0

0
0

文字

分享

0
0
0

從理論、懷疑到相信——人類探尋黑洞的漫漫長路(上)

歐柏昇
・2019/04/19 ・4409字 ・閱讀時間約 9 分鐘

2019 年 4 月 10 日,由中研院天文所等全球 13 個機構主導的事件視界望遠鏡(Event Horizon Telescope,簡稱 EHT),公布了人類史上第一張黑洞影像。

2019 年 4 月 10 日中研院的記者會,廖俊智院長與天文所王翔宇副所長接受媒體採訪。圖/作者提供

人類探尋科幻一般的黑洞,過程十分曲折,今天這張影像才顯得珍貴。為什麼黑洞如此耐人尋味?一張「甜甜圈」照片帶給我們什麼?愛因斯坦再度勝利了嗎?讓我們來一起思索這段相信與懷疑的路程吧!

牛頓力學中,其實有預測出「黑洞」

雖然「黑洞」這個詞在 1960 年代才出現,光線進入某個星體而無法逃脫的猜想,早在 18 世紀末就已提出。如果以為這樣的提議只是科幻想像,或者亂猜,那就錯了。

早在 1783 年,英國自然哲學家米歇爾(John Michell)的論文中,就提出一種「看不見的星球」。不久之後,法國數學家、天文學家拉普拉斯(Pierre-Simon Laplace)也提出類似的想法。他們的學說有憑有據,都是從牛頓力學推出。

牛頓力學可以很簡單地產生一種黑洞,原理是這樣的:

每個人都知道,我們在地表往上跳躍,會掉回地面而不是飛到外太空。除非跳得夠快,快到像火箭一樣高速衝上天,否則我們無法「逃脫」地球重力。

設想「光」也是一顆顆粒子,光粒子若從某顆星球表面往上跳躍,假如星球質量非常大,重力強到光的速度也不足以逃脫,連光就只能墜回星球上,永遠不會傳遞到星球之外,我們也就看不到這顆星球了。

1783 年米歇爾的論文提出看不見的星球。圖/英國皇家學會《自然科學會報》

牛頓力學預測黑洞,其實還不差。利用萬有引力定律的逃逸速度,可以得到一個臨界半徑,在此之內的光子無法脫離。這個臨界半徑,竟然等同於「史瓦西半徑」。廣義相對論的黑洞有個「事件視界(event horizon)」,也就是光逃不出來的界線,而第一個相對論的黑洞解——史瓦西(Karl Schwarzschild)在 1916 年找到的解,事件視界的大小就稱為「史瓦西半徑」。這與米歇爾、拉普拉斯的「黑洞」,大小是完全一樣的。

以後見之明來看,米歇爾的構想有個關鍵的問題。現在我們知道,真空中的光速是永遠恆定的,不會因為星球重力而「降速」掉回去。事實上,「光速恆定」這件事情的發現,就是十九世紀末物理學危機的一大原因。愛因斯坦為了拯救「光速恆定」的前提,最終決定放棄牛頓的世界觀,創造出新理論。儘管科學史上不是因為黑洞而發覺牛頓力學出問題了,但是牛頓力學和愛因斯坦相對論分別預測的這兩種黑洞,其中關鍵的差別,同樣在於光速恆定的問題。

雖然原理不同,但是對於遙遠的觀察者而言,兩種黑洞的特性「乍看之下」沒什麼不同,都是一顆光線出不來的星。只有當觀察者跑到黑洞表面附近,才有差別。牛頓力學的黑洞,光會往上拋再掉回來,所以表面附近有機會收到光。

我們暫不考慮抵達黑洞旁邊的情況。既然牛頓力學的黑洞,「乍看之下」與相對論的黑洞並無二致,那為什麼人們特別強調廣義相對論預測黑洞?甚至可設想,在史瓦西解出現之前,由於牛頓力學並不遵守光速恆定,愛因斯坦相對論卻得遵守光速恆定,反而牛頓才輕易地允許黑洞出現。如此,科學家不是該在牛頓被愛因斯坦推翻的同時,推翻掉黑洞的假說嗎?科學史的演變,遠比這樣的推理更為複雜。

黑洞的存在,曾經連愛因斯坦都不相信

人們容易設想,科學是個艱難但筆直的道路,不斷向前發現新事物、開拓新知。然而科學史上,人們經常迂迴地走回原處,從「見山是山」到「見山不是山」,才能來到「見山還是山」的境界。牛頓力學的黑洞,奠基在光是粒子的假說上,後來光的波動性證據不斷出現,人們暫時放棄了光粒子說,黑洞也就不成立了。二十世紀初物理學革命性的進展,量子力學重新承認光作為粒子,而廣義相對論則在另一條道路上,重新暗示著黑洞可能存在。

注意,這只是暗示著,承認黑洞存在是個更長遠迂迴的道路。愛因斯坦 1915 年提出的廣義相對論儘管隱藏著黑洞的解,且史瓦西在 1916 年就得到第一種解,卻不容易令人相信。史瓦西的黑洞性質相當詭異,所有物質、光線都會掉進一個奇異點(singularity)。

史瓦西黑洞的構造。圖/修改自維基百科(原圖由Sandstorm de創作)

廣義相對論挑戰了牛頓的世界觀,把絕對的時間、空間推翻了。如果你看過《星際效應》這部電影,也許你記得主角來到黑洞旁邊時,時間過得緩慢,主角過了一小時,地球上竟然已經過了七年。這種現象會使得親人重新見面時,女兒變得比父親還老,威脅到人類原來的倫理觀念。

巨大的星球附近時間變慢,對於愛因斯坦是可以接受的,但是史瓦西解是個極端情況。一旦有個東西墜往史瓦西的黑洞,到達事件視界的時候,對於外界觀察者而言,會看到這個東西無限期凍結在那裡。你可以想像,發生的事件會永遠停滯在這個界線,而界線內的事件無法被外面看到,所以我們把這個地方稱作「事件視界」。這樣的情況是我們現實經驗不可能容許的。而黑洞的奇異點,似乎更令人難以接受。

史瓦西用愛因斯坦方程式解出黑洞,愛因斯坦卻不相信這種東西存在於現實中。1939 年,愛因斯坦發表一篇論文,提出粒子防止塌縮到臨界半徑的機制。現在看來,愛因斯坦忽略了一件顯而易見的事情──接近臨界半徑時,其他作用力根本無法與重力抗衡。

愛因斯坦為何犯下這個「錯誤」呢?長年研究黑洞的 2017 年諾貝爾獎得主基普·索恩(Kip Throne)說,如果我們問說愛因斯坦怎麼那麼笨,那是反映了我們並不了解「1920 到 1930 年代幾乎所有人的思維方式」。

廣義相對論雖然「容許」史瓦西解存在,但是導致的結果違反人類生活經驗。怎麼可能時間慢到無限久?怎麼可能所有物質墜入一個點?如果這些事情成立,嚴重挑戰人們的世界觀,可能動搖許多哲學。

黑洞實在太顛覆想像?飽受質疑的恆星塌縮理論

恆星的研究為史瓦西解開啟了一條新路,不過仍然備受質疑。1931 年,當時還年輕的錢德拉塞卡(Subrahmanyan Chandrasekhar),根據量子力學的計算,發覺白矮星質量有個上限,超過此質量則無法支撐重力。沒想到,受到當時最大牌的天文學家愛丁頓(Arthur Eddington)極力攻擊。

超過「錢德拉塞卡極限」的星體就會塌縮成黑洞嗎?另一個可能出現了。1932 年查兌克發現中子,那幾年茲威基(Fritz Zwicky)等人也根據觀測提出了超新星的說法。於是茲威基就想,超新星爆炸之後,是否可能成為一顆由中子構成的星?他的見解是對的。1937 年,藍道(Lev Davidovich Landau)發表中子核心的理論,證明中子星可以撐得住重力而存在於宇宙中。

下一個問題來了,中子星這個機制是否阻止了宇宙中產生黑洞?1939 年,歐本海默(Julius Robert Oppenheimer)提出這個問題:中子星是否也如同白矮星,會有質量上限?經過計算發現,超過某個質量之後,中子星的形式也不再能支撐一顆星球!這稱為「歐本海默極限」。

愛因斯坦與歐本海默。圖/維基百科

不久之後,歐本海默與他的學生史奈德(Hartland Snyder),運用簡化的模型找到廣義相對論的解,說明中子星超過質量上限之後,必定走向塌縮。這個說法,質疑聲音很多。許多人認為他們的模型太過理想化,也有人考量到廣義相對論沒有經過強重力的驗證,只有在太陽系內通過檢驗。過了二十多年後,這種窘境才改變。

背後的原因,除了廣義相對論本身研究的停滯之外,還是在於黑洞完全顛覆了現實經驗,超越時人對宇宙的直覺想像。維納·以斯列(Werner Israel)寫給索恩的信談到,十八世紀的黑星(黑洞)「並無威脅到我們鍾愛的物質永恆與穩定的信念。」相對地,「二十世紀的黑洞是這種信念的重大威脅。」

科學發展的過程,其實有很多非理性的因素影響。以斯列又將黑洞與大陸漂移學說比較,說明兩者的證據都在 1916 年出現,卻「由非理性的劃界阻擋,在半路上停止了半個世紀。」兩者都到了 1960 年代才復甦,以斯列認為不但是受益於戰後科技發展,也因為蘇聯衛星發射,挑戰了西方科學的地位,也似乎告訴人們,還有很多西方科學沒想過的事。

黑洞研究的黃金時期:1963-1975

廣義相對論的研究,經過幾十年的沈悶,到了 1950 年代中期才開始復甦。運用微分幾何的數學方法,廣義相對論的理論重新整頓。而且在 1959 年,重力紅移實驗的成功,使得廣義相對論更被人們信任。

到了 1967 年,「黑洞」這個詞才由惠勒(John Wheeler)正式採用。惠勒原來也不相信黑洞,對於歐本海默的說法抱持懷疑,直到芬克爾斯坦(David Finkelstein)在數學上找到了一個新的坐標系來解釋奇點,並且惠勒成功用電腦模擬出黑洞之後,他才轉而相信。

黑洞在 1960 年代重出江湖,有一個重要的背景,是和實際天文觀測扯上了關係。索恩說,如果在 1962 年,誰說宇宙中有巨大的黑洞,一定會被天文學家嘲笑。不過,一切都要改觀了。

類星體 3C273 的無線電波影像,可見高速噴流構造。圖/MERLIN

1963 年,拜電波天文學的技術進步所賜,天文學家施密特(Maarten Schmit)找到了一種特異的天體,像是星星,卻會發出無線電波。更奇怪的是,光譜顯示它有很高的紅移,表示它離我們非常遠(3C273 離我們 20 億光年遠)。這種未知的天體,當時就姑且稱作「類星體」。

這麼遠的天體怎麼還看起來這麼亮?顯然有極其巨大的能量供給。天文學家發覺,他們首度需要用到廣義相對論,來解釋觀察到的現象。

1963 年 12 月,在美國德州開了一場「相對論天文物理」會議,探討類星體的問題。紐西蘭數學家克爾(Roy Kerr)在會議上,報告了愛因斯坦方程式的一個解,當下聽眾並沒有特別注意。而當著名的相對論物理學家帕帕佩特鲁(Achilles Papapetrou)聽到他的成果,立刻站起來,興奮地說明,克爾成功了!這就是他找了三十年的答案!

克爾找到的是旋轉黑洞的解。史瓦西解是個理想化的情況,因為現實中的星體並非靜止,而是在旋轉的。反對黑洞的人常想,旋轉有可能阻止黑洞產生。如今,克爾成功證明,即使星球在旋轉,也不能避免黑洞產生。

電影《星際效應》的黑洞。圖/維基百科

旋轉黑洞有個有趣的特性,是會拖曳周圍時空。正因為如此,我們看到《星際效應》裡面電腦模擬的黑洞,光線會繞著黑洞轉。而一個要墜入旋轉黑洞的東西,對於外在觀察者而言,是永遠繞著事件視界打轉。

1969 年,潘羅斯(Roger Penrose)發現,旋轉黑洞的事件視界周圍,有一個區域儲存了旋轉能量,後來這稱為「動圈(ergosphere)」。掉進動圈的東西有機會逃出來,且如果成功逃出來,還可以帶走不少黑洞的旋轉能量。所以有人說,黑洞可以作為超高效率的發電機。

1970-73 年,在霍金、卡特(Brandon Carter)、羅賓森(David Robinson)的努力之下,終於證明:任何塌縮而形成黑洞的旋轉物體,最終靜止狀態都能用克爾解表示。或者說,若有穩定態的旋轉黑洞,那都是克爾解。如此一來,克爾解就是可以在現實宇宙中出現的黑洞形式。

1963-1975 年,經過一代理論家與觀測家的努力,不僅黑洞理論有長足的進展,且黑洞不再只是不切實際的理論推算,開始能夠與物理的世界發生聯繫。

文章難易度
歐柏昇
13 篇文章 ・ 1 位粉絲
台大物理與歷史系雙主修畢業,台大物理碩士。現為台大物理系、中研院天文所博士生,全國大學天文社聯盟理事長。盼望從天文與人文之間追尋更清澈的世界觀,在浩瀚宇宙中思考文明,讓科學走向人群。

0

5
1

文字

分享

0
5
1

「新太空 2.0」時代來臨!盤點新創太空產業的衛星部署手段

黃 正中_96
・2021/09/26 ・3448字 ・閱讀時間約 7 分鐘

近年來以美國為首,國際上民營新創太空產業如雨後春筍,以新技術、新概念吸引風險投資,挑戰傳統太空產業,稱為新太空(NewSpace)2.0。

新太空的新創公司通常規模比較小,為了增加競爭力,常以併購或合資的方式,加速產業成長;所涵蓋的範圍包括火箭、小型衛星或衛星元件等領域,以價格破壞性經營,加強與傳統太空產業的競爭。

本文將分析量產的衛星精確部署到太空軌道,提高太空任務的新功能與價值;並盤點在此潮流下創新技術,和新創的太空產業。

論「快速量產衛星」的必要

新創航太公司為了更貼近市場需求,創新衛星量產技術、使用商用(COTS)元件,快速切入市場,提高產品附加價值的新衛星功能。例如使用微衛星以每小時拍攝一次地球上任何地點,並快速提供詳細圖像;使用衛星連接地面上廣大地區,構建太空網路;或者利用衛星開採小行星高價值的稀有礦物等等。

新創衛星公司所使用商用零件,設計小型或立方衛星,儘管它們的尺寸很小,但可以共同提供功能和服務,卻比傳統衛星更大、數據產品媲美大衛星。量產衛星優點是可以一次發射許多衛星,發射費用比傳統的大衛星便宜得多,但是缺點是,設計 / 任務壽命較短。

最小可行產品(Minimum Viable Product, MVP)

新創公司為了發堀利基市場,開發最小可行產品(Minimum Viable Product, MVP)1。一旦建立了 MVP 衛星,新創公司再進行優化調整。MVP 為了減輕重量,加快生產速度,設計時忽略了部分功能,如推進次系統(Propulsion Subsystem)、部分姿態控制(AOCS)或沒有備份設計(backup design)等等,以便快速進入市場。

美國的 Planet Labs 公司 180 顆遙測照相衛星,Spire Global 公司 110 顆氣象服務衛星公司,或挪威的 Iceye 公司 10 顆透過雲層對地球照相的合成孔徑雷達小型衛星等等,證明 MVP 可以在很少的預算下,製造和發射衛星到太空,並傳送數據返回地球。

美國 Planet Labs 公司的 Dove satellites。圖/Planet Labs 臉書

快速量產的代價——衛星損壞率高

但是,利用商用航電元件快速製造,在太空高輻射的環境,可能面臨高衛星損壞率,例如新創 Planet Labs 公司 2設計和製造著名的 Doves Triple- CubeSat 微型衛星,2015 年創立後發射了 339 顆 3U 高解析度的 Dove 遙測立方衛星,但是 2021 年 8 月只剩下約 180 顆衛星運作中。

另外的案例 Spire Global 公司從太空觀測雲數據和分析,提高了天氣模型的預測能力。自創建以來,已發射了 140 多顆衛星,目前有 110 顆 3U 立方氣象衛星星系營運中。

SpaceX 的 Starlink 太空網路公司3,到 2021 年 9 月 14 日為止,已經發射了 1791 顆低軌通訊衛星,統計有 125 顆衛星故障或離開太空返回地球,目前太空網路擁有 1615 顆低軌衛星建構太空網路,所以新太空的高衛星損壞率,令人印象深刻。

搭公車上太空,立方衛星「以量取勝」

大量微小或立方衛星搭乘所謂的「公車火箭」到太空,若是衛星計畫經費較多,可以搭乘單個火箭進入太空。但是大部分的計劃在預算限制下,搭乘「公車火箭」到達軌道後,整“群”離開火箭,微小 / 立方衛星以一種相當不受控制的方式繞地球漂移。

福爾摩沙衛星七號衛星搭乘火箭。圖/科技部臉書

這種「下車」方式,對於遙測照像任務,「打群架」方法是有效的,但不是最佳的方式,每顆衛星都可以拍照並發送下來,但個別衛星可能會聚集在一起,從而照相送回多餘的圖像。

對於通信衛星架構,「打群架」是沒有經濟價值的,因為在不受控制的衛星群體,只能隨機覆蓋地表,對於地面用戶來說,無法定時收到監控資料,也無法忍受隨時斷訊的通訊。

新創公司的決勝關鍵:更精確的太空軌道部署

為了增加小衛星任務所產生的產品價值,未來更精確的軌道部署,將會產生革命性的決勝關鍵,每顆衛星將被更仔細、周到地放置到精確的軌道上,使整個星系的價值,大於各自執行任務的總和。

更精確的軌道部署將成為任務規劃中首要考量,當雜亂無章的群轉變成精心編排的星系,其中均勻分佈的小衛星以優化其覆蓋範圍和數據價值時,小衛星架構的價值將得到充分體現。

優化「衛星系」的兩種辦法

有兩種實現衛星系(Constellation)優化的方法,第一種是單獨發射小衛星,或者一次發射兩到三個在特殊的小型火箭上發射,這些火箭可以「隨時隨地」運送航太器,眾多的小型火箭新創公司 Rocket Lab 和 Vector Space Systems 等,瞄準此新市場,計劃將小型衛星運送到低軌太空。

這種方法存在兩個挑戰,可能無法使其適用於所有星系。首先,大型星系需要大量發射,即使每週發射一枚火箭,完全部署一個星系也可能需要數月甚至數年的時間,其次發射費用按公斤計算,總經費也不便宜。

優化星系的第二種方法是為每個小衛星配備機載推進次系統,許多衛星可以共用火箭發射,例如由 SpaceX 的 Falcon 9 或 Falcon Heavy 等發射器的低每公斤成本發射,離開火箭以後就需要耗費自身燃料,抵達任務軌道。儘管所有飛行器都將成群離開火箭,但它們可以使用各自的推進系統分散到預先選擇的各個軌道中,以優化星系均勻性。

這種方法的好處是可以利用機載推進系統提供額外的任務價值,例如通過補償阻力來延長任務壽命,重新配置星系以彌補發射失誤,或在壽命結束時使衛星脫離軌道,減少太空垃圾,但是燃料使用過多,減少任務壽命卻也無可奈何。

獵鷹 9 號將 60 顆 Starlink 衛星送入軌道。圖/SpaceX

成本太高?新型「微推進系統」問世

新太空 2.0 的新創公司,有許多小衛星沒有包含推進次系統,主要是因為技術還不夠成熟,而且成本太高,無法納入 MVP。精確部署衛星所需的推進系統成本,市場上推進系統大部分是手工建造的,對於新創公司無法負擔。設計、開發和製造過程,還沒有發展到大規模生產。

但市場對於大量製造的機載推進系統需求強大,針對此問題,美國 Orbion Space Technology 以及 ExoTerra Resources 新創公司推出霍爾效應推進器(Aurora Hall-effect thruster),以及 Tethers Unlimited、Deep Space Industries 和 Momentus 公司,亦推出水離子推進器(Water Plasma propulsion),水離子推進裝置,進入太空小型推進器的市場。

水離子推進器。圖/參考資料 5

沒錢裝推進系統?你需要的是「太空運輸」服務

針對為了節省燃料以提高壽命,以及沒有配備星載推進系統的立方 / 微衛星,美國新創太空運輸的 Momentus 公司,推出離開火箭以後,在太空將立方 / 微衛星或其他小型衛星,在太空中運輸到所需任務軌道。

義大利的 D-Orbit 公司今年(2021)5 月部署了 20 顆義大利 ION 衛星,成功示範可以改變高度和傾角的太空運輸。D-Orbit 公司並計劃於今年(2021)10 月為 Planet SuperDove 公司在太空「最後一英里的太空運輸」服務,運輸 12 顆地球遙測衛星。

但是你可知道「最後一里路」要走多久?

以我國的福爾摩沙七號衛星星系為例,衛星設計有星載的推進系統和攜帶燃料,用來調整衛星在太空的飛行軌道;福衛七號的六顆衛星於2019年6月25日發射升空,離開獵鷹九號火箭以後,總共花了 20 個月逐漸調整軌道,才將六枚衛星的軌道面布置,形成在地球上空以 60、120、180、240、300度的夾角,涵蓋全球的氣象觀測衛星星系部署。

新太空 2.0 時代來臨!將顛覆傳統衛星公司

新太空(NewSpace)2.0 顛覆甚至於威脅到傳統衛星公司,例如 Intelsat 同步軌道通信衛星公司因過時或更高的價格使他們無法與低成本寬頻通訊競爭導致破產4,同樣的澳洲衛星通訊公司 Speedcast 和為航空公司和船舶提供 Wi-Fi 服務的 Global Eagle 公司與 Intelsat 公司一樣也都負債累累。

新太空快速的行業變化,也影響了衛星地面部分;例如衛星天線製造商 Phasor 在被新創 Kymeta 用更高效率覆蓋整個 Ku 頻段衛星天線公司淘汰而申請破產。去年 OneWeb 的破產困境源於缺乏靈活性,讓 SpaceX 競爭對手以超越其技術而破產。

因此新太空的來臨,太空產業需著重技術創新,適應快速市場變遷,隨時關注市場的變化與趨勢。對於一個創新技術競爭的衛星新創參與者,摩爾定律將主導創新和開發新市場。

參考資料

  1. NewSpace 2.0: Moving beyond the Minimum Viable Product
  2. 〈Wikipedia〉Planet_Labs  
  3. 〈Wikipedia〉Starlink
  4. NewSpace 2.0: Moving beyond the Minimum Viable Product
  5. Water propulsion technologies picking up steam
  6. Satellite bankruptcies circa 2000 vs. 2020: We’ve come a long way!me-a-long-way

黃 正中_96
9 篇文章 ・ 2 位粉絲
國家實驗研究院國家太空中心研究員。勿忘對科學研究的熱情,勇敢築夢,實現夢想…...
網站更新隱私權聲明
本網站使用 cookie 及其他相關技術分析以確保使用者獲得最佳體驗,通過我們的網站,您確認並同意本網站的隱私權政策更新,了解最新隱私權政策