維生素 A、D、E、K 和魚油中的 EPA、DHA,都可以通過 SEDDS 科技提高其吸收效率,從而更好地滿足人體的營養需求。

隨著科技的進步,藥品能打破過往的限制,發揮更大的療效,也就相當於有更高的 CP 值。SEDDS 科技的出現,便是增加藥物和營養補充品吸收率的解決方案之一。未來,隨著科學科技的不斷進步,相信會有更多藥物遞送系統 DDS(Drug Delivery System)問世,為人類健康帶來更多的好處。

-----廣告,請繼續往下閱讀-----
文章難易度

討論功能關閉中。

鳥苷三磷酸 (PanSci Promo)_96
197 篇文章 ・ 303 位粉絲
充滿能量的泛科學品牌合作帳號!相關行銷合作請洽:contact@pansci.asia

0

52
3

文字

分享

0
52
3
耳背腦就鈍?解密聽力受損與失智的關係
雅文兒童聽語文教基金會_96
・2024/02/17 ・4232字 ・閱讀時間約 8 分鐘

-----廣告,請繼續往下閱讀-----

  • 文/雅文基金會聽語科學研究中心研究員 詹益智

阿明是位 65 歲的退休長者,總是積極參與各種社區活動,是熱心的志工。然而,近來他開始意識到自己在大型聚會中,必須使勁聆聽他人的話語,有時還是會錯過一些關鍵的內容,這使得他逐漸對大型活動感到焦慮,害怕因聽不清楚別人的對話而與人生分。隨著聽力問題逐漸浮現,他開始注意到自己的思緒也跟著變得混亂。比如說,他常常忘記事情發生的順序,甚至有時候不記得已經說過的話,這種記憶的衰退讓阿明感到十分困擾。最終,阿明去看了醫生並接受相關的測試,被診斷出患有中度聽損與早發性失智症。

在日常生活中,聽覺扮演了重要的角色,是我們與外界交流的管道之一。然而聽力受損不僅僅是一種單純的生理障礙,更可能與失智症之間存在著密切的關係。

關於失智症的二三事

失智症是一種大腦和日常功能逐漸衰退的疾病,主要涉及認知功能的喪失,包括思考、記憶、推理及語言能力等。有些失智症患者甚至無法控制情緒,個性也可能發生轉變。失智的症狀隨程度不同而有所改變,從最輕微的階段開始影響一個人的基本能力(如記憶),到最嚴重的階段,患者完全需要仰賴他人進行日常活動 [1]。失智症不僅對患者本身造成巨大的影響,也帶給家人和照顧者極大的負擔。

失智症是一種大腦和日常功能逐漸衰退的疾病,主要涉及認知功能的喪失,包括思考、記憶、推理及語言能力等。圖/Pixabay

2023 年世界衛生組織(WHO)的統計數據顯示,世界上目前約有 5,500 多萬的人口患有失智症,而每年全球正以 1,000 萬人的速度增加 [2],預計到 2050 年,全球失智症患者數量將達到 1.53 億人口 [3]。Livingston 等學者於 2020 年在國際著名的醫學期刊《刺胳針》(The Lancet)發表了一篇關於失智症的預防、介入與照護的研究 [4],列舉了 12 項風險因子,包括教育程度較低、聽力損失、創傷性腦傷、高血壓、酗酒、肥胖症、吸煙、憂鬱症、社交隔離、缺乏運動、空氣污染與糖尿病,將近 40% 的失智症都與這些因素有關(另 60% 為風險因子不明),其中,聽力損失佔最大宗,約有 8% 的比例。另一項研究更進一步指出,罹患失智症的風險會隨著聽損程度越重而增加,例如輕度、中度與重度聽損者罹患失智症的風險分別是聽常者的 1.27、3.00 與 4.94 倍 [5]。由此可見,聽損與失智症的關係不容小覷。

-----廣告,請繼續往下閱讀-----
失智症的風險因子,聽力損失約佔 8%。圖/引自HearingLife

聽力出包時,失智症有可能找上門!

聽損與失智症關聯的機轉究竟是什麼呢?綜合現有的研究文獻,大致可歸納出三大觀點:

一、聽損會耗費大腦的認知資源

聽損常使一個人在吵雜的環境下聽不清楚聲音,此時,大腦便會進行代償作用,將負責思維和記憶區塊所需的資源移轉用來處理這些模糊的音訊,而導致前述二項高階的認知功能受到影響,進而增加失智的風險 [6]。以上的論述主要來自 Mishra 等人的研究 [7],該研究比較輕度聽損年長者與聽常年輕人在「認知備用容量測驗(Cognitive Spare Capacity Test)」的表現:受試者聽完(無視覺提示)一串由男女穿插錄製之二位數的數字列表(如下表所示)後,要說出這串列表中由男生所錄製的奇位數數字(如 13 與 59,以圓圈標示)。要順利完成此項作業,受試者必須排除女生所錄製奇位數數字的干擾(如 77、89 與 61,以底線標示)。

數字5036774496895240612066
男/女
「認知備用容量測驗」實例(來源:Mishra 等人 [8]

結果顯示,在安靜的環境下,兩組受試者的表現無顯著差異,但在噪音環境下,聽損年長者的表現則顯著落後於聽常年輕人,研究者認為聽損年長者為了排除噪音的干擾以獲取正確的答案,其大腦會將高層次的認知資源挹注於彌補聽損所帶來的負面影響,而致使認知功能下降。長此以往,漸漸便埋下了失智症的導火線。

另一個較為直觀的證據則是透過腦造影技術觀察聽損者大腦活動的狀況。Glick 與 Sharma [9] 讓聽常與聽損老年人觀看電視螢幕的光影變化,並透過高密度的腦波圖(high-density electroencephalography;EEG)記錄其對視覺刺激反應的皮質視覺誘發電位(cortical visual evoked potentials;CVEPs),再透過電流密度源重建技術(current density source reconstruction)定位大腦皮質活動的區塊;此外,研究也評估了受試者的認知功能。結果顯示,相較於聽常者,聽損者觀看視覺刺激物時,腦部發生了視覺跨模重組(visual cross-modal reorganization)的現象:除了主司視覺的枕葉區被活化外,主司聽覺的顳葉與主司認知功能的前額葉也被活化用以輔助處理視覺訊息,這會為大腦帶來極大的負擔而增加認知負荷,並耗盡用以記憶的認知資源,最終可能引發失智症。

-----廣告,請繼續往下閱讀-----

二、聽損會使大腦組織萎縮

此外,聽損與否也可能會影響一個人大腦的結構與功能。美國約翰霍普金斯大學的研究人員 [10],利用「巴的摩爾老化長期研究(Baltimore Longitudinal Study of Aging)」的資料,針對聽損與腦容量的關係進行了一項有趣的研究,他們分析了一群受試者在逐漸老化時,其腦容量的變化。受試者在研究之初,做了聽力評估,接著接受為期長達十年、每年一次的核磁共振檢查。結果顯示,研究開始時就患有聽損的受試者,相較於聽常者,其大腦有較大幅度的萎縮,平均以每年一立方釐米以上的速度流失大腦組織,而這些大腦組織恰好與輕度認知功能退化和早期失智症所表現出的記憶衰退的行為有關 [11]

三、聽損會引發社交隔離

社交隔離(social isolation;意旨與他人很少有社交互動或是社交圈窄小的現象 [12])也可解釋為何聽損與失智症有關。一項由英國所進行的研究 [13] 追蹤了一群 50 歲以上成年人的聽損、社交隔離的程度與認知的狀況,並分析這三個因素間的關係,結果發現雖然聽損與認知功能下降有直接且顯著的關聯,但當加入了社交隔離程度的影響後,聽損與認知關聯的強度降低了近三分之一,此結果說明聽損可能會導致社交隔離,間接造成認知功能下降而引發失智症。這也顯示大腦須要透過適當的社交刺激,才能維持其活力,進而保持正常的認知功能。值得注意的是,當聽力閾值達到 25 分貝或以上(即輕度以上的聽損,亦為影響社交溝通的起始閾值)時,聽損所帶來的失智風險就會明顯地增加 [14]

如何預防聽損所帶來的失智風險

一般而言,聽力是與他人溝通互動不可或缺的元素之一;然而,聽力問題不僅僅是關乎聽覺本身,如前所述,它也可能與失智症存在直接或間接的關係,若能適時地做好聽力保健,或許就可避免老年時,讓失智找上你。那麼要如何維持良好的聽力呢?以下幾點可供參考:

  1. 定期聽力檢查是維護耳朵健康的重要關鍵。許多人並不瞭解即便是輕微的聽損也可能對認知功能造成負面的影響。在一般的情況下,聽力下降是漸進且微小的,而人類的大腦有極強的適應能力,這使得聽力衰退不易被察覺 [15]。透過定期的聽力檢查,有助於追蹤聽力狀況,即使是微小的變化也能及時掌握,並處理潛在的聽力問題,進而降低聽損所帶來的失智風險。
  2. 減少長期暴露在噪音環境中。噪音環境除了會加速聽損的惡化外,同時也會誘發海馬迴受損的記憶功能障礙,這也是失智典型的症狀 [16]。因此,避免長時間處在高分貝的環境下,或者適時地佩帶耳塞或耳罩,便是保護聽力健康進而降低失智風險的良方之一。

然而,就聽損人士而言,難道就只能坐視自身認知功能逐漸退化而毫無作為嗎?其實不然。還記得 Glick 與 Sharma 的研究 [9] 提到聽損者大腦的視覺跨模重組與其認知功能衰退息息相關嗎?但令人振奮的是,這些聽損者在穩定配戴助聽器六個月後,逆轉了視覺跨模重組的現象,其認知功能也隨之改善,這表示聽損者配戴助聽器後,失智風險也可能跟著降低。 

-----廣告,請繼續往下閱讀-----
聽損人士配戴助聽器後,失智風險可能會跟著降低。圖/iStock

雖然失智症並不全然與聽力問題相關,但就聽力而言,我們可做的就是聽力保健,如定期做聽力檢查、遠離噪音環境、適度保護耳朵,以及必要時配戴助聽輔具是維持良好聽力的重要關鍵,若能確實執行上述建議,或許就可降低那 8% 的失智風險。請記住,保護耳朵就是保護大腦,讓我們一起努力維護聽力,為未來的大腦健康奠定穩固的基礎吧!

參考資料

  1. National Institute on Aging (n.d.). What is dementia? Symptoms, types, and diagnosis. https://www.nia.nih.gov/health/alzheimers-and-dementia/what-dementia-symptoms-types-and-diagnosis
  2. Dementia (2023, March 15). Dementia. https://www.who.int/news-room/fact-sheets/detail/dementia
  3. The Institute for Health Metrics and Evaluation (2022, January 6). The Lancet Public Health: Global dementia cases set to triple by 2050 unless countries address risk factors. https://www.healthdata.org/news-events/newsroom/news-releases/lancet-public-health-global-dementia-cases-set-triple-2050
  4. Livingston, G., Huntley, J., Sommerlad, A., Ames, D., Ballard, C., Banerjee, S., … & Mukadam, N. (2020). Dementia prevention, intervention, and care: 2020 report of the Lancet Commission. The Lancet396(10248), 413-446.
  5. Lin, F. R., Metter, E. J., O’Brien, R. J., Resnick, S. M., Zonderman, A. B., & Ferrucci, L. (2011). Hearing loss and incident dementia. Archives of Neurology68(2), 214-220.
  6. Fulton, S. E., Lister, J. J., Bush, A. L. H., Edwards, J. D., & Andel, R. (2015, August). Mechanisms of the hearing–cognition relationship. In Seminars in Hearing (Vol. 36, No. 03, pp. 140-149). Thieme Medical Publishers.
  7. Mishra, S., Stenfelt, S., Lunner, T., Rönnberg, J., & Rudner, M. (2014). Cognitive spare capacity in older adults with hearing loss. Frontiers in Aging Neuroscience6, 96.
  8. Mishra, S., Lunner, T., Stenfelt, S., Rönnberg, J., & Rudnera, M. (2013). Visual Information Can Hinder Working Memory Processing of Speech. Journal of Speech, Language, and Hearing Research56, 1120-1132.
  9. Glick, H. A., & Sharma, A. (2020). Cortical neuroplasticity and cognitive function in early-stage, mild-moderate hearing loss: evidence of neurocognitive benefit from hearing aid use. Frontiers in Neuroscience, 93.
  10. Lin, F. R., Ferrucci, L., An, Y., Goh, J. O., Doshi, J., Metter, E. J., … & Resnick, S. M. (2014). Association of hearing impairment with brain volume changes in older adults. Neuroimage90, 84-92.
  11. Liu, J., Zhang, X., Yu, C., Duan, Y., Zhuo, J., Cui, Y., … & Liu, Y. (2016). Impaired parahippocampus connectivity in mild cognitive impairment and Alzheimer’s disease. Journal of Alzheimer’s Disease49(4), 1051-1064.
  12. Steptoe, A., Shankar, A., Demakakos, P., & Wardle, J. (2013). Social isolation, loneliness, and all-cause mortality in older men and women. Proceedings of the National Academy of Sciences110(15), 5797-5801.
  13. Maharani, A., Pendleton, N., & Leroi, I. (2019). Hearing impairment, loneliness, social isolation, and cognitive function: Longitudinal analysis using English longitudinal study on ageing. The American Journal of Geriatric Psychiatry27(12), 1348-1356.
  14. Lin, F. R., Metter, E. J., O’Brien, R. J., Resnick, S. M., Zonderman, A. B., & Ferrucci, L. (2011). Hearing loss and incident dementia. Archives of Neurology68(2), 214-220.
  15. Audiology Associations of DFW. (August 31, 2023). Regular hearing tests could decrease your risk of getting dementia. Hearing Test Info. https://www.audiologyassociates.com/hearing-test-info/hearing-test-reduce-risk-dementia/
  16. Paciello, F., Pisani, A., Rinaudo, M., Cocco, S., Paludetti, G., Fetoni, A. R., & Grassi, C. (2023). Noise-induced auditory damage affects hippocampus causing memory deficits in a model of early age-related hearing loss. Neurobiology of Disease178, 106024.

討論功能關閉中。

雅文兒童聽語文教基金會_96
55 篇文章 ・ 222 位粉絲
雅文基金會提供聽損兒早期療育服務,近年來更致力分享親子教養資訊、推動聽損兒童融合教育,並普及聽力保健知識,期盼在家庭、學校和社會埋下良善的種子,替聽損者營造更加友善的環境。

0

0
1

文字

分享

0
0
1
人類是少數能看見斑馬條紋的物種!人類的視力到底有多好?——《五感之外的世界》
臉譜出版_96
・2023/09/18 ・1882字 ・閱讀時間約 3 分鐘

-----廣告,請繼續往下閱讀-----

長久以來,生物學家一直都在探討為什麼斑馬會有如此奇怪的黑白斑紋,直到他們談話的當下,卡羅依然在探究這個問題。他告訴梅林,其中最早出現、最廣為人知也令人意外的推測,是認為這些斑紋其實是斑馬的保護色。斑馬身上的黑白條紋毛色能夠擾亂掠食者(如獅子、鬣狗)的視線,讓牠們看不清楚斑馬的輪廓,也可以讓斑馬的身影融入周遭聳立的樹木之間,又能夠在斑馬跑動時讓其他動物感到視線模糊。

斑馬身上的斑紋在其跑動時會讓其他動物感到視線模糊。

但梅林對這些說法抱持著存疑的態度,她回想自己當初的反應:「我那時候表情應該很怪。我對他說:『大部分的肉食性動物都是在夜晚獵食,而且牠們的視覺根本不如人類靈敏,因此很有可能根本看不到那些斑紋。』」提姆這時驚訝地忍不住脫口而出:「什麼?」

斑馬紋隱身術

人類視覺處理細節的能力幾乎比其他任何動物都來得好;梅林也發現,正是因為這種特別敏銳的視力,人類才成了少數能夠看見斑馬條紋的物種。她和卡羅找了個光線明亮的日子,計算出擁有絕佳視力的人類能夠在一百八十二公尺左右之外的距離就分辨出斑馬身上的黑白條紋,獅子則得拉近到八十二公尺左右的距離才看得出來,鬣狗更是要到四十五公尺左右的距離才看得清楚。一旦到了掠食者最常打獵的黃昏或清晨時分,牠們則得再拉近約莫一半的距離才能看見斑馬身上的紋路。

所以梅林的想法沒錯:斑馬身上的條紋不可能是牠們用來匿蹤的保護色,因為掠食者都得靠得很近才看得到這些紋路,然而假如真的距離這麼近,這些天生的獵人早就聽見或聞到斑馬的蹤跡了,實在無需仰賴視力。在肉食動物與斑馬平時間隔的距離之下,這些紋路其實根本都融成了一片灰濛濛的顏色;對正在打獵的獅子來說,斑馬看起來跟驢子其實也沒什麼不同。

-----廣告,請繼續往下閱讀-----

人類其實視力超好的?

動物的視覺敏銳度以單位視角週期數(cycles per degree)為測量單位——這個概念剛好可以用剛剛的斑馬條紋來做例子。各位伸出手臂並豎起大拇指,你的指甲大約可以代表一單位視角;以你的手臂為距並涵蓋四周三百六十度的距離範圍來說,各位應該可以在指甲上畫了六十至七十條黑白條紋的情況下,依然辨識得出黑白條紋之間的區別。因此人類視覺敏銳度的單位視角週期數便約為六十至七十;目前的最高紀錄是來自澳洲的楔尾鵰(Aquila audax),牠們的視覺敏銳度之高,單位視角週期數高達一百三十八。

楔尾鵰擁有動物世界中最細的光受體,這也使牠們的視網膜裡可以密密麻麻地塞滿大量光受體;有了這些細窄的感光細胞,楔尾鵰敏銳視力的畫素大約是人類的兩倍,也因此可以在大約一點六公里之外的距離看見小小一隻大鼠。

然而老鷹和其他猛禽卻是少數視覺比人類敏銳得多的物種。感官生物學家愛倫諾.凱福斯(Eleanor Caves)搜羅了上百種動物的視覺敏銳度,發現人類的視力幾乎超越了所有物種。除了猛禽以外,就只有其他靈長類動物的視覺敏銳度能與我們比肩了。

人類的視力幾乎超越了所有物種。圖/pixabay

各種動物的視覺敏銳度以單位視角週期數表示如下:章魚為四十六、長頸鹿為二十七、馬為二十五、獵豹為二十三,視力表現還算不錯;而獅子卻只有十三,僅略高於人類法律中定義為全盲的單位視角週期數:十。然而其實除了上述物種之外,大部分動物的視覺敏銳度都低於人類視為全盲的門檻,其中包括半數的鳥類(令人意外的是,蜂鳥和倉鴞都在此行列之中),大部分的魚類與所有昆蟲;例如蜜蜂的單位視角週期數竟只有一,這也就表示你伸出去的那隻大拇指在蜜蜂眼裡就代表著一個畫素,至於拇指上畫的其餘細節在牠們眼中都是一團模糊。另外還約有百分之九十八的昆蟲視力比這還要更弱。

-----廣告,請繼續往下閱讀-----

凱福斯說:「人類真的很怪。我們的其他任何感覺根本連摸都摸不到可以稱為頂尖的邊,卻唯獨在視覺敏銳度上傲視群雄。」矛盾的是,人類雖有優良的視力,卻也因此失去了能夠欣賞其他環境界的視野,因為「我們以為自己看得到的,其他物種一定也能看見;認為那些對人類來說顯而易見顯眼的事物,對其他動物來說也一定難以忽視。但實際上卻並非如此。」凱福斯如此說道。

——本文摘自《五感之外的世界》,2023 年 8 月,臉譜出版,未經同意請勿轉載。

臉譜出版_96
86 篇文章 ・ 255 位粉絲
臉譜出版有著多種樣貌—商業。文學。人文。科普。藝術。生活。希望每個人都能找到他要的書,每本書都能找到讀它的人,讀書可以僅是一種樂趣,甚或一個最尋常的生活習慣。