0

1
0

文字

分享

0
1
0

第一位拍下太空彩色照片的太空人:約翰・葛倫 ——《重返阿波羅》

PanSci_96
・2019/08/16 ・1639字 ・閱讀時間約 3 分鐘 ・SR值 470 ・五年級

立即填寫問卷,預約【課程開賣早鳥優惠】與送你【問卷專屬折扣碼】!

太空人約翰・葛倫與相機的相遇

約翰・葛倫。圖/Wiki

1962 年冬天,水星任務太空人約翰・葛倫在一間藥房買了一部安斯可全自動(Ansco Autoset)相機。儘管這部相機出身平凡,卻成了葛倫的得力助手,拍下了第一張人類從太空中拍攝的彩色照片。

時間:1962 年 製造者:美能達(Minolta) 來源:日本和美國 材料:金屬、玻璃、水晶、塑膠、魔鬼氈 尺寸:13.5 × 7.5 × 24.5 公分。約翰·葛倫使用Minolta的底片相機。圖/Smithsonian National Air and Space Museum 

一開始,葛倫的軌道任務並不包括拍照。飛行任務中指定使用的相機,是為了科學研究而配置,不是為任務做記錄,而且 NASA 認為,太空人拍照會干擾水星計畫的工程學目標。在美國第一次載人太空飛行時,並沒有手持相機的選項,尤其艾倫・薛帕德的自由 7 號太空艙根本沒有為飛行員設計的窗戶。

雖然到了水星任務的第二位飛行員高斯・格里森時,NASA 為他的自由鐘 7 號(Liberty Bell 7)安裝了一面梯形的窗戶,他的任務還是不包括攝影。但是葛倫相信,把太空飛行的冒險和世界分享是非常重要的,而且照片「有助於為看照片的人轉譯太空人的經驗」。

工程師改造現成相機,讓使用者即使穿著厚重的太空衣也可以操作。

他向休士頓的載人太空飛行中心(Manned Spaceflight Center),也就是後來的詹森太空中心(Johnson Space Center)主任羅伯特・吉爾魯斯(Robert Gilruth)提出請求,後來得到允許。

任務之前,葛倫去佛羅里達州的可可海灘(Cocoa Beach)理髮,之後在附近的藥房看到一部相機,他進去把相機拿起來看,注意到它有全自動曝光功能, 表示使用時不需調整相機,可以為短暫的任務省下珍貴的時間和專注力。這部相機除了當時最先進的功能,還有簡單、易於使用的設計。他花了 45 美元買下這部相機,帶回 NASA。

約翰・葛倫乘著友誼7號於地球軌道飛行時,使用安斯可相機拍下了佛羅里達海岸。

「一天之中看到四次美麗的日落,那真是無可言喻的感覺。」

──約翰・葛倫(JohnGlenn),在友誼7號飛行之後

相機的改良

因為葛倫必須穿太空衣飛行,會有厚厚的手套和魚缸型的頭盔,因此相機必須適當改造。美國無線電公司(RCA) 的一位承包人,綽號「紅」的羅蘭・威廉斯(Roland “Red” Williams)很快製作出槍把式控制握柄,把相機上下顛倒, 讓握柄和相機的過片桿和曝光鈕相連。

這個握柄讓葛倫用一隻手就可以拿相機拍照。然後威廉斯又在新的相機「頂上」加裝了拍立得(Polaroid)的觀景窗,讓葛倫拍攝地球時不受頭盔影響。

1962 年 2 月 20 日,約翰・葛倫乘著巨大的擎天神號(Atlas)火箭進入地球軌道,同時帶著安斯可和另一部徠卡(Leica)相機。他成為繼其他水星任務夥伴的次軌道飛行後,第一個在地球軌道上飛行的美國人。

約翰·葛倫使用的另一台Leica底片機。圖/Smithsonian National Air and Space Museum 

葛倫用安斯卡相機作為白天或拍攝地平線景觀的傻瓜相機,而徠卡相機則安裝了光譜鏡片,用來拍攝獵物座的紫外線影像。在微重力環境中,安斯卡相機運作得相當成功。葛倫後來回憶:「我需要用到兩隻手時, 就放開相機,讓它飄浮在我面前。」

雖然葛倫的照片傳遍世界各地,卻沒有達到後來阿波羅任務太空人照片的標誌性地位。要等很多年後,NASA 才開始重視太空影像的大眾傳播。因為NASA 官員把攝影視為工程記錄和科學研究的手段,所以遲遲沒有把照片視為早期飛行計畫的重要部分。

約翰・葛倫拍下的太平洋。

 

本文摘自 大石國際文化重返阿波羅

 

文章難易度
PanSci_96
1011 篇文章 ・ 1115 位粉絲
PanSci的編輯部帳號,會發自產內容跟各種消息喔。

0

6
3

文字

分享

0
6
3
從太空窺探金星表面的派克太陽探測器
Heidi_96
・2022/03/04 ・3829字 ・閱讀時間約 7 分鐘

立即填寫問卷,預約【課程開賣早鳥優惠】與送你【問卷專屬折扣碼】!

在天文觀測中,自古以來就有許多關於金星的紀錄。從 1960 年代起,蘇聯、美國太空總署(NASA)、歐洲太空總署(ESA)和日本也都相繼發射探測器,執行不同類型的太空任務,希望能夠更認識金星。

2020 年,NASA 的派克太陽探測器(Parker Solar Probe,簡稱「派克號」)首次在太空中以可見光拍攝金星表面,並在 2021 年 2 月再次拍攝一系列可見光照片後,將他們的分析成果公諸於世。

本篇文章將依序介紹金星探測史、派克號的探測方法、可見光照片的分析成果,以及金星探測的未來展望。現在,就讓我們從頭認識這位閃閃發亮的鄰居吧!

始於科學革命的金星之旅

對地球上的我們來說,月亮是夜空中最亮的天體,但你知道最亮的「行星」是哪一顆嗎?那就是本篇文章的主角——金星!金星的平均視星等,也就是肉眼所看到的平均星體亮度,大約是 -4.14,僅次於月亮的 -12.74 與太陽的 -26.74(數字越小就越亮)[1],不只是地球夜空中最亮的行星,更是太陽系第三明亮的星體。

有個這麼耀眼的酷東西掛在天上,想必科學家絕不會輕易放過!就在科學革命(1543–1687 年)期間,天文學領域突飛猛進——哥白尼提倡日心說、牛頓發現萬有引力、克卜勒導出行星運動定律等等。同時期的知名科學家還有伽利略,他改良望遠鏡,透過觀測金星相位(圖一),也就是金星表面的光照變化,得知金星並不是繞著地球運行,進而推翻當時蔚為盛行的地心說。

圖一:伽利略透過望遠鏡發現金星和月亮一樣有盈缺變化。圖片上半部分別是土星、木星和火星。圖/NASA

此後,眾多業餘天文學家和天文愛好者也都一窩蜂利用望遠鏡觀測金星。有許多人聲稱在背光側看見了微弱的灰白色光芒,並將其稱作「灰光」(Ashen light)。

有些人認為是灰光是金星上的閃電,有些人則認為是紫外線穿透金星大氣時,氧離子游離而輻射出的暗綠色光芒(類似地球上的極光現象),可是沒有人能夠確實拍照紀錄,因此當時普遍認為灰光只是一種視錯覺。時至今日,這些假設也都還沒有確切的科學根據。[2]

不斷演進的金星探測技術

時間來到 1960 年代,繼水手 2 號(Mariner 2)在 1962 年掠過金星後,金星 4 號(Venera 4) 在 1967 年進入金星大氣層進行分析,結果顯示金星大氣約含有 90-93% 二氧化碳、7% 氮氣,以及少許氧氣和水蒸氣。[3] 緊接著在 1975 年,金星 9 號(Venera 9)測出表面溫度約 485 °C、雲層厚度約 30–40 公里。除此之外,還拍下金星表面的 180 度全景照片(圖二),是史上第一個將金星照片傳回地球的探測器。[4]

圖二:1975 年 10 月 22 日,Venera 9 拍下第一張金星表面的照片。圖/NASA 

金星大氣層布滿厚厚的硫酸雲,不僅反射了大約 75% 的陽光,也阻擋了來自金星表面的大部分可見光。因此,科學家決定改用雷達儀器測繪金星表面。1990 年代,麥哲倫(Magellan)多次以雷達測繪金星表面的火山和隕石坑等地貌結構,其清晰程度與可見光測繪不相上下,可說是目前最詳細的金星地圖(圖三)。[5]

圖三:根據麥哲倫的數據資料製作的金星視圖。圖/NASA

此後,科學家進一步利用近紅外線(NIR)觀測金星背光面,因為近紅外線(波長 0.75–1.5 μm)有利於影像在低光環境下生成,而這個波段恰好也是大氣透明度最高的範圍,可以更清楚地看見金星表面。1998 年,卡西尼號(Cassini)以 0.85 μm 的波段觀測金星,可惜這種方法在技術上難以突破,因為輻射強度會隨著波長變短而迅速下降。直到 2020 年,派克號才終於以更短的波長捕捉到金星表面的輻射。

飛越金星七次的「派克號」

2018 年 8 月,派克號發射升空,飛往太陽(圖四)。為了在這漫長的旅途中節省燃料,派克號總共得進行七次重力輔助飛越(VGA),利用金星的引力逐步修正飛行軌道,最終在 2025 年抵達距離太陽中心 10 個太陽半徑(約 690 萬公里)的地方,進行日冕和太陽風的測量任務。

七次重力輔助飛越(VGA)的時程分別如下[6]

  • VGA1:2018 年 10 月 3 日
  • VGA2:2019 年 12 月 26 日
  • VGA3:2020 年 7 月 11 日
  • VGA4:2021 年 2 月 20 日
  • VGA5:2021 年 10 月 16 日
  • VGA6:2023 年 8 月 21 日
  • VGA7:2024 年 11 月 6 日
圖四:準備發射升空的派克號。圖/NASA

截至目前(2022 年 3 月),派克號順利完成了前 5 次 VGA。在 VGA1 和 VGA2 期間,派克號都沒有任何動作。

後來,科學家認為可以利用其搭載的 WISPR 望遠鏡(Wide-Field Imager for Parker Solar Probe)觀測金星雲層。WISPR 可說是派克號的靈魂之窗,但它並不只是一座望遠鏡,而是兩座寬頻光學望遠鏡—— WISPR-I(Inner)和 WISPR-O(Outer),兩者配備的濾光片都只能讓可見光(波長 0.5–0.8 μm)通過。

於是,在 VGA3 和 VGA4 期間,科學家突發奇想,讓 WISPR 對準金星的向光面和背光面,分別拍下照片,想藉此測量雲的速度。沒想到 WISPR 竟然直接穿透了厚重的雲層,以可見光拍攝到明暗不一的表面,同時達成「以光學望遠鏡觀測金星表面」和「從太空拍攝金星表面的可見光照片」兩項創舉。

這時候,問題來了!WISPR 的最短曝光時間是 2 秒,但金星的向光面太亮了,拍出來的照片張張過曝、過飽和,還產生假影,使得原圖和電腦重組照片有所誤差。為了避免這樣的問題,科學家只好放棄拍攝向光面,改以背光面的照片作為研究材料。

WISPR 拍攝的可見光照片

VGA3 期間拍攝的照片只有兩張可以用,其中一張如下(圖五,黑白部分)。在這張照片長達 18.4 秒的曝光期間,派克號不斷被宇宙塵埃(漂浮在太空中的小顆粒)撞擊,造成隔熱罩上的材料燒毀,留下許多水平方向的刮痕。若是忽略刮痕,可以清楚看到明暗不一致的區域,而造成顏色深淺不一的主要原因就是金星的地形特徵。

藉由比對 WISPR 照片與麥哲倫的雷達地形圖(圖五,彩色部分),科學家得以了解溫度如何隨高度變化。圖中黑色(紅色)部分是金星最大的高地區域,位於阿芙蘿黛蒂高地(Aphrodite Terra)西邊的奧瓦達區(Ovda Regio)——越接近白色的區塊越熱,是低海拔地形;越接近黑色的區塊則越冷,是高海拔地形。

圖五:VGA3 觀測到的金星可見光影像(黑白)與麥哲倫雷達地形圖(彩色)的對比。圖/NASA

有了 VGA3 的失敗經驗後,VGA4 的照片就沒有出現刮痕了,而且還從不同的角度拍到了金星表面(圖六)。在 VGA3 期間,派克號是從金星後方飛越,因此 WISPR 拍到的是金星的東側邊緣;在 VGA4 期間,派克號則是從金星前方飛越,因此 WISPR 拍到的是金星的西側邊緣——這讓科學家能夠更細微、更全面地觀察金星的背光面。

圖六:VGA4 觀測到的金星可見光影像(黑白)與麥哲倫雷達地形圖(彩色)的對比。圖/NASA

金星探測的未來展望

雖然金星、地球和火星都是在同一時間形成,現在卻大不相同——火星的大氣層非常稀薄,而金星的大氣層非常厚重。為了解開這個謎團,NASA 和 ESA 在 2021 年 6 月宣布了 3 項全新的金星探測任務,分別是 VERITAS[7]、DAVINCI[8] 和 EnVision[9]。這些任務將進一步探測金星的大氣、地質和其他條件,瞭解這顆星球是否曾經宜居,又是如何演變成現在的樣貌。

至於派克號,不幸的消息是,2021 年 10 月的 VGA5 不利於背光面拍攝,而 2023 年 8 月的 VGA6 也將是如此。如果你也和我一樣想看更多 WISPR 拍攝的可見光照片,就讓我們期待 2024 年 11 月的最後一次飛越(VGA7)吧!

NASA 官方針對派克號金星探測任務的介紹。影/YouTube-NASA

註解

  1. Apparent magnitude – Wikipedia
  2. Ashen light – Wikipedia
  3. Venera 4 – Wikipedia
  4. Venera 9 – Wikipedia
  5. Magellan (spacecraft) – Wikipedia
  6. Parker Solar Probe: The Mission
  7. In Depth | Veritas – NASA Solar System Exploration
  8. DAVINCI Homepage – Probe and Flyby Mission to Venus Atmosphere
  9. EnVision: a mission for understanding planets everywhere

參考資料

Heidi_96
7 篇文章 ・ 12 位粉絲
PanSci 編輯部角落生物|外語系還沒畢業,潛心於翻譯與教學,試圖淡化語言與知識的隔閡。

3

8
2

文字

分享

3
8
2
各國意識抬頭,太空碎片帶來的災難有多嚴重?
黃 正中_96
・2022/02/22 ・2181字 ・閱讀時間約 4 分鐘

立即填寫問卷,預約【課程開賣早鳥優惠】與送你【問卷專屬折扣碼】!

十年前(2011 年)美國國家科學委員會(NRC)發布了一份報告,對於環繞地球的碎片數量發出了警報[1]。當時根據美國太空總署的估計,碎片已達到「臨界點」,導致在軌道上的碎片,不斷碰撞並產生更多碎片,從而增加了人造衛星故障的風險。十年過去了,繞地球運行的碎片數量越來越多,甚至風險增加得更快;是否太空碎片數量的臨界點正在逼近?沒有人知道答案,但可能很快。

何謂太空碎片?

首先,我們先來談談什麼是太空碎片。

依據美國航空太空總署(NASA)定義,太空碎片泛指不提供有效服務,且繞行地球運行的人造物,如廢棄衛星、留在軌道上的火箭與其零件、大碎片相互碰撞後產生的小碎片,均可為之。而太空碎片最主要來源為火箭殘餘燃料爆炸而產生的碎片。

根據全球最完整追蹤太空碎片的系統——美國太空監視網絡(SSN),所登錄的太空碎片已超過一億個。

衛星送入軌道,依照能量守恆和動量守恆定律,飛行的速度必須達到每秒幾公里,才能繞著地球飛行;因此如果它在軌道上撞到任何太空碎片,比如廢棄衛星撞到一片油漆碎片,即使不是災難性的,也可能造成巨大的損失。

太空碎片造成的災難有多嚴重?

自 1957 年以來,人造衛星和火箭製造了越來越多軌道碎片物體,大小從幾微米到幾米不等。儘管已經達成了一些國際協議,限制碎片的增長速度,各國卻沒有嚴格的計劃來減少現有碎片的數量。

地球周圍的太空充斥著碎片。圖/歐洲太空總署

如今越來越多功用的人造衛星被發射進入地球周圍的低軌道,然而其所造成的碎片與衛星數量分佈超過太空碎片容量限制時,則可能發生理論失控的碰撞反應[2]

最近,美國太空新聞(Spacenews)報導,非洲的小國家盧安達(Rwanda)向國際電信聯盟(ITU)申請 327,230 顆衛星[3],加拿大的開普勒新創公司提出 115,000 顆衛星的超級大型太空網路系統,加上亞馬遜、OneWeb、SpaceX 和 Telesat 等公司已經在積極開發的系統,以及地球靜止軌道上的通訊衛星,這些衛星數量遠遠超過預期需求的容量,達到碰撞臨界點的極限風險;問題是國際電信聯盟沒有執法權,國際電信聯盟對軌道壅塞的規定為零。

2007 年中國反衛星計劃試驗所產生的的碎片擴散,以及 2009 年銥星(Iridium)與俄羅斯 Cosmos 的碰撞,讓人們意識到,並提高了積極管理碎片情況的緊迫性,努力採取緩解方法,並提出了許多減少太空碎片的技術。去年(2021)年底,中國的天宮太空站緊急啟動姿態控制,以規避靠近中的星鏈(Starlink)太空網路衛星潛在的碰撞危機。

空間碎片撞擊試驗:以輕氣槍射擊鋁板的方式,模擬一片 14.2 克的塑料,以 5.334 公里/秒的飛行速度在太空低軌道與鋁板碰撞的情況。圖/前 NASA 工程師 Megs H. 推特貼文

「凱斯勒效應」和連鎖反應

美國 NASA 科學家在 1978 年提出凱斯勒效應(Kessler Effect)理論,說明當太空碎片達到或超過容量限制時,由於碎片碰撞而失效的太空船數量將顯著增加。地球軌道上大大小小的物體,數量將變得非常大,它們會不斷相互碰撞,產生更多碎片——最後成為一種被稱為「碰撞級密度」的連鎖反應。緊隨其後,新產生的碎片將呈指數倍增,直到近地太空被各種大小垃圾堵塞。

一旦這樣的衛星碰撞災難發生,整個連鎖反應可能只需要幾天或幾週的時間,最後可能只有幾顆衛星完好無損。

若是繼續毫無限制地增加巨型衛星星系,可能會導致數十年,甚至更長時間的太空活動完全喪失。

太空碎片一旦超過臨界點,造成碰撞災難,無論是太空網路、衛星導航、通訊衛星、地球監控、氣象預報等等,大部分可能都將失去功能。科技帶給人們的便利,以及所建立的文明,將大幅衰減、倒退。

如何解決太空碎片的問題?

若是我們什麼都不做,可能會導致每年 5 兆美元的太空商業收入損失。重新開放太空將花費至少數千億美元,並且可能需要數十年才能實現。若是能想出補救措施,就能確保太空碎片不會帶來災難性的問題,但這就需要一個非常縝密的計劃,涉及幾個新的太空系統和數十億美元的投資。

美國、歐盟、澳洲和日本以及各國的太空機構都意識到太空碎片問題的嚴重性,相繼提出不同的補救措施,包括:建立太空碎片追蹤機制,由觀測站和天文台精確跟蹤、監控太空物體的軌跡,避免現役衛星與大型物體相撞;提出減少計劃,清除太空小碎片物體的數量;跨國協調衛星的太空交通,以維持安全的飛行路徑;在設計人造衛星時,規劃衛星壽命結束前的退場機制,讓衛星降低軌道返回地球,並且在大氣層燒掉。這些方法目前都正在陸續實驗、進行中。

最近有一個例子,在今年 2 月初所發射的星鏈 (Starlink)太空網路衛星,發射時正好受到太陽風暴衝擊,有 40 顆衛星被風暴摧毀,幸好當時這一批衛星有返回地球的機制,能夠重新進入大氣層並燃燒掉,順利地減少了一批太空垃圾。

註解

  1. Report says space debris past ‘tipping point,’ NASA needs to step up action
  2. Space debris
  3. Satellite operators criticize “extreme” megaconstellation filings
  4. Space Debris: Wall-E’s Future is Real
所有討論 3
黃 正中_96
8 篇文章 ・ 5 位粉絲
國家實驗研究院國家太空中心研究員。勿忘對科學研究的熱情,勇敢築夢,實現夢想…...

5

11
2

文字

分享

5
11
2
國際太空站與它的繼承者們——淺談近地軌道商業服務的歷史
EASY天文地科小站_96
・2022/02/17 ・3898字 ・閱讀時間約 8 分鐘

立即填寫問卷,預約【課程開賣早鳥優惠】與送你【問卷專屬折扣碼】!

  • 文/林彥興|EASY 天文地科小站主編、清大天文所碩士生,努力在陰溝中仰望繁星

2021 年底,美國政府宣布再次延長國際太空站(ISS)的服役年限,讓它繼續運作到 2030 年,續寫這座人類史上最大人造衛星的傳奇。與此同時,NASA 的「商業近地軌道太空站」(Commercial Leo Destinations, CLD)也正如火如荼地展開,旨在創造多元而蓬勃的近地軌道經濟圈。

舉世唯一的微重力實驗室:國際太空站

國際太空站絕對夠格問鼎當代最偉大的工程奇蹟之一。由美國、俄羅斯、日本、歐洲與加拿大共同打造,ISS 的質量約 450 公噸,大小相當於一座美式足球場,是歷史上最大最重的人造衛星,二十多年來以約 7.6 km/s 的高速,在 400 多公里高的近地軌道上繞行地球。太空站上常駐約 7 名左右的太空人,負責維護太空站的運作,並且在這獨一無二的微重力環境下,進行各式各樣的科學研究。

2021 年 12 月 9 日,從載人版天龍號太空船(Crew Dragon)拍攝的國際太空站。圖/NASA Johnson

這樣一個龐然大物,世界上沒有任何一款火箭有辦法一次就把它送上軌道。因此 ISS 的建造,是一次一個地把艙段發射到軌道上,然後讓它在茫茫太空中,精準地與之前發射的其他艙段對接,像拼樂高一樣,一步一步地把整個太空站組裝起來。從 1998 年到 2011 年,多國團隊一共花了 13 年的時間、31 次發射,才完成 ISS 的建造。

國際太空站從 1998 至 2011 的主要組裝過程縮時。整體而言 ISS 自 2011 之後並沒有太多大規模的改動,但仍有新增新的艙段(如 BEAM、Nauka、Prichal)、更換電池(如 HTV-6 帶上去的鋰離子電池)與太陽能板(如 iROSA)等設備。影/YouTube

然而,光是「建造」太空站是不夠的,為了維持太空站的運作,太空站上必須要有太空人常駐,因此每隔幾個月,多國團隊就得發射載人任務,把新一批太空人送上太空站,並讓前一批太空站上的太空人返回地球。同時,為確保這些太空人能在太空正常生活,它們還得更頻繁地發射無人貨運太空船,為太空人帶來食物、水、維修零件等資源。

截至 2021 年底,已發射了超過 66 批「遠征隊」(expeditions)輪班駐守 ISS,並且發射 144 趟無人貨運任務。每一趟任務背後,都要耗費數億美金的火箭發射成本,及數百噸的火箭推進劑。再加上太空人的訓練、基礎設施建造、早期的研究與試驗、多國間的協調合作……等等,這個計畫的規模之宏大可見一斑。

自由市場的力量:商業補給與運載服務

國際太空站的建造與運作是如此的昂貴,即使是全世界資源最豐富的太空機構:NASA,要長年維持它的運作也顯得力不從心。

其中一個重要的原因,在於 NASA 當年用於運補國際太空站的主力——太空梭(STS)。太空梭不僅操作危險,成本也非常昂貴。面對這種情況,NASA 想到:「也許我們可以從最簡單運送補給物資開始,培養一批民間太空公司,等它們的成長茁壯之後,就可以把這些「日常瑣事」外包出去給它們做。」

在自由市場的競爭壓力下,這些民間太空公司自然會拚命地找出效率最高的辦法達成目標。如此一來,NASA 省了錢,又培育了國內的航太科技實力,豈不是一舉兩得?

於是,2006 年,NASA 啟動了「商業軌道運輸服務」(COTS)計畫,讓民間太空公司在 NASA 專業人員的幫助之下,自行設計一套火箭與太空船參與競爭。

每達到一個 NASA 設定的里程碑,就可以拿到相當可觀的資助,進行下一階段的開發,由此一步一步地完成整套系統的開發。經過激烈的競爭,最終由老牌太空公司「軌道科學」(Orbital Science)與當時的新創太空公司 SpaceX 奪下勝利,取得「商業補給服務」(CRS)合約。時至今日,雙方的「天鵝座」(Cygnus)與「天龍號」(Dragon)系列貨運太空船,仍是補給國際太空站的主力。

SpaceX 的 Cargo Dragon 2 太空船(左)與 NG 的 Cygnus 太空船(右)是如今 ISS 補給任務的兩大主力。嚴格來說,這兩艘太空船和其搭配的火箭已經改良多次,與 2008 年奪得 CRS 合約時的設計早已大不相同。Orbital Science 在 2015 年與 Alliant Techsystems 合併為 Orbital ATK,又在 2018 年被諾斯洛普.格魯曼(NG)買下。科技產品與市場環境的高速變化,有時候實在是讓筆者很難一句話把事情講清楚。圖/NASANASA

有了 CRS 的成功經驗,NASA 決定打鐵趁熱,在 2011 年啟動「商業載人服務」(CCP),讓商業太空公司負責難度更高的載人太空飛行任務。

經過多年競爭,這次脫穎而出奪得合約的是 SpaceX 與波音兩家公司。然而,命途多舛的波音「CST-100 星際航線」(Starliner)太空船頻頻發生問題,至今(2022 年 2 月)仍未成功執行任務。另一邊,SpaceX 的「載人版天龍號太空船 Crew Dragon」太空船則相對順利得多,不僅已經 4 度成功把太空人送上 ISS,更將 Crew Dragon 用於太空旅遊,在「靈感 4 號」(Inspiration 4)任務中讓 4 位民間太空人體會了 3 天的軌道飛行,並且未來還會執行更多類似任務。讓我們看到這些為政府機構打造的太空船,其實有著巨大的商業潛力。

朝陽下,裝載於獵鷹九號火箭頂端等待發射的 Crew Dragon。圖/SpaceX
比起太空梭等上個世紀設計的太空船,Crew Dragon 的控制面板採用大面積的觸控螢幕,整體設計簡約而現代。圖/SpaceX

商業近地軌道太空站:打造蓬勃的近地軌道經濟圈

時光飛逝,歲月如梭,國際太空站轉眼間已經服役超過 20 年。整體而言,太空站的狀態還算良好,但是大大小小的故障仍時有耳聞。因此,即使美國政府宣布讓 ISS 持續服役到 2030 年,尋找國際太空站的接班人仍是刻不容緩。

對此,NASA 故技重施,啟動了「商業近地軌道太空站」(Commercial Leo Destinations, CLD)計畫。這次不只運貨、載人,而是要讓商業太空公司自行設計、建造與運營商業太空站。經過第一階段的評選,目前有 3 組團隊獲選,它們分別是:

  1. Orbital Reef,此為藍色起源(Blue Origin)與內華達太空公司(Sierra Space)、波音、Redwire Space、Genesis Engineering Solutions 等多家公司組成的聯合團隊所提出的方案。它擁有大直徑的艙段、大直徑的對接口,能夠支持 6 名太空人的生活,無論是技術或是商業規劃上都相當有野心。
  1. Starlab,此為 Nanoracks、Voyager Space 和洛克希德·馬丁(Lockheed Martin)組成的聯合團隊提出的方案,特色是使用了一個巨大的充氣式艙段,讓整座太空站只需發射一次就能進入軌道,不需要多次發射再對接。
  1. 第三個是諾斯洛普.格魯曼提出的太空站計畫,不過它目前還沒有一個閃亮的名字。相較於上述 2 項方案,諾斯洛普的計畫就顯得相當中規中矩。它們使用了大量現成的技術以降低開發風險,避免計畫延宕,但就顯得缺乏亮點,商業計畫也相對不被 NASA 看好。

最後,當廠商們的技術發展成熟(預計是在 2025 年以後),NASA 就會從指導者變成客戶,付錢購買廠商們的服務。除了角逐 CLD 計畫的 3 個團隊之外,還有另一組人馬——Axiom Space,也是商業太空站大賽的選手之一。比起剛剛起步的 CLD 三家,Axiom Space 不僅已經拿到 NASA 的合約,而且太空站怎麼建造也都已經有了相當完整的規劃。若進展順利,應該會成為第一個成功入軌的商業太空站。

Axiom Space 的太空站建造動畫。多個艙段將首先被安裝在 ISS 上,直到最後整個太空站建成之後,再脫離成為獨立的商業太空站。影/Axiom Space

蓬勃發展的近地軌道經濟圈

國際太空站是 21 世紀初人類的太空技術結晶,是世界各國耗時 13 年、斥資上千億美金完成的偉大工程。然而時過境遷,這座龐然大物逐漸顯露疲態。值得慶幸的是,得益於 15 年來商業太空領域的高速發展,民間太空公司已經一步步掌握火箭、貨運、載人太空船,乃至於太空站的開發與運營技術,讓太空不再是政府機關的專利,也讓 ISS 不怕後繼無人。

隨著資源與人力的不斷投入,一個生機勃勃的近地軌道經濟圈,也許並沒有我們想像的那麼遙遠!

參考資料與延伸閱讀

所有討論 5
EASY天文地科小站_96
21 篇文章 ・ 751 位粉絲
EASY 是由一群熱愛地科的學生於 2017 年創立的團隊,目前主要由研究生與大學生組成。我們透過創作圖文專欄、文章以及舉辦實體活動,分享天文、太空與地球科學的大小事