Loading [MathJax]/jax/output/HTML-CSS/config.js

0

1
1

文字

分享

0
1
1

下棋之外也能看病?淺析台灣人工智慧醫療之發展

Research Portal(科技政策觀點)_96
・2019/07/24 ・4071字 ・閱讀時間約 8 分鐘 ・SR值 589 ・九年級

-----廣告,請繼續往下閱讀-----

文/呂宜瑾

從探索、深度學習到圍棋奪勝,人工智慧的歷史與發展

圖/deviantart @agsandrew

「人工智慧」(Artificial Intelligence,簡稱AI),顧名思義是由人類所製造出來的機器(電腦),透過反覆的訓練與學習所展現的智慧。AI內含了「機器學習」、「深度學習」與「自然語言」等概念,且依據電腦能處理與判斷的能力不同,產生不同的分級。

AI發展的歷史,從第一台電腦出現迄今已過半世紀,期間經歷了三波熱潮,前兩次熱潮因受限於當時的技術發展而退燒(曲建仲,2018;盧傑瑞,2018)。

(一)第一波熱潮(1950~1960年):探索與推論的時代

1946 年,全世界第一台電腦Enica誕生,之後的 10 年,在 1956 年達特茅斯研習會(Dartmouth Workshop)中首度出現「人工智慧」 (Artificial Intelligence,簡稱 AI)的專有名詞。

-----廣告,請繼續往下閱讀-----

(二) 第二波熱潮(1980~1990年):知識的時代

專家系統:自 1980 年開始,將大量的專家知識輸入電腦中,再由電腦依據使用者的問題來判斷答案,後續應用在疾病的初步診斷。

(三) 第三波熱潮(2000年~現在):深度學習的時代

自 2000 年起,半導體技術的進步,提升了電腦運算的能力;半導體的成本下降,讓雲端儲存的使用變得便宜。而透過雲端伺服器蒐集而來的大數據(Big Data),則成為了 AI 發展最重要的資源。

圍棋是目前最複雜的棋,本文作者估計可能的盤面狀況約有10170種。圖/wikipedia。
圍棋是目前最複雜的棋,粗估可能的盤面狀況約有10^170種。圖/wikipedia

2016年,Google 開發的人工智慧 AlphaGo,打敗南韓棋王李世乭後,讓 AI 的發展再次受到重視。2018 年,美國國際研究暨顧問公司 Gartner「十大技術趨勢」報告中指出,AI技術是近年科技發展的重要目標,並預估 2018 年 AI 相關產業年產值達 1.2 兆美元,相較前一年成長 70%,2022 年相關產值則達  3.9 兆美元(Kasey Panetta, 2017;Gartner, 2018)。

而最新一期 2019「十大技術趨勢」報告中,除了原有 AI 技術外,其餘 AI 衍生或是相關技術也名列其中,可能在未來 5 年內快速成長,對於人類生活、產業發展、科學技術更有機會帶來顛覆性的影響(Gartner, 2019)。

-----廣告,請繼續往下閱讀-----

進入「深度學習」時代的 AI 醫療應用

圖/fshoq

依據美國市調機構 CB Insights 的調研結果,從投資趨勢來看,自 2013 年起,美國 AI 醫療新創投資件數共 576 件,募資金額超過 43 億美元,位居 AI 新創相關產業募資首位,而 AI 醫療募資之案件數,也於 2018 年第二季達新高峰,AI 醫療受矚目的程度,可見一斑(Kyle Wiggers, 2018)。

AI 醫療的應用,進入「深度學習」的時代,除了將大量生理資訊輸入電腦,透過拋轉、整合、計算與紀錄,作為醫護團隊預測參考依據外,目前較主流的應用仍為醫學影像辨識。以台灣為例,國人每年平均看診次數約為 15 次,所累積的處方簽高達 3 億 6 千萬張;每年約有 200 萬人次使用電腦斷層與核磁共振等影像檢查,以肺部電腦斷層掃瞄為例,每進行一次電腦斷層掃瞄便可產生 500 張影像,一位有經驗的醫師進行初步篩選至少就要花 20 分鐘。

醫療技術的進步,讓診斷更為細緻,疾病的分類則變得更為複雜。傳統影像辨識,靠的是醫師肉眼的判斷與經驗,一旦醫療數據增多、辨識時間拉長,長時間的工作帶來的疲乏,加上疾病的高複雜度,使醫師犯錯的機率提高(王若樸-c, ,2019; 基因線上,2018)。

醫療影像辨識的發展,可追溯到 2012 年,由 Google 所建立的 ImageNet,一個開放使用的圖像辨識測試數據庫,參賽者將深度學習應用到ImageNet,使圖樣辨識準確度高達 85%,在當年電腦視覺比賽中奪冠,確認了深度學習在影像辨識的可行性。2016 年,Google 旗下的科研機構,發表了第一篇由機器深度學習進而提早發現糖尿病視網膜病變的論文,透過糖尿病患視網膜的影像辨識,早期偵測病變預防失明,技術研發成果後續將佈署於印度等眼科醫師缺乏的國家。

-----廣告,請繼續往下閱讀-----
圖/pixabay

台灣實施全民健康保險迄今已 24 年,病歷電子化也即將邁入第 10 年,巨量的醫療數據累積,成為台灣發展 AI 醫療的利基。分析醫療數據的組成,除了基本的生理資訊外,絕大部分就是各類的影像資料,包含:X光片、超音波、核磁共振、電腦斷層、病理切片等。影像辨識技術的發展,除了要足夠的影像資料來「訓練」電腦,從數據獲取→分析→建立模組,最後才能回答問題或是預測未來。

過程中要如何讓電腦得到經驗,「理解」資料的特徵,達成「特徵表達學習」靠的就是專家知識的輸入,透過一群醫師針對影像進行標記,建置模組後再用影像試驗,並進行校正,影像標記是建立模組原型最重要的基礎,也會影響影像預測的準確性。目前AI醫療影像辨識的應用,也已逐漸在台灣發展,相關案例如下(王若樸-a,2019):

  1.  乳房超音波 AI 輔助分類系統:早期發現,腫瘤辨識度達 9 成,但良性、惡性的辨識度約 7 成。
  2. AI 骨齡輔助判讀系統:準確度可達 9 成 5。
  3.  DeepMets:人工智慧腦瘤自動判讀系統,30 秒就能圈出病灶,還能自動計算腫瘤體積。

當然,開發中的醫療影像辨識技術遠比上述的例子多更多。2017 年科技部為了推動國人醫療影像在地化,建置 AI 醫療影像資料庫,提出「醫療影像專案計畫」。次年(2018)年底,台灣首座「AI 醫療影像」資料庫上線,15 類疾病,共 4.6 萬筆影像,目前已有 1/3 完成疾病辨識,資料庫影像開放供很多團隊一同開發演算法,目前有台大、北榮及北醫等團隊參與(吳元熙,2018)。

AI醫療不止步於影像辨識,還需發展文字語意辨識與分子生物檢測

圖/pixabay

醫學影像的辨識難度,會與最終影像的辨識準確度有關,除了需處理的影像數量多外,以肺部為例,其影像有很多血管紋,血管橫切面與肺結節十分相像,增加辨識難度。另外,以開發數位病理AI聞名的雲象科技為例,顯微鏡底下的病理切片影像,又是另外一個層次的首先面臨到的困難,就是病理切片影像傳換為數位影像,解析度非常高,超出電腦的運作能力,必須裁切成小區塊來訓練,以建立模組。初步完成鼻咽癌 AI 模組,自動標示癌症的高風險區,準確度達 97%。全新挑戰則是全球幾乎沒有人在做的數位病理 AI-血癌偵測模組,需辨識近 40 種不同種類或成熟度的骨髓細胞(王若樸-b,2019)。

-----廣告,請繼續往下閱讀-----

然而,AI 醫療的應用,不僅止於醫療影像辨識,目前正在發展的還包含文字與語意辨識、分子生物檢測等。以文字與語意辨識為例:全球首建肺癌病灶語意描述資料庫,過去的診療經驗,最關鍵的往往是問診的語句,其中夾帶足以判斷疾病的關鍵,卻無法單純從影像或是病歷中察覺。因此,除了既有的影像病灶標記外,北醫附醫的研究團隊更嘗試加入病灶語意描述,希望藉由AI的協助,讓醫師早一步發現肺癌。

以分子生物檢測為例,藉由目前生物技術的發展,病人基因檢測或蛋白質體學檢測等變得相對容易,依據過去疾病的文獻研究,某些疾病的發生或是疾病發展的進程,可能與基因突變(或遺傳)或基因表現異常有關,如果能藉由病理數據、影像與基因變異之間,建立相關性的分析模組,希望進一步能達成降低早期風險或疾病的發生,或是預測病人預後狀況等。

華生以相當精密的問答系統作為基礎模板。圖/wikipedia

AI 醫療的應用,可以藉由深度學習來增加準確度,而電腦學習的模式,必須由專家知識的輸入(給予框架或答案)來決定模組的原型,目前醫事人力的短缺,是阻礙AI醫療發展的原因之一。另外,AI 於醫療之應用與其他產業的差別在於,醫療往往沒有標準答案,還有太多的例外,以及一些「只能意會、無法言傳」的醫師經驗累積,這些都會影響電腦的訓練結果,以及最終診斷的準確度與一致性。

醫療領域最知名的 AI 應用,就不能不提 IBM 的超級電腦-華生(Waston),主要以自然語言訓練,從2011年發展至今,華生的腫瘤系統已在全球超過 230 家醫院使用,而近年華生醫生的發展聲勢卻持續下跌,原因出在:

-----廣告,請繼續往下閱讀-----
  1. 華生雖透過大量文獻資料、診斷紀錄等訓練,但效果仍與醫師診斷有著很大的差距,例如:對於醫療方法的選擇,無法提出具體而合理的解釋,更可能因為無法通盤考量病患條件,而做出不適切之診斷,顯見其電腦學習資料量不足;
  2. 另因應疾病與醫療的變化,須輸入新資料供系統學習,而新舊資料整合不易且所費不貲,這些臨床應用的瓶頸,終將讓華生輪為第二、第三線的醫療諮詢系統,或是為節省成本而捨棄不用,這些都必須在AI醫療的發展與應用上,引以為鑑(陳苓,2017)。
  3. 最後一點,卻也是最重要的,便是相關法規及配套措施,包含技術開發與資料管理規範,建議相關部會積極主動研議,並透過跨部會合作,提出具體規範,才能讓台灣的 AI 醫療發展得更為順利(王郁倫,2019)。

參考文獻

-----廣告,請繼續往下閱讀-----
文章難易度
Research Portal(科技政策觀點)_96
10 篇文章 ・ 9 位粉絲
Research Portal(科技政策觀點)為科技政策研究與資訊中心(STPI)以重要議題導向分析全球科技政策與科技發展趨勢,呈現研究觀點與產出精華。

0

2
1

文字

分享

0
2
1
上網也要有「技術」!從言論、隱私到國安,你我都該懂的界線
鳥苷三磷酸 (PanSci Promo)_96
・2024/12/18 ・2366字 ・閱讀時間約 4 分鐘

-----廣告,請繼續往下閱讀-----

本文由 國家通訊傳播委員會 委託,泛科學企劃執行。 

以為鍵盤俠天下無敵?小心一個不留神就觸法!人們常忽略「網路並非法外之地」這個重要事實。不只現實生活中的法律同樣適用於網路空間,隨著科技發展,更多應網路特性而生的法律規範也相繼出現。從基本的言論自由到隱私權保護,從智慧財產權到國家安全,法律體系正全面性地回應數位時代的種種挑戰。

在臺灣,網路上的言論自由權利源自《憲法》第 11 條的明確規定:「人民有言論、講學、著作及出版之自由。」釋字第 509 號則指出,「國家應給予最大限度之維護,俾其實現自我、溝通意見、追求真理及監督各種政治或社會活動之功能得以發揮。」網路快速傳播的特性放大了言論的影響力,而大法官的解釋將言論自由的邊際刻畫得更明確,這在數位時代裡顯得格外重要。

網路與社群媒體的快速傳播,放大了言論的影響力。圖/unsplash

網路上的性、暴力與未成年保護

顯然言論自由並非是毫無限制,2023 年 11 月的一起案件就展現其中一種界線的樣貌。當時,一名 36 歲男子將他和網友在網咖的性愛影片上傳至推特,還寫下「《網咖包廂實戰計 1》我跟某公司 OL 戰鬥」等文字。這段影片一經發布,當事女子立即採取法律行動。最終,法院依其以網際網路「供人觀覽猥褻影像」的罪名,判處該名男子拘役 30 日,得易科罰金。這個判決清楚說明了,即便在虛擬空間,散布猥褻影像仍須承擔實質的法律責任。

-----廣告,請繼續往下閱讀-----

特別是在保護未成年人方面,法律的規範更加嚴格。《刑法》第 235 條明文禁止散布、播送或販賣猥褻物品,無論形式是圖文、聲音還是影像。而《兒童及少年性剝削防制條例》第 36 條更進一步禁止任何形式的兒童色情製品被製造、散布和持有。2019年彰化縣曾層發生過這樣一起案件:一名陳姓中年男子將9歲女童帶往居所,不僅強迫她觀看色情影片,還對她進行猥褻行為,甚至將過程上傳至 Google 雲端。儘管他後來試圖以資助女童就學表達悔意,法院仍以加重強制猥褻等罪,判處他 4 年 4 個月有期徒刑。

不實言論的散布同樣可能觸犯法律。2021 年 9 月爆發的「台大狼師案」就是一個警示。一名女大生在網路上指控教師誘騙她發生關係並傳染性病,幾個月後又指控對方對她進行強制性行為。當她提出告訴時,檢方卻查無性侵事實,加上她反覆的說詞,不僅性侵告訴失敗,還因誹謗罪反被加重判刑。

當駭客、間諜都轉戰網路戰場

2013 年,一名退役空軍上校赴陸經商時被情治單位吸收,返台後透過人脈網絡發展組織、刺探軍事機密,並以空殼公司掩護非法報酬,這個情報網持續運作了 8 年之久。

在涉及國家安全的議題上,法律的態度更是嚴厲。根據《國家安全法》第 2 條的規定,任何人都不得為境外敵對勢力及其控制的組織、機構進行資助、主持、操縱、指揮或發展組織,更不能洩漏、交付或傳遞公務機密,違反者將面臨嚴厲的刑事處罰。《刑法》規定,意圖破壞國體、竊據國土,或以非法方法變更國憲、顛覆政府者,處7年以上有期徒刑,首謀更要判處無期徒刑。

-----廣告,請繼續往下閱讀-----

抄襲與轉貼的邊界在哪裡?

在智慧財產權的保護上,臺灣也經歷了數位時代的轉變。台灣第一個網路著作權相關判決,就發生在傳統出版與數位平台的碰撞之中。南方社區文化網路負責人陳豐偉等三人在中山大學 BBS 上發表的文章,未經同意就被《光碟月刊》收錄在隨刊光碟中發行。三人向台北地檢署提告後,《光碟月刊》發行人兼總經理黃俊義被判處七個月有期徒刑,緩刑三年。這個判決為數位時代的著作權保護樹立了重要典範。

臺灣首例網路著作權案判決,為數位時代智慧財產權保護樹立典範。圖/envato

近年來,影音平台的著作權爭議更趨複雜。2022 年,知名 YouTube 頻道「觸電網」就因為片商車庫娛樂檢舉七十多支未經授權的影片,導致經營 12 年的頻道被迫下架。車庫娛樂透過律師聲明,這是針對「未經合法授權影音內容」的標準處理,並表明將追究民事與刑事責任。

受害了怎麼辦?申訴管道報你知

當我們在網路上的權利受到侵害時,可以根據侵害類型尋求不同的救濟管道。最基本的言論自由權利受到侵犯時,可以先向社群平台提出檢舉。若遇到更嚴重的情況,如散布猥褻影像、非法性私密影片等,除了平台檢舉外,還可以向警方提告,或是尋求衛福部「性影像處理中心」的協助。

在面對網路霸凌、不實言論時,可以向台灣事實查核中心、MyGoPen 等組織求助,協助澄清真相。若發現有害兒少身心健康的不當內容,則可以向 iWIN 網路內容防護機構提出申訴。這個由國家通訊傳播委員會支持的組織,會在受理後進行查核、轉介業者改善或依法處理。

-----廣告,請繼續往下閱讀-----

智慧財產權的侵害在網路時代極為常見,就像「觸電網」遭片商檢舉下架的案例。這類情況可以透過平台既有的著作權保護機制處理,情節嚴重者也可以提起民事訴訟要求賠償。若發現可疑的廣告或不公平交易行為,則可以向公平交易委員會檢舉;若是特定領域的違規內容,則應該向各該主管機關反映,例如藥品廣告歸衛福部管轄、證券期貨廣告則由金管會負責。

網路時代的法律規範正不斷演進,從個人隱私到國家安全,從言論自由到智慧財產權,每個面向都在尋求數位環境下的最佳平衡點。作為網路使用者,我們必須理解並遵守這些法律界線,同時也要懂得運用各種救濟管道保護自身權益。唯有每個人都清楚了解並遵守這些規範,才能共同營造一個更安全、更有序的網路環境。

-----廣告,請繼續往下閱讀-----
文章難易度

討論功能關閉中。

鳥苷三磷酸 (PanSci Promo)_96
222 篇文章 ・ 313 位粉絲
充滿能量的泛科學品牌合作帳號!相關行銷合作請洽:contact@pansci.asia

0

1
0

文字

分享

0
1
0
當心網路陷阱!從媒體識讀、防詐騙到個資保護的安全守則
鳥苷三磷酸 (PanSci Promo)_96
・2024/12/17 ・3006字 ・閱讀時間約 6 分鐘

-----廣告,請繼續往下閱讀-----

本文由 國家通訊傳播委員會 委託,泛科學企劃執行。 

網路已成為現代人生活中不可或缺的一部分,可伴隨著便利而來的,還有層出不窮的風險與威脅。從充斥網路的惡假害訊息,到日益精進的詐騙手法,再到個人隱私的安全隱憂,這些都是我們每天必須面對的潛在危機。2023 年網路購物詐欺案件達 4,600 起,較前一年多出 41%。這樣的數據背後,正反映出我們對網路安全意識的迫切需求⋯⋯

「第一手快訊」背後的騙局真相

在深入探討網路世界的風險之前,我們必須先理解「錯誤訊息」和「假訊息」的本質差異。錯誤訊息通常源於時效性考量下的查證不足或作業疏漏,屬於非刻意造假的不實資訊。相較之下,假訊息則帶有「惡、假、害」的特性,是出於惡意、虛偽假造且意圖造成危害的資訊。

2018 年的關西機場事件就是一個鮮明的例子。當時,燕子颱風重創日本關西機場,數千旅客受困其中。中國媒體隨即大肆宣傳他們的大使館如何派車前往營救中國旅客,這則未經證實的消息從微博開始蔓延,很快就擴散到各個內容農場。更令人遺憾的是,這則假訊息最終導致當時的外交部駐大阪辦事處處長蘇啟誠,因不堪輿論壓力而選擇結束生命。

-----廣告,請繼續往下閱讀-----

同年,另一則「5G 會抑制人體免疫系統」的不實訊息在網路上廣為流傳。這則訊息聲稱 5G 技術會影響人體免疫力、導致更容易感染疾病。儘管科學家多次出面澄清這完全是毫無根據的說法,但仍有許多人選擇相信並持續轉發。類似的例子還有 2018 年 2 月底 3 月初,因量販業者不當行銷與造謠漲價,加上媒體跟進報導,而導致民眾瘋狂搶購衛生紙的「安屎之亂」。這些案例都說明了假訊息對社會秩序的巨大衝擊。

提升媒體識讀能力,對抗錯假訊息

面對如此猖獗的假訊息,我們首要之務就是提升媒體識讀能力。每當接觸到訊息時,都應先評估發布該消息的媒體背景,包括其成立時間、背後所有者以及過往的報導記錄。知名度高、歷史悠久的主流媒體通常較為可靠,但仍然不能完全放下戒心。如果某則消息只出現在不知名的網站或社群媒體帳號上,而主流媒體卻未有相關報導,就更要多加留意了。

提升媒體識讀能力,檢視媒體背景,警惕來源不明的訊息。圖/envato

在實際的資訊查證過程中,我們還需要特別關注作者的身分背景。一篇可信的報導通常會具名,而且作者往往是該領域的資深記者或專家。我們可以搜索作者的其他作品,了解他們的專業背景和過往信譽。相對地,匿名或難以查證作者背景的文章,就需要更謹慎對待。同時,也要追溯消息的原始來源,確認報導是否明確指出消息從何而來,是一手資料還是二手轉述。留意發布日期也很重要,以免落入被重新包裝的舊聞陷阱。

這優惠好得太誇張?談網路詐騙與個資安全

除了假訊息的威脅,網路詐騙同樣令人憂心。從最基本的網路釣魚到複雜的身分盜用,詐騙手法不斷推陳出新。就拿網路釣魚來說,犯罪者通常會偽裝成合法機構的人員,透過電子郵件、電話或簡訊聯繫目標,企圖誘使當事人提供個人身分、銀行和信用卡詳細資料以及密碼等敏感資訊。這些資訊一旦落入歹徒手中,很可能被用來進行身分盜用和造成經濟損失。

-----廣告,請繼續往下閱讀-----
網路詐騙手法不斷進化,釣魚詐騙便常以偽裝合法機構誘取敏感資訊。圖/envato

資安業者趨勢科技的調查就發現,中國駭客組織「Earth Lusca」在 2023 年 12 月至隔年 1 月期間,利用談論兩岸地緣政治議題的文件,發起了一連串的網路釣魚攻擊。這些看似專業的政治分析文件,實際上是在臺灣總統大選投票日的兩天前才建立的誘餌,目的就是為了竊取資訊,企圖影響國家的政治情勢。

網路詐騙還有一些更常見的特徵。首先是那些好到令人難以置信的優惠,像是「中獎得到 iPhone 或其他奢侈品」的訊息。其次是製造緊迫感,這是詐騙集團最常用的策略之一,他們會要求受害者必須在極短時間內作出回應。此外,不尋常的寄件者與可疑的附件也都是警訊,一不小心可能就會點到含有勒索軟體或其他惡意程式的連結。

在個人隱私保護方面,社群媒體的普及更是帶來了新的挑戰。2020 年,一個發生在澳洲的案例就很具有警示意義。當時的澳洲前總理艾伯特在 Instagram 上分享了自己的登機證照片,結果一位網路安全服務公司主管僅憑這張圖片,就成功取得了艾伯特的電話與護照號碼等個人資料。雖然這位駭客最終選擇善意提醒而非惡意使用這些資訊,但這個事件仍然引發了對於在社群媒體上分享個人資訊安全性的廣泛討論。

安全防護一把罩!更新裝置、慎用 Wi-Fi、強化密碼管理

為了確保網路使用的安全,我們必須建立完整的防護網。首先是確保裝置和軟體都及時更新到最新版本,包括作業系統、瀏覽器、外掛程式和各類應用程式等。許多網路攻擊都是利用系統或軟體的既有弱點入侵,而這些更新往往包含了對已知安全漏洞的修補。

-----廣告,請繼續往下閱讀-----

在使用公共 Wi-Fi 時也要特別當心。許多公共 Wi-Fi 缺乏適當的加密和身分驗證機制,讓不法分子有機可乘,能夠輕易地攔截使用者的網路流量,竊取帳號密碼、信用卡資訊等敏感數據。因此,在咖啡廳、機場、車站等公共場所,都應該避免使用不明的免費 Wi-Fi 處理重要事務或進行線上購物。如果必須連上公用 Wi-Fi,也要記得停用裝置的檔案共享功能。

使用公共 Wi-Fi 時,避免處理敏感事務,因可能存在數據被攔截與盜取的風險。圖/envato

密碼管理同樣至關重要。我們應該為不同的帳戶設置獨特且具有高強度的密碼,結合大小寫字母、數字和符號,創造出難以被猜測的組合。密碼長度通常建議在 8~12 個字元之間,且要避免使用個人資訊相關的詞彙,如姓名、生日或電話號碼。定期更換密碼也是必要的,建議每 3~6 個月更換一次。研究顯示,在網路犯罪的受害者中,高達八成的案例都與密碼強度不足有關。

最後,我們還要特別注意社群媒體上的隱私設定。許多人在初次設定後就不再關心,但實際上我們都必須定期檢查並調整這些設定,確保自己清楚瞭解「誰可以查看你的貼文」。同時,也要謹慎管理好友名單,適時移除一些不再聯繫或根本不認識的人。在安裝新的應用程式時,也要仔細審視其要求的權限,只給予必要的存取權限。

提升網路安全基於習慣培養。辨識假訊息的特徵、防範詐騙的警覺心、保護個人隱私的方法⋯⋯每一個環節都不容忽視。唯有這樣,我們才能在享受網路帶來便利的同時,也確保自身的安全!

-----廣告,請繼續往下閱讀-----
文章難易度

討論功能關閉中。

鳥苷三磷酸 (PanSci Promo)_96
222 篇文章 ・ 313 位粉絲
充滿能量的泛科學品牌合作帳號!相關行銷合作請洽:contact@pansci.asia

0

1
0

文字

分享

0
1
0
數智驅動未來:從信任到執行,AI 為企業創新賦能
鳥苷三磷酸 (PanSci Promo)_96
・2025/01/13 ・4938字 ・閱讀時間約 10 分鐘

-----廣告,請繼續往下閱讀-----

本文由 鼎新數智 與 泛科學 共同規劃與製作

你有沒有想過,當 AI 根據病歷與 X 光片就能幫你診斷病症,或者決定是否批准貸款,甚至從無人機發射飛彈時,它的每一步「決策」是怎麼來的?如果我們不能知道 AI 的每一個想法步驟,對於那些 AI 輔助的診斷和判斷,要我們如何放心呢?

馬斯克與 OpenAI 的奧特曼鬧翻後,創立了新 AI 公司 xAI,並推出名為 Grok 的產品。他宣稱目標是以開源和可解釋性 AI 挑戰其他模型,而 xAI 另一個意思是 Explainable AI 也就是「可解釋性 AI」。

如今,AI 已滲透生活各處,而我們對待它的方式卻像求神問卜,缺乏科學精神。如何讓 AI 具備可解釋性,成為當前關鍵問題?

-----廣告,請繼續往下閱讀-----
AI 已滲透生活各處,而我們對待它的方式卻像求神問卜,缺乏科學精神。如何讓 AI 具備可解釋性,成為當前關鍵問題?圖/pexels

黑盒子模型背後的隱藏秘密

無法解釋的 AI 究竟會帶來多少問題?試想,現在許多銀行和貸款機構已經使用 AI 評估借貸申請者的信用風險,但這些模型往往如同黑箱操作。有人貸款被拒,卻完全不知原因,感覺就像被分手卻不告訴理由。更嚴重的是,AI 可能擅自根據你的住所位置或社會經濟背景給出負面評價,這些與信用風險真的相關嗎?這種不透明性只會讓弱勢群體更難融入金融體系,加劇貧富差距。這種不透明性,會讓原本就已經很難融入金融體系的弱勢群體,更加難以取得貸款,讓貧富差距越來越大,雪上加霜。

AI 不僅影響貸款,還可能影響司法公正性。美國部分法院自 2016 年起使用「替代性制裁犯罪矯正管理剖析軟體」 COMPAS 這款 AI 工具來協助量刑,試圖預測嫌犯再犯風險。然而,這些工具被發現對有色人種特別不友好,往往給出偏高的再犯風險評估,導致更重的刑罰和更嚴苛的保釋條件。更令人擔憂的是,這些決策缺乏透明度,AI 做出的決策根本沒法解釋,這讓嫌犯和律師無法查明問題根源,結果司法公正性就這麼被悄悄削弱了。

此外,AI 在醫療、社交媒體、自駕車等領域的應用,也充滿類似挑戰。例如,AI 協助診斷疾病,但若原因報告無法被解釋,醫生和患者又怎能放心?同樣地,社群媒體或是 YouTube 已經大量使用 AI 自動審查,以及智慧家居或工廠中的黑盒子問題,都像是一場越來越複雜的魔術秀——我們只看到結果,卻無法理解過程。這樣的情況下,對 AI 的信任感就成為了一個巨大的挑戰。

為什麼人類設計的 AI 工具,自己卻無法理解?

原因有二。首先,深度學習模型結構複雜,擁有數百萬參數,人類要追蹤每個輸入特徵如何影響最終決策結果,難度極高。例如,ChatGPT 中的 Transformer 模型,利用注意力機制(Attention Mechanism)根據不同詞之間的重要性進行特徵加權計算,因為機制本身涉及大量的矩陣運算和加權計算,這些數學操作使得整個模型更加抽象、不好理解。

-----廣告,請繼續往下閱讀-----

其次,深度學習模型會會從資料中學習某些「特徵」,你可以當作 AI 是用畫重點的方式在學習,人類劃重點目的是幫助我們加速理解。AI 的特徵雖然也能幫助 AI 學習,但這些特徵往往對人類來說過於抽象。例如在影像辨識中,人類習慣用眼睛、嘴巴的相對位置,或是手指數量等特徵來解讀一張圖。深度學習模型卻可能會學習到一些抽象的形狀或紋理特徵,而這些特徵難以用人類語言描述。

深度學習模型通常採用分佈式表示(Distributed Representation)來編碼特徵,意思是將一個特徵表示為一個高維向量,每個維度代表特徵的不同方面。假設你有一個特徵是「顏色」,在傳統的方式下,你可能用一個簡單的詞來表示這個特徵,例如「紅色」或「藍色」。但是在深度學習中,這個「顏色」特徵可能被表示為一個包含許多數字的高維向量,向量中的每個數字表示顏色的不同屬性,比如亮度、色調等多個數值。對 AI 而言,這是理解世界的方式,但對人類來說,卻如同墨跡測驗般難以解讀。

假設你有一個特徵是「顏色」,在傳統的方式下,你可能用一個簡單的詞來表示這個特徵,例如「紅色」或「藍色」。但是在深度學習中,這個「顏色」特徵可能被表示為一個包含許多數字的高維向量,向量中的每個數字表示顏色的不同屬性,比如亮度、色調等多個數值。圖/unsplash

試想,AI 協助診斷疾病時,若理由是基於醫生都無法理解的邏輯,患者即使獲得正確診斷,也會感到不安。畢竟,人們更相信能被理解的東西。

打開黑盒子:可解釋 AI 如何運作?我們要如何教育 AI?

首先,可以利用熱圖(heatmap)或注意力圖這類可視化技術,讓 AI 的「思維」有跡可循。這就像行銷中分析消費者的視線停留在哪裡,來推測他們的興趣一樣。在卷積神經網絡和 Diffusion Models 中 ,當 AI 判斷這張照片裡是「貓」還是「狗」時,我需要它向我們展示在哪些地方「盯得最緊」,像是耳朵的形狀還是毛色的分布。

-----廣告,請繼續往下閱讀-----

其次是局部解釋,LIME 和 SHAP 是兩個用來發展可解釋 AI 的局部解釋技術。

SHAP 的概念來自博弈,它將每個特徵看作「玩家」,而模型的預測結果則像「收益」。SHAP 會計算每個玩家對「收益」的貢獻,讓我們可以了解各個特徵如何影響最終結果。並且,SHAP 不僅能透過「局部解釋」了解單一個結果是怎麼來的,還能透過「全局解釋」理解模型整體的運作中,哪些特徵最重要。

以實際的情景來說,SHAP 可以讓 AI 診斷出你有某種疾病風險時,指出年齡、體重等各個特徵的影響。

LIME 的運作方式則有些不同,會針對單一個案建立一個簡單的模型,來近似原始複雜模型的行為,目的是為了快速了解「局部」範圍內的操作。比如當 AI 拒絕你的貸款申請時,LIME 可以解釋是「收入不穩定」還是「信用紀錄有問題」導致拒絕。這種解釋在 Transformer 和 NLP 應用中廣泛使用,一大優勢是靈活且計算速度快,適合臨時分析不同情境下的 AI 判斷。比方說在醫療場景,LIME 可以幫助醫生理解 AI 為何推薦某種治療方案,並說明幾個主要原因,這樣醫生不僅能更快做出決策,也能增加患者的信任感。

-----廣告,請繼續往下閱讀-----

第三是反事實解釋:如果改變一點點,會怎麼樣?

如果 AI 告訴你:「這家銀行不會貸款給你」,這時你可能會想知道:是收入不夠,還是年齡因素?這時你就可以問 AI:「如果我年輕五歲,或者多一份工作,結果會怎樣?」反事實解釋會模擬這些變化對結果的影響,讓我們可以了解模型究竟是如何「權衡利弊」。

最後則是模型內部特徵的重要性排序。這種方法能顯示哪些輸入特徵對最終結果影響最大,就像揭示一道菜中,哪些調味料是味道的關鍵。例如在金融風險預測中,模型可能指出「收入」影響了 40%,「消費習慣」占了 30%,「年齡」占了 20%。不過如果要應用在像是 Transformer 模型等複雜結構時,還需要搭配前面提到的 SHAP 或 LIME 以及可視化技術,才能達到更完整的解釋效果。

講到這裡,你可能會問:我們距離能完全信任 AI 還有多遠?又或者,我們真的應該完全相信它嗎?

-----廣告,請繼續往下閱讀-----

我們終究是想解決人與 AI 的信任問題

當未來你和 AI 同事深度共事,你自然希望它的決策與行動能讓你認可,幫你省心省力。因此,AI 既要「可解釋」,也要「能代理」。

當未來你和 AI 同事深度共事,你自然希望它的決策與行動能讓你認可,幫你省心省力。圖/unsplash

舉例來說,當一家公司要做一個看似「簡單」的決策時,背後的過程其實可能極為複雜。例如,快時尚品牌決定是否推出新一季服裝,不僅需要考慮過去的銷售數據,還得追蹤熱門設計趨勢、天氣預測,甚至觀察社群媒體上的流行話題。像是暖冬來臨,厚外套可能賣不動;或消費者是否因某位明星愛上一種顏色,這些細節都可能影響決策。

這些數據來自不同部門和來源,龐大的資料量與錯綜關聯使企業判斷變得困難。於是,企業常希望有個像經營大師的 AI 代理人,能吸收數據、快速分析,並在做決定時不僅給出答案,還能告訴你「為什麼要這麼做」。

傳統 AI 像個黑盒子,而可解釋 AI (XAI)則清楚解釋其判斷依據。例如,為什麼不建議推出厚外套?可能理由是:「根據天氣預測,今年暖冬概率 80%,過去三年數據顯示暖冬時厚外套銷量下降 20%。」這種透明解釋讓企業更信任 AI 的決策。

-----廣告,請繼續往下閱讀-----

但會解釋還不夠,AI 還需能真正執行。這時,就需要另一位「 AI 代理人」上場。想像這位 AI 代理人是一位「智慧產品經理」,大腦裝滿公司規則、條件與行動邏輯。當客戶要求變更產品設計時,這位產品經理不會手忙腳亂,而是按以下步驟行動:

  1. 檢查倉庫物料:庫存夠不夠?有沒有替代料可用?
  2. 評估交期影響:如果需要新物料,供應商多快能送到?
  3. 計算成本變化:用新料會不會超出成本預算?
  4. 做出最優判斷,並自動生成變更單、工單和採購單,通知各部門配合執行。

這位 AI 代理人不僅能自動處理每個環節,還會記錄每次決策結果,學習如何變得更高效。隨時間推移,這位「智慧產品經理」的判斷將更聰明、決策速度更快,幾乎不需人工干預。更重要的是,這些判斷是基於「以終為始」的原則,為企業成長目標(如 Q4 業績增長 10%)進行連續且動態地自我回饋,而非傳統系統僅月度檢核。

這兩位 AI 代理人的合作,讓企業決策流程不僅透明,還能自動執行。這正是數智驅動的核心,不僅依靠數據驅動決策,還要能解釋每一個選擇,並自動行動。這個過程可簡化為 SUPA,即「感知(Sensing)→ 理解(Understanding)→ 規劃(Planning)→ 行動(Acting)」的閉環流程,隨著數據的變化不斷進化。

偉勝乾燥工業為例,他們面臨高度客製化與訂單頻繁變更的挑戰。導入鼎新 METIS 平台後,偉勝成功將數智驅動融入業務與產品開發,專案準時率因此提升至 80%。他們更將烤箱技術與搬運機器人結合,開發出新形態智慧化設備,成功打入半導體產業,帶動業績大幅成長,創造下一個企業的增長曲線。

-----廣告,請繼續往下閱讀-----

值得一提的是,數智驅動不僅帶動業務增長,還讓員工擺脫繁瑣工作,讓工作更輕鬆高效。

數智驅動的成功不僅依賴技術,還要與企業的商業策略緊密結合。為了讓數智驅動真正發揮作用,企業首先要確保它服務於具體的業務需求,而不是為了技術而技術。

這種轉型需要有策略、文化和具體應用場景的支撐,才能讓數智驅動真正成為企業持續增長的動力。

還在猶豫數智驅動的威力?免費上手企業 AI 助理!👉 企業 AI 體驗
現在使用專屬邀請碼《 KP05 》註冊就享知:https://lihi.cc/EDUk4
訂閱泛科學獨家知識頻道,深入科技趨勢與議題內容。

👉立即免費加入

-----廣告,請繼續往下閱讀-----
鳥苷三磷酸 (PanSci Promo)_96
222 篇文章 ・ 313 位粉絲
充滿能量的泛科學品牌合作帳號!相關行銷合作請洽:contact@pansci.asia