0

1
2

文字

分享

0
1
2

從理論、懷疑到相信——人類探尋黑洞的漫漫長路(上)

歐柏昇
・2019/04/19 ・4409字 ・閱讀時間約 9 分鐘 ・SR值 553 ・八年級

-----廣告,請繼續往下閱讀-----

2019 年 4 月 10 日,由中研院天文所等全球 13 個機構主導的事件視界望遠鏡(Event Horizon Telescope,簡稱 EHT),公布了人類史上第一張黑洞影像。

2019 年 4 月 10 日中研院的記者會,廖俊智院長與天文所王翔宇副所長接受媒體採訪。圖/作者提供

人類探尋科幻一般的黑洞,過程十分曲折,今天這張影像才顯得珍貴。為什麼黑洞如此耐人尋味?一張「甜甜圈」照片帶給我們什麼?愛因斯坦再度勝利了嗎?讓我們來一起思索這段相信與懷疑的路程吧!

牛頓力學中,其實有預測出「黑洞」

雖然「黑洞」這個詞在 1960 年代才出現,光線進入某個星體而無法逃脫的猜想,早在 18 世紀末就已提出。如果以為這樣的提議只是科幻想像,或者亂猜,那就錯了。

早在 1783 年,英國自然哲學家米歇爾(John Michell)的論文中,就提出一種「看不見的星球」。不久之後,法國數學家、天文學家拉普拉斯(Pierre-Simon Laplace)也提出類似的想法。他們的學說有憑有據,都是從牛頓力學推出。

-----廣告,請繼續往下閱讀-----

牛頓力學可以很簡單地產生一種黑洞,原理是這樣的:

每個人都知道,我們在地表往上跳躍,會掉回地面而不是飛到外太空。除非跳得夠快,快到像火箭一樣高速衝上天,否則我們無法「逃脫」地球重力。

設想「光」也是一顆顆粒子,光粒子若從某顆星球表面往上跳躍,假如星球質量非常大,重力強到光的速度也不足以逃脫,連光就只能墜回星球上,永遠不會傳遞到星球之外,我們也就看不到這顆星球了。

1783 年米歇爾的論文提出看不見的星球。圖/英國皇家學會《自然科學會報》

牛頓力學預測黑洞,其實還不差。利用萬有引力定律的逃逸速度,可以得到一個臨界半徑,在此之內的光子無法脫離。這個臨界半徑,竟然等同於「史瓦西半徑」。廣義相對論的黑洞有個「事件視界(event horizon)」,也就是光逃不出來的界線,而第一個相對論的黑洞解——史瓦西(Karl Schwarzschild)在 1916 年找到的解,事件視界的大小就稱為「史瓦西半徑」。這與米歇爾、拉普拉斯的「黑洞」,大小是完全一樣的。

以後見之明來看,米歇爾的構想有個關鍵的問題。現在我們知道,真空中的光速是永遠恆定的,不會因為星球重力而「降速」掉回去。事實上,「光速恆定」這件事情的發現,就是十九世紀末物理學危機的一大原因。愛因斯坦為了拯救「光速恆定」的前提,最終決定放棄牛頓的世界觀,創造出新理論。儘管科學史上不是因為黑洞而發覺牛頓力學出問題了,但是牛頓力學和愛因斯坦相對論分別預測的這兩種黑洞,其中關鍵的差別,同樣在於光速恆定的問題。

-----廣告,請繼續往下閱讀-----

雖然原理不同,但是對於遙遠的觀察者而言,兩種黑洞的特性「乍看之下」沒什麼不同,都是一顆光線出不來的星。只有當觀察者跑到黑洞表面附近,才有差別。牛頓力學的黑洞,光會往上拋再掉回來,所以表面附近有機會收到光。

我們暫不考慮抵達黑洞旁邊的情況。既然牛頓力學的黑洞,「乍看之下」與相對論的黑洞並無二致,那為什麼人們特別強調廣義相對論預測黑洞?甚至可設想,在史瓦西解出現之前,由於牛頓力學並不遵守光速恆定,愛因斯坦相對論卻得遵守光速恆定,反而牛頓才輕易地允許黑洞出現。如此,科學家不是該在牛頓被愛因斯坦推翻的同時,推翻掉黑洞的假說嗎?科學史的演變,遠比這樣的推理更為複雜。

黑洞的存在,曾經連愛因斯坦都不相信

人們容易設想,科學是個艱難但筆直的道路,不斷向前發現新事物、開拓新知。然而科學史上,人們經常迂迴地走回原處,從「見山是山」到「見山不是山」,才能來到「見山還是山」的境界。牛頓力學的黑洞,奠基在光是粒子的假說上,後來光的波動性證據不斷出現,人們暫時放棄了光粒子說,黑洞也就不成立了。二十世紀初物理學革命性的進展,量子力學重新承認光作為粒子,而廣義相對論則在另一條道路上,重新暗示著黑洞可能存在。

注意,這只是暗示著,承認黑洞存在是個更長遠迂迴的道路。愛因斯坦 1915 年提出的廣義相對論儘管隱藏著黑洞的解,且史瓦西在 1916 年就得到第一種解,卻不容易令人相信。史瓦西的黑洞性質相當詭異,所有物質、光線都會掉進一個奇異點(singularity)。

-----廣告,請繼續往下閱讀-----
史瓦西黑洞的構造。圖/修改自維基百科(原圖由Sandstorm de創作)

廣義相對論挑戰了牛頓的世界觀,把絕對的時間、空間推翻了。如果你看過《星際效應》這部電影,也許你記得主角來到黑洞旁邊時,時間過得緩慢,主角過了一小時,地球上竟然已經過了七年。這種現象會使得親人重新見面時,女兒變得比父親還老,威脅到人類原來的倫理觀念。

巨大的星球附近時間變慢,對於愛因斯坦是可以接受的,但是史瓦西解是個極端情況。一旦有個東西墜往史瓦西的黑洞,到達事件視界的時候,對於外界觀察者而言,會看到這個東西無限期凍結在那裡。你可以想像,發生的事件會永遠停滯在這個界線,而界線內的事件無法被外面看到,所以我們把這個地方稱作「事件視界」。這樣的情況是我們現實經驗不可能容許的。而黑洞的奇異點,似乎更令人難以接受。

史瓦西用愛因斯坦方程式解出黑洞,愛因斯坦卻不相信這種東西存在於現實中。1939 年,愛因斯坦發表一篇論文,提出粒子防止塌縮到臨界半徑的機制。現在看來,愛因斯坦忽略了一件顯而易見的事情──接近臨界半徑時,其他作用力根本無法與重力抗衡。

愛因斯坦為何犯下這個「錯誤」呢?長年研究黑洞的 2017 年諾貝爾獎得主基普·索恩(Kip Throne)說,如果我們問說愛因斯坦怎麼那麼笨,那是反映了我們並不了解「1920 到 1930 年代幾乎所有人的思維方式」。

-----廣告,請繼續往下閱讀-----

廣義相對論雖然「容許」史瓦西解存在,但是導致的結果違反人類生活經驗。怎麼可能時間慢到無限久?怎麼可能所有物質墜入一個點?如果這些事情成立,嚴重挑戰人們的世界觀,可能動搖許多哲學。

黑洞實在太顛覆想像?飽受質疑的恆星塌縮理論

恆星的研究為史瓦西解開啟了一條新路,不過仍然備受質疑。1931 年,當時還年輕的錢德拉塞卡(Subrahmanyan Chandrasekhar),根據量子力學的計算,發覺白矮星質量有個上限,超過此質量則無法支撐重力。沒想到,受到當時最大牌的天文學家愛丁頓(Arthur Eddington)極力攻擊。

超過「錢德拉塞卡極限」的星體就會塌縮成黑洞嗎?另一個可能出現了。1932 年查兌克發現中子,那幾年茲威基(Fritz Zwicky)等人也根據觀測提出了超新星的說法。於是茲威基就想,超新星爆炸之後,是否可能成為一顆由中子構成的星?他的見解是對的。1937 年,藍道(Lev Davidovich Landau)發表中子核心的理論,證明中子星可以撐得住重力而存在於宇宙中。

下一個問題來了,中子星這個機制是否阻止了宇宙中產生黑洞?1939 年,歐本海默(Julius Robert Oppenheimer)提出這個問題:中子星是否也如同白矮星,會有質量上限?經過計算發現,超過某個質量之後,中子星的形式也不再能支撐一顆星球!這稱為「歐本海默極限」。

-----廣告,請繼續往下閱讀-----
愛因斯坦與歐本海默。圖/維基百科

不久之後,歐本海默與他的學生史奈德(Hartland Snyder),運用簡化的模型找到廣義相對論的解,說明中子星超過質量上限之後,必定走向塌縮。這個說法,質疑聲音很多。許多人認為他們的模型太過理想化,也有人考量到廣義相對論沒有經過強重力的驗證,只有在太陽系內通過檢驗。過了二十多年後,這種窘境才改變。

背後的原因,除了廣義相對論本身研究的停滯之外,還是在於黑洞完全顛覆了現實經驗,超越時人對宇宙的直覺想像。維納·以斯列(Werner Israel)寫給索恩的信談到,十八世紀的黑星(黑洞)「並無威脅到我們鍾愛的物質永恆與穩定的信念。」相對地,「二十世紀的黑洞是這種信念的重大威脅。」

科學發展的過程,其實有很多非理性的因素影響。以斯列又將黑洞與大陸漂移學說比較,說明兩者的證據都在 1916 年出現,卻「由非理性的劃界阻擋,在半路上停止了半個世紀。」兩者都到了 1960 年代才復甦,以斯列認為不但是受益於戰後科技發展,也因為蘇聯衛星發射,挑戰了西方科學的地位,也似乎告訴人們,還有很多西方科學沒想過的事。

黑洞研究的黃金時期:1963-1975

廣義相對論的研究,經過幾十年的沈悶,到了 1950 年代中期才開始復甦。運用微分幾何的數學方法,廣義相對論的理論重新整頓。而且在 1959 年,重力紅移實驗的成功,使得廣義相對論更被人們信任。

-----廣告,請繼續往下閱讀-----

到了 1967 年,「黑洞」這個詞才由惠勒(John Wheeler)正式採用。惠勒原來也不相信黑洞,對於歐本海默的說法抱持懷疑,直到芬克爾斯坦(David Finkelstein)在數學上找到了一個新的坐標系來解釋奇點,並且惠勒成功用電腦模擬出黑洞之後,他才轉而相信。

黑洞在 1960 年代重出江湖,有一個重要的背景,是和實際天文觀測扯上了關係。索恩說,如果在 1962 年,誰說宇宙中有巨大的黑洞,一定會被天文學家嘲笑。不過,一切都要改觀了。

類星體 3C273 的無線電波影像,可見高速噴流構造。圖/MERLIN

1963 年,拜電波天文學的技術進步所賜,天文學家施密特(Maarten Schmit)找到了一種特異的天體,像是星星,卻會發出無線電波。更奇怪的是,光譜顯示它有很高的紅移,表示它離我們非常遠(3C273 離我們 20 億光年遠)。這種未知的天體,當時就姑且稱作「類星體」。

這麼遠的天體怎麼還看起來這麼亮?顯然有極其巨大的能量供給。天文學家發覺,他們首度需要用到廣義相對論,來解釋觀察到的現象。

-----廣告,請繼續往下閱讀-----

1963 年 12 月,在美國德州開了一場「相對論天文物理」會議,探討類星體的問題。紐西蘭數學家克爾(Roy Kerr)在會議上,報告了愛因斯坦方程式的一個解,當下聽眾並沒有特別注意。而當著名的相對論物理學家帕帕佩特鲁(Achilles Papapetrou)聽到他的成果,立刻站起來,興奮地說明,克爾成功了!這就是他找了三十年的答案!

克爾找到的是旋轉黑洞的解。史瓦西解是個理想化的情況,因為現實中的星體並非靜止,而是在旋轉的。反對黑洞的人常想,旋轉有可能阻止黑洞產生。如今,克爾成功證明,即使星球在旋轉,也不能避免黑洞產生。

電影《星際效應》的黑洞。圖/維基百科

旋轉黑洞有個有趣的特性,是會拖曳周圍時空。正因為如此,我們看到《星際效應》裡面電腦模擬的黑洞,光線會繞著黑洞轉。而一個要墜入旋轉黑洞的東西,對於外在觀察者而言,是永遠繞著事件視界打轉。

1969 年,潘羅斯(Roger Penrose)發現,旋轉黑洞的事件視界周圍,有一個區域儲存了旋轉能量,後來這稱為「動圈(ergosphere)」。掉進動圈的東西有機會逃出來,且如果成功逃出來,還可以帶走不少黑洞的旋轉能量。所以有人說,黑洞可以作為超高效率的發電機。

1970-73 年,在霍金、卡特(Brandon Carter)、羅賓森(David Robinson)的努力之下,終於證明:任何塌縮而形成黑洞的旋轉物體,最終靜止狀態都能用克爾解表示。或者說,若有穩定態的旋轉黑洞,那都是克爾解。如此一來,克爾解就是可以在現實宇宙中出現的黑洞形式。

1963-1975 年,經過一代理論家與觀測家的努力,不僅黑洞理論有長足的進展,且黑洞不再只是不切實際的理論推算,開始能夠與物理的世界發生聯繫。

-----廣告,請繼續往下閱讀-----
文章難易度
歐柏昇
13 篇文章 ・ 7 位粉絲
台大物理與歷史系雙主修畢業,台大物理碩士。現為台大物理系、中研院天文所博士生,全國大學天文社聯盟理事長。盼望從天文與人文之間追尋更清澈的世界觀,在浩瀚宇宙中思考文明,讓科學走向人群。

0

1
0

文字

分享

0
1
0
停工即停薪:如何證明你的時間值多少?車禍背後的認知 x 情緒 x 金錢 x 法律大混戰
鳥苷三磷酸 (PanSci Promo)_96
・2026/01/09 ・3351字 ・閱讀時間約 6 分鐘

-----廣告,請繼續往下閱讀-----

本文與 PAMO車禍線上律師 合作,泛科學企劃執行

走在台灣的街頭,你是否發現馬路變得越來越「急躁」?滿街穿梭的外送員、分秒必爭的多元計程車,為了拚單量與獎金,每個人都在跟時間賽跑 。與此同時,拜經濟發展所賜,路上的豪車也變多了 。

這場關於速度與金錢的博弈,讓車禍不再只是一場意外,更是一場複雜的經濟算計。PAMO 車禍線上律師施尚宏律師在接受《思想實驗室 video podcast》訪談時指出,我們正處於一個交通生態的轉折點,當「把車當生財工具」的職業駕駛,撞上了「將車視為珍貴資產」的豪車車主,傳統的理賠邏輯往往會失靈 。

在「停工即停薪」(有跑才有錢,沒跑就沒收入)的零工經濟時代,如果運氣不好遇上車禍,我們該如何證明自己的時間價值?又該如何在保險無法覆蓋的灰色地帶中全身而退?

-----廣告,請繼續往下閱讀-----
如果運氣不好遇上車禍,我們該如何證明自己的時間價值?/ 圖片來源: Nano Banana

薪資證明的難題:零工經濟者的「隱形損失」

過去處理車禍理賠,邏輯相對單純:拿出公司的薪資單或扣繳憑單,計算這幾個月的平均薪資,就能算出因傷停工的「薪資損失」。

但在零工經濟時代,這套邏輯卡關了!施尚宏律師指出,許多外送員、自由接案者或是工地打工者,他們的收入往往是領現金,或者分散在多個不同的 App 平台中 。更麻煩的是,零工經濟的特性是「高度變動」,上個月可能拚了 7 萬,這個月休息可能只有 0 元,導致「平均收入」難以定義 。

這時候,律師的角色就不只是法條的背誦者,更像是一名「翻譯」。

施律師解釋「PAMO車禍線上律師的工作是把外送員口中零散的『跑單損失』,轉譯成法官或保險公司聽得懂的法律語言。」 這包括將不同平台(如 Uber、台灣大車隊)的流水帳整合,或是找出過往的接單紀錄來證明當事人的「勞動能力」。即使當下沒有收入(例如學生開學期間),只要能證明過往的接單能力與紀錄,在談判桌上就有籌碼要求合理的「勞動力減損賠償 」。

-----廣告,請繼續往下閱讀-----
PAMO車禍線上律師的工作是把外送員口中零散的『跑單損失』,轉譯成法官或保險公司聽得懂的法律語言 / 圖片來源: Nano Banana

300 萬張罰單背後的僥倖:你的直覺,正在害死你

根據警政署統計,台灣交通違規的第一名常年是「違規停車」,一年可以開出約 300 萬張罰單 。這龐大的數字背後,藏著兩個台灣駕駛人最容易誤判的「直覺陷阱」。

陷阱 A:我在紅線違停,人還在車上,沒撞到也要負責? 許多人認為:「我人就在車上,車子也沒動,甚至是熄火狀態。結果一台機車為了閃避我,自己操作不當摔倒了,這關我什麼事?」

施律師警告,這是一個致命的陷阱。「人在車上」或「車子沒動」在法律上並不是免死金牌 。法律看重的是「因果關係」。只要你的違停行為阻礙了視線或壓縮了車道,導致後方車輛必須閃避而發生事故,你就可能必須背負民事賠償責任,甚至揹上「過失傷害」的刑責 。 

數據會說話: 台灣每年約有 700 件車禍是直接因違規停車導致的 。這 300 萬張罰單背後的僥倖心態,其巨大的代價可能是人命。

-----廣告,請繼續往下閱讀-----

陷阱 B:變換車道沒擦撞,對方自己嚇到摔車也算我的? 另一個常年霸榜的肇事原因是「變換車道不當」 。如果你切換車道時,後方騎士因為嚇到而摔車,但你感覺車身「沒震動、沒碰撞」,能不能直接開走?

答案是:絕對不行。

施律師強調,車禍不以「碰撞」為前提 。只要你的駕駛行為與對方的事故有因果關係,你若直接離開現場,在法律上就構成了「肇事逃逸」。這是一條公訴罪,後果遠比你想像的嚴重。正確的做法永遠是:停下來報警,釐清責任,並保留行車記錄器自保 。

正確的做法永遠是:停下來報警,釐清責任,並保留行車記錄器自保 。/ 圖片來源: Nano Banana

保險不夠賠?豪車時代的「超額算計」

另一個現代駕駛的惡夢,是撞到豪車。這不僅是因為修車費貴,更因為衍生出的「代步費用」驚人。

-----廣告,請繼續往下閱讀-----

施律師舉例,過去撞到車,只要把車修好就沒事。但現在如果撞到一台 BMW 320,車主可能會主張修車的 8 天期間,他需要租一台同等級的 BMW 320 來代步 。以一天租金 4000 元計算,光是代步費就多了 3 萬多塊 。這時候,一般人會發現「全險」竟然不夠用。為什麼?

因為保險公司承擔的是「合理的賠償責任」,他們有內部的數據庫,只願意賠償一般行情的修車費或代步費 。但對方車主可能不這麼想,為了拿到這筆額外的錢,對方可能會採取「以刑逼民」的策略:提告過失傷害,利用刑事訴訟的壓力(背上前科的恐懼),迫使你自掏腰包補足保險公司不願賠償的差額 。

這就是為什麼在全險之外,駕駛人仍需要懂得談判策略,或考慮尋求律師協助,在保險公司與對方的漫天喊價之間,找到一個停損點 。

談判桌的最佳姿態:「溫柔而堅定」最有效?

除了有單據的財損,車禍中最難談判的往往是「精神慰撫金」。施律師直言,這在法律上沒有公式,甚至有點像「開獎」,高度依賴法官的自由心證 。

-----廣告,請繼續往下閱讀-----

雖然保險公司內部有一套簡單的算法(例如醫療費用的 2 到 5 倍),但到了法院,法官會考量雙方的社會地位、傷勢嚴重程度 。在缺乏標準公式的情況下,正確的「態度」能幫您起到加分效果。

施律師建議,在談判桌上最好的姿態是「溫柔而堅定」。有些人會試圖「扮窮」或「裝兇」,這通常會有反效果。特別是面對看過無數案件的保險理賠員,裝兇只會讓對方心裡想著:「進了法院我保證你一毛都拿不到,準備看你笑話」。

相反地,如果你能客氣地溝通,但手中握有完整的接單紀錄、醫療單據,清楚知道自己的底線與權益,這種「堅定」反而能讓談判對手買單,甚至在證明不足的情況下(如外送員的開學期間收入),更願意採信你的主張 。

車禍不只是一場意外,它是認知、情緒、金錢與法律邏輯的總和 。

在這個交通環境日益複雜的時代,無論你是為了生計奔波的職業駕駛,還是天天上路的通勤族,光靠保險或許已經不夠。大部分的車禍其實都是小案子,可能只是賠償 2000 元的輕微擦撞,或是責任不明的糾紛。為了這點錢,要花幾萬塊請律師打官司絕對「不划算」。但當事人往往會因為資訊落差,恐懼於「會不會被告肇逃?」、「會不會留案底?」、「賠償多少才合理?」而整夜睡不著覺 。

-----廣告,請繼續往下閱讀-----

PAMO看準了這個「焦慮商機」, 推出了一種顛覆傳統的解決方案——「年費 1200 元的訂閱制法律服務 」。

這就像是「法律界的 Netflix」或「汽車強制險」的概念。PAMO 的核心邏輯不是「代打」,而是「賦能」。不同於傳統律師收費高昂,PAMO 提倡的是「大腦武裝」,當車禍發生時,線上律師團提供策略,教你怎麼做筆錄、怎麼蒐證、怎麼判斷對方開價合不合理等。

施律師表示,他們的目標是讓客戶在面對不確定的風險時,背後有個軍師,能安心地睡個好覺 。平時保留好收入證明、發生事故時懂得不亂說話、與各方談判時掌握對應策略 。

平時保留好收入證明、發生事故時懂得不亂說話、與各方談判時掌握對應策略 。 / 圖片來源: Nano Banana

從違停的陷阱到訂閱制的解方,我們正處於交通與法律的轉型期。未來,挑戰將更加嚴峻。

-----廣告,請繼續往下閱讀-----

當 AI 與自駕車(Level 4/5)真正上路,一旦發生事故,責任主體將從「駕駛人」轉向「車廠」或「演算法系統」 。屆時,誰該負責?怎麼舉證?

但在那天來臨之前,面對馬路上的豪車、零工騎士與法律陷阱,你選擇相信運氣,還是相信策略? 先「武裝好自己的大腦」,或許才是現代駕駛人最明智的保險。

PAMO車禍線上律師官網:https://pse.is/8juv6k 

-----廣告,請繼續往下閱讀-----
文章難易度

討論功能關閉中。

0

101
3

文字

分享

0
101
3
時間與空間的顛覆!如何用簡單的方式了解「相對論」?——《物理角色圖鑑》
azothbooks_96
・2024/09/16 ・2088字 ・閱讀時間約 4 分鐘

時間不再絕對?牛頓與愛因斯坦的時間觀差異

川村老師,請用簡單的方式告訴我「相對論」是什麼?

圖/《物理角色圖鑑》

老師:狹義相對論源自相對性原理(Principle of relativity,指物理定律〔Physical law〕適用於所有以等速直線運動的物體) 與光速恆定原理。根據這個理論,時間是相對的,依不同觀察者而有所差異。牛頓力學中的時間是絕對的,愛因斯坦則認為,可依不同的觀察者位置對時間進行不同定義。

圖/《物理角色圖鑑》

老師:之前在討論「力」時,也提過離心力。離心力是「慣性力」的一種,慣性力指物體在加速運動時感受到的與加速方向相反的力。置身在沒有窗戶的電梯中,當電梯向上加速,電梯內的人會受到向下的慣性力(譯注:因看不到外面,使得他無法判斷電梯的運動情況)。若加速度為 g,物體質量為 m,則物體所受慣性力為 mg,與在地面所受的重力 mg 相同。愛因斯坦無法區別這兩種 mg 的差異,所以視為等效。但無論慣性力的方向為何,物體都會往向量合成後的視重力場方向掉落。

時間在任何地方都固定不變嗎?

世界上最快的速度是光速。物體的移動速度若接近光速,它的時間進程就會變慢。也就是說,在接近光速的太空船上,時間會變得悠長。而且,接近光速的物體長度會朝行進方向收縮。

物體只要具有質量,即使在靜止狀態依然擁有能量(其能量 E mc2,稱為靜止能量(Rest energy)。

-----廣告,請繼續往下閱讀-----

提到光的運動,我們已經知道光的路徑會彎曲。

1919 年,天文學家觀測到恆星發出的光線在經過太陽附近時被偏折,這種現象稱為「重力透鏡效應」(Gravitational lens),有助於了解黑洞等宇宙中質量分布的情況。此外,天體物理學家也觀測到時間的延遲。簡而言之,接近地面的時鐘行進速度會比高處的時鐘慢,GPS 也是依據這種效應來進行校正。

圖/《物理角色圖鑑》
圖/《物理角色圖鑑》

時間

牛頓力學中的「時間」(也就是我們一般理解的時間)和相對論中的時間大異其趣。牛頓在《自然哲學的數學原理》(Philosophiæ Naturalis Principia Mathematica,1687)中,假設空間是均勻平坦的;從過去到未來,在任何地方都平均延伸。在牛頓力學中,全宇宙的時間一致。

但相對論否定了這一點。

-----廣告,請繼續往下閱讀-----
圖/《物理角色圖鑑》

光速恆定原理指出,光的速度是固定不變的。這種狀況下,空間中不同地點發生的兩件事,對某個觀測者來說是同時發生,但對另一參考系的觀測者而言則非同時發生。也就是說,時間的前進速度並非在任何地方都相同。因此,時間和空間不能視為各自獨立的兩回事,應該一體化,視為四維空間(時空,Spacetime)。

不過,這是指物體移動速度接近光速時的情況。日常生活中,使用過去的時間觀不會有任何問題。

黑洞

黑洞(Black hole)是一種天體,因為密度極高,重力極強, 不只物質,連光都會被吸進去,無法逃逸。天體是宇宙中所有物體的總稱,具體來說,指太陽、恆星、行星、星團、星雲等。從相對論來看,黑洞周圍空間是扭曲的。照以下方式想像應該會比較容易理解:

把重物放在一大塊展開的薄橡皮布上,放置處就會凹下去,而這塊凹陷會影響到周圍。同樣的,黑洞所在之處會發生猛烈的空間扭曲,經過附近的天體會被極強的重力吸引,落入其中,連光也難逃魔掌。

-----廣告,請繼續往下閱讀-----

銀河系有許多黑洞,但具體數字不詳。2019 年,一個跨國研究計畫團隊首次拍攝到黑洞的「影子」,掀起一陣討論熱潮。

——本文摘自《物理角色圖鑑:用35個萌角色掌握最重要的物理觀念,秒懂生活中的科普知識》,2024 年 9 月,漫遊者文化,未經同意請勿轉載。

-----廣告,請繼續往下閱讀-----

討論功能關閉中。

azothbooks_96
55 篇文章 ・ 21 位粉絲
漫遊也許有原因,卻沒有目的。 漫遊者的原因就是自由。文學、人文、藝術、商業、學習、生活雜學,以及問題解決的實用學,這些都是「漫遊者」的範疇,「漫遊者」希望在其中找到未來的閱讀形式,尋找新的面貌,為出版文化找尋新風景。

0

3
2

文字

分享

0
3
2
用「世界上最大的望遠鏡」觀測黑洞!臺灣也參與其中!
PanSci_96
・2024/07/15 ・3876字 ・閱讀時間約 8 分鐘

台北時間 1 月 18 號下午四點,中研院天文所公布了一張黑洞照!別小看這張照片,裡頭有玄機!不論是驗證愛因斯坦的廣義相對論,還是要研究 M87 黑洞有沒有什麼特性,都得從這張照片著手。

為什麼我們能拍到比之前更清楚的照片呢?這是因為,這次「事件視界望遠鏡」的團隊,加入了格陵蘭望遠鏡的觀測數據。它不僅是全球第一座位於北極圈內的重要天文觀測站,此外,這座觀測站,也和台灣脫不了關係喔!

就讓我們來看看,這張黑洞照到底是怎麼拍的?這幾張黑洞甜甜圈照,又藏有哪些重要資訊?

近年的黑洞觀測

大家應該都還記得 2019 年的黑洞熱潮,當年 4 月,人類第一張黑洞照——M87 的真面目,被公開了,我們終於取得了黑洞存在的最直接證據。3 年後的 2022 年 5 月,我們也終於看清楚那個在我們所在的星系中,在銀河系最深處的黑洞——人馬座 A*。這兩張像是甜甜圈的照片,掀起黑洞熱潮,也帶給我們不少感動,想必很多人都還記得。

-----廣告,請繼續往下閱讀-----
圖/ESO、EHT Collaboration

但是,這兩張模糊的甜甜圈,不管對於科學家還是我們,想必都還不滿足!我們想看到的,是能跟電影星際效應中一樣,帶給我們強烈震撼的完整黑洞樣貌。

很快就有好消息,在 M87 照片公開的三年後。2022 年 4 月,天文學家展示了另一組 M87 的照片,除了原本的黑洞以外,還能看到外圍三條噴流,與圍繞在黑洞旁邊的吸積流,更加完整的黑洞結構同時存在在一張照片上。

圖/Lu, RS., Asada, K., Krichbaum, T.P. et al. A ring-like accretion structure in M87 connecting its black hole and jet. Nature 616, 686–690 (2023). https://doi.org/10.1038/s41586-023-05843-w

有趣的是,在 2022 發表的觀測結果中,黑洞似乎胖了一圈,直徑比 2019 年發表的結果大了 50%。這可不是說黑洞在幾年間就變胖了 1.5 倍,不用擔心,宇宙不會因此毀滅。這主要是選用觀察的電磁波波段不一樣,2019 年觀察的電磁波波長是 1.3 毫米,2022 年的波長則是 3.5 毫米。但其實,1.3 毫米比 3.5 毫米的電磁波穿透力更好。也就是 2019 年的影像更接近黑洞的實際長相。

對了,2022 年的黑洞照並不是事件視界望遠鏡發的。你知道「事件視界望遠鏡」並不是唯一在進行黑洞觀測的計劃嗎?

-----廣告,請繼續往下閱讀-----

為了觀測黑洞,全球的電波望遠鏡進行同步串聯,打算打造一個等效直徑幾乎等於地球直徑的超大望遠鏡。因為我們無法直接打造一面面積跟地球一樣大的望遠鏡,因此我們得將分布在各地的望遠鏡同步串聯,由數據分析來拼湊出整體樣貌。你可能不知道,全球的大型黑洞觀測國際合作計畫其實有兩個,一個就是大家比較常聽到的「事件視界望遠鏡 」,簡稱 EHT,主要以 1.3 毫米的波段進行觀測,也就是大家熟悉的甜甜圈照。而另一個大計畫是「全球毫米波特長基線陣列」,簡稱 GMVA,以 3.5 毫米為主要觀測波段。2018 年 GMVA 還加入了新成員,讓我們能看到最新的這張照片。其中一個是超強力助手 ALMA,另一個,就是第一座位於北極圈內,由台灣中研院主導的格陵蘭望遠鏡 GLT。

為什麼黑洞會那麼難觀察?

現在大家都知道,我們已經能確實拍到黑洞了。即使黑洞的本體是全黑的,圍繞在黑洞周邊快速旋轉的物質,也會因為彼此摩擦與同步輻射,放出強烈的電磁波,被我們看到。

但即便它會發光,仍然是個難以觀測的天體,直到近年,我們才補捉到它樣貌。這是因為,比起亮度,更難的地方在於尺寸,黑洞好小,更準確來說,是看起來好小。M97 和人馬座 A* 實際上都比太陽大上不少,但因為距離我們十分遙遠,從地球上來看,人馬座 A* 與 M87 黑洞的陰影尺寸,分別是 50 微角秒和 64 微角。從我們的視角來看,就跟月球上的一顆甜甜圈一樣大。

但即便很困難,看到黑洞對我們來說十分重要,我們需要有確切的證據來證明我們對於黑洞的預測並沒有錯。例如在 2022 年有照片證明「銀河系中間真的有黑洞!」之前,2020 的諾貝爾物理獎頒獎時,仍以「大質量緻密天體」來稱呼銀河系中央的「那個東西」。現在,從黑洞噴流、吸積盤、自轉軸、到光子球層,我們還有好多黑洞特性,需要更高解析度的照片來幫我們驗證,驗證廣義相對論的預測是否正確,而我們對於黑洞與宇宙的認識是否需要調整。

-----廣告,請繼續往下閱讀-----

好的,我們知道為了追星,嗯,是追黑洞,科學家無不卯足全力提升望遠鏡的解析度。但是為何格陵蘭望遠鏡的加入,就能提升照片解析度呢?

組成世界上最大的望遠鏡?

越大的望遠鏡看得越清楚,為了將全世界的電波望遠鏡串聯,打造等效口徑幾乎等於地球的超大望遠鏡。這些望遠鏡使用了特長基線干涉測量法,這些望遠鏡則稱為電波干涉儀。

這些電波干涉儀通常由一系列的天線組成,例如位於智利的阿塔卡瑪大型毫米及次毫米波陣列 ALMA,就是由 66 座天線組成,最遠的兩座天線距離長達 16 公里。在觀測同一個訊號時,透過比較每座望遠鏡收到訊號的相位差,就能計算出訊號的方位角,進一步推算出原始訊號的樣貌。而當這些天線數量越多、距離越遠,就等於是一座更高解析度、口徑更大的望遠鏡。例如 ALMA 的影像解析度高達 4 毫角秒,能力比知名的哈伯太空望遠鏡還要好上 10 倍。另一座位於夏威夷的次毫米波陣列望遠鏡 SMA,則是由 8 座天線組成,雖然單座天線的直徑只有 6 公尺,卻足以以模擬出一座直徑 508 公尺的大型望遠鏡。

利用相同技術,只要透過原子鐘將全球的望遠鏡同步,就能模擬出直徑幾乎等於地球直徑的超巨大望遠鏡,也就是「事件視界望遠鏡 」或是「全球毫米波特長基線陣列」。

-----廣告,請繼續往下閱讀-----

沒錯,格陵蘭望遠鏡 GLT 也扮演重要角色。但為什麼要把望遠鏡建在北極圈內?

畢竟這可不簡單,為了讓望遠鏡能在最低零下 70 度 C 的嚴苛環境中工作,還期望它能發揮超越過去的實力,科學家改造了不少設備,甚至還要加裝除霜裝置。

但這一些都是值得的,因為光是 ALMA、SMA、GLT 三座望遠鏡,就可以在地球上構成一個大三角型,等於一台巨大的電波干涉儀。

圖/First M87 Event Horizon Telescope Results. II. Array and Instrumentation – Scientific Figure on ResearchGate. Available from: https://www.researchgate.net/figure/Map-of-the-EHT-Stations-active-in-2017-and-2018-are-shown-with-connecting-lines-and_fig1_333104103 [accessed 15 Jul, 2024]

而對於事件視界望遠鏡來說也十分重要,因為在地球的南邊已經有南極望遠鏡了,東西向則有許多來自中低緯度的望遠鏡。剩下的關鍵位置,當然就是北極的格陵蘭望遠鏡了。而特長基線干涉技術要在不同頻段發揮作用,每個望遠鏡的相對位置也十分重要。格陵蘭的地理位置與良好的大氣環境,讓格陵蘭望遠鏡可以觀測 230GHz 這個特殊波段的訊號,並且補足黑洞的諸多細節。根據官方消息,未來還要真的登高望遠,更上一層樓地把整座格陵蘭望遠鏡搬上格陵蘭島山頂的峰頂站台基地 (Summit Camp ),觀測 690GHz 的特殊訊號,期待能看到黑洞的光子球層,驗證廣義相對論的預測。

-----廣告,請繼續往下閱讀-----

順帶一提,這邊提到的 SMA、ALMA 和格陵蘭望遠鏡,不僅合作關係密切,這些重要計畫台灣還都參與其中!

SMA 是 2003 年啟用,全世界第一座可觀測次毫米波的望遠鏡陣列,也是史密松天體物理台與台灣中研院天文所合作興建與運作的望遠鏡,每年也有許多台灣參與或主導的研究發表。

2013 年啟用,位於智利的 ALMA,則是由東亞、歐洲、北美共同合作的國際計畫,台灣當然也參與其中。擁有66座望遠鏡的 ALMA,也是地面上最大的天文望遠鏡計畫。而有趣的是,由中研院主導的格陵蘭望遠鏡所使用的天線,就是使用 ALMA 的原型機改造而成的!

最後,這次最新的黑洞照就是這張,在 2018 年 4 月拍攝,歷經將近 6 年分析,才正式公布的照片。它與 2017 拍攝,2019 年公開的第一張黑洞照一樣,主角都是 M87。

-----廣告,請繼續往下閱讀-----

你說兩張照片看起來都一樣?嗯,沒錯,雖然還是看得出差異,但兩張照片大致上看起來的確差不多。

這兩張照片所得出的光環半徑相同,代表在相隔一年的拍攝期間,黑洞半徑並沒有產生變化。因為 M87 並不會快速增加質量,所以這個觀測結果非常符合廣義相對論對於光環直徑的預測。並且這張照片也讓我們更加確定,2017 年拍攝到的甜甜圈結構,並不是黑洞的偶然樣貌。

有相同的地方,也有不一樣的地方。這兩張照片光環上最亮的位置逆時針偏轉了 30 度,光是這點,就將開啟下一波的黑洞研究熱潮。透過比較不同時間拍攝的照片,科學家將可以深入研究黑洞的自轉軸角度,以及自轉軸隨著時間偏轉的「進動」現象,並更進一步分析黑洞周圍的磁場與電漿理論。

因為 GLT 的加入,有效提升了 EHT 的影像保真度,科學家能取得更加真實的黑洞照,為未來的黑洞研究打下基礎,例如挑戰很難被拍到的光子環。

-----廣告,請繼續往下閱讀-----

特別感謝中研院天文所研究員,同時也是格陵蘭望遠鏡計畫執行負責人的陳明堂老師協助製作。我們還有一場與陳明堂老師的直播對談,直接來和大家聊聊這次的黑洞結果以及回答各式各樣的黑洞問題。一起繼續來體驗黑洞的魅力吧!

也想問問大家,現在有了一批新資料,你最期待下一次的黑洞成果發表,帶來什麼消息呢?

  1. 我們成功觀察到了霍金輻射!
  2. 黑洞的模擬結果發現超越廣義相對論的新理論!
  3. 黑洞中其實有其他文明,而且我們已經成功接觸了!

歡迎訂閱 Pansci Youtube 頻道 獲取更多深入淺出的科學知識!

-----廣告,請繼續往下閱讀-----

討論功能關閉中。