Loading [MathJax]/extensions/tex2jax.js

0

0
2

文字

分享

0
0
2

從理論、懷疑到相信——人類探尋黑洞的漫漫長路(下)

歐柏昇
・2019/04/19 ・4685字 ・閱讀時間約 9 分鐘 ・SR值 545 ・八年級

-----廣告,請繼續往下閱讀-----

廣義相對論與黑洞的愛恨情仇

人們常說,廣義相對論「預測」了黑洞。這句話只說對了一半──根據相對論,巨大的恆星最終無可避免變成黑洞,但是相對論的黑洞存在著問題。

1965 至 70 年之間,潘羅斯和霍金(Stephen Hawking)證明,廣義相對論預示黑洞裡存在一個密度無限大、時空曲率無限大的奇異點。在這裡,二十世紀新物理的兩大體系──相對論與量子力學並不合!

微觀的世界會發生許多量子力學的效應,相對論卻是巨觀的,並沒有關心到微觀的問題。在黑洞奇異點這個無窮小的極端狀況下,相對論無可避免地要接受量子力學的挑戰。有些物理學家試圖整合兩大體系,提出「量子重力」理論。

史蒂芬·霍金。圖/NASA

黑洞的奇異點,可能是個量子重力主導的世界。相對論預測的黑洞,所有東西掉進去就出不來,不可能有輻射。然而量子力學用機率的觀點描述世界,不再有絕對的零,承認「無中生有」的起伏,真空並不是真的空。量子重力理論,則認為重力也會有量子起伏。考慮了量子現象之後,澤爾多維奇(Yakov Zeldovich)、貝肯斯坦(Jacob Bekenstein)和霍金發展出一套新理論,說明黑洞不是真的那麼「黑」,事件視界會有「霍金輻射(Hawking radiation)」。

-----廣告,請繼續往下閱讀-----

相對論的黑洞,更不可理解的是「裸奇異點」,也就是沒有被包藏在事件視界裡面、觀察者有可能與它接觸的奇異點。相對論「容許」裸奇異點出現,但是裸奇異點的存在會引發思想危機,尤其是決定論的哲學觀點。難道,它會混亂無章地,突然把遠古時代的一個事件吐出來嗎?世界上的因果關係是否會被動搖?

面對這項危機,潘羅斯提出了一個耐人尋味的方案:「宇宙審查猜想(Cosmic censorship conjecture)」。也許大自然早已設計了另一個機制,讓裸奇異點不能存在,來阻止這種奇怪的事情發生。這個猜想,物理學家至今議論紛紛。到底是我們的世界觀還無法接受這樣的挑戰,抑或是宇宙真有這樣巧妙的機制?

在現實世界尋找黑洞

我們回到現實的宇宙,該如何尋找黑洞呢?一般的恆星不會發出強烈的 X射線,但是中子星、黑洞可以,於是 X射線是尋找黑洞的線索。不過因為 X射線天文觀測必須飛離大氣層的干擾,因此發展得很晚。1971 年,新的 X射線望遠鏡觀測到一個可疑的天體──天鵝座 X-1 雙星系統。這個系統中,一顆星發出 X射線而幾無可見光,另一顆星正好相反。

錢德拉 X射線望遠鏡拍攝的天鵝座 X-1 雙星系統。圖/NASA/CXC/SAO

1974 年,索恩與霍金打賭天鵝座 X-1 是黑洞,索恩賭「是」,霍金賭「不是」。這個問題是可以得到答案的,假如發出 X射線的星體質量超過 3倍太陽質量,根據歐本海默的理論,它就無法以中子星的形式作,只能變成黑洞。

-----廣告,請繼續往下閱讀-----

到了 1990 年,霍金趁索恩去莫斯科做研究的時候,闖入索恩在加州理工大學的辦公室,把當年的「契約」找出來,壓指印認輸。於是索恩贏得了賭注──一年份的情色雜誌。這搞到索恩的太太相當驚慌!

M87星系中央,藍色是在X射線所見到的熱氣,橘色是在電波所見到的相對論性噴流。圖/X-ray: NASA/CXC/KIPAC/N. Werner et al Radio: NSF/NRAO/AUI/W. Cotton

從 1963 年發現類星體之後,隨著了解越來越多,天文學家發現它的本質其實是「活躍星系核」,能量的供應來源,顯然是超大質量黑洞吸積物質的過程。有些活躍星系核甚至有相對論性噴流(註:「相對論性」指速度非常快,快到接近光速,必須用相對論描述)。例如 EHT 的觀測目標 M87 星系,不但有活躍星系核,還有高速而筆直的噴流。這些證據一再指出,中間有個巨大的黑洞在作怪。

我們的銀河系雖然不是活躍星系核,中央仍然有個黑洞,位在銀河系中央的人馬座A* 無線電波源。天文學家長期追蹤銀河系中央一些星體的運動軌跡,證實中央需要有個黑洞,其質量高達太陽的4百萬倍。

  • 影片說明:凱克望遠鏡長年追蹤銀河系中心的星體運動軌跡,據此計算出超大質量黑洞的性質。

2015 年 9 月,當廣義相對論百週年紀念活動如火如荼進行時,雷射干涉重力波天文台(LIGO)史上第一次接收到重力波。訊號經過分析,得知是雙黑洞合併事件,兩個分別為 36 和 29 倍太陽質量的黑洞撞在一起,最後合而為一。

-----廣告,請繼續往下閱讀-----

經過數十年的觀測,許多天文現象,都必須用黑洞來解釋。在第一張黑洞影像出現之前,黑洞作為現實宇宙中的天體,多數天文學家沒有疑問了。

第一張黑洞的直接影像

想要看到黑洞的事件視界非常困難,因為黑洞太小了。如果有個和地球一樣重的黑洞,它的史瓦西半徑只有不到一公分。M87星系的超大質量黑洞,當然大多了,但是我們如果要從地球上看見,就必須達到驚人的解析度,差不多是要在台北看清楚蒙古草原上的一根羊毛!

在 2017 年 4 月,EHT 終於拍到史上第一張黑洞的直接影像。這是利用特長基線干涉技術,加上全球戮力合作,聚集最強大的望遠鏡組合,才有可能辦到。接著由中研院天文所等全球好幾組人馬,處理龐大的資料,分別反覆確認之後,終於在 2019 年 4 月 10 日將這個了不起的成果公諸於世。

EHT拍攝到的M87黑洞,是人類史上第一張黑洞影像。圖/EHT Collaboration

拍到黑洞照片,又能告訴我們什麼?

霍金早就向索恩認輸了,天文學家也幾乎都相信黑洞是宇宙中的天體,那為何還要大費周章拍攝一張看起來像甜甜圈的黑洞照片呢?為了證明愛因斯坦的天才嗎?

-----廣告,請繼續往下閱讀-----

科學哲學家孔恩(Thomas Kuhn)認為,常態科學家並不是在挑戰目前的「典範(paradigm)」,而是在典範之下從事解謎活動,基本上是在處理三種問題——確定事實、將事實與理論對應、使理論連貫。

許多天文學家關注的並非「廣義相對論是否正確」,而是在此理論架構下,我們可以確定更多關於黑洞的事實。星系如何誕生、如何演化還是一個謎團,而星系中央的超大質量黑洞與此息息相關。是黑洞吃飽了才長出星系,還是星系夠大才有能力長出黑洞?還是雞生蛋、蛋生雞的問題?我們的銀河系中央也有一個大黑洞,它是否可以幫助解答銀河系的誕生,進而解答我們為什麼在這裡?

另一方面,黑洞事件視界的觀測,也是事實與理論的對應。廣義相對論不僅承認黑洞「存在」,也描述了黑洞「該長什麼樣子」。我們需要實際觀測,看黑洞是否真的長這樣。

過去我們所知的都是黑洞的間接證據,從強烈的 X射線、周邊星體的運行軌道,得知它與相對論推衍出的黑洞一致。好比說,我們在森林裡面,看到某種動物的腳印、糞便,知道牠顯然存在於附近。但是誰知道大自然不會給我們意外呢?看到牠的身影,我們更確定是我們預想的那種動物。

-----廣告,請繼續往下閱讀-----

天文觀測不停地向黑洞本身推進,從黑洞在周圍留下的腳印,追到了黑洞的蹤影。我們無法真正看到黑洞「本身」,因為光線沒辦法從黑洞出來,但是看到黑洞的「剪影」,看見事件視界的輪廓,也確認中間真的有個不發光的洞,使我們更接近黑洞一步。

對於現實世界觀察或實驗的範疇,總會有個邊界,而科學家不斷嘗試擴展邊界。廣義相對論設下了一個能夠觀測的極限邊界,那就是事件視界,裡頭的光出不來,無法看見。如今,天文觀測終於開始觸及到理論劃下的邊界,這個開疆拓土的知識探求,令人相當興奮!

愛因斯坦本人都還沒走到這一步。他不相信黑洞存在,因為黑洞違反生活經驗。但是人類的「經驗」是不斷重新劃界的,人們的相信與懷疑經常都很短暫。科學的過程,則在理論與觀測不斷的辯證之中,挑戰知識的邊界。黑洞原來是完全超越現實經驗的,科學家先由理論洞察出黑洞的存在,如今更將其轉為可直接觀測的東西。觀測的邊界擴大,也開闊了人類的心智。原來我們生活的世界這麼有意思!

  • 影片說明:廣義相對論磁流體力學模擬,得到黑洞剪影的預期模樣(Credit:Hotaka Shiokawa)。

不斷擴大觀察的邊界,越多事實可以與理論對應。這次拍到的黑洞影像,科學家將它和廣義相對論克爾解比較,並且初步發現是一致的。利用「廣義相對論磁流體力學」的電腦模擬,得到理論預測黑洞周圍的光線分布,比較之下,確認觀測結果符合一個順時鐘旋轉的克爾黑洞。

-----廣告,請繼續往下閱讀-----

這代表說,過去幾十年理論家的預測,至少是相當成功的。克爾找到旋轉黑洞的解,潘羅斯和霍金證明穩定的黑洞都是是克爾解,如今真正看到的黑洞,的確與此一致。

解釋黑洞,一定是用廣義相對論嗎?

我們需要留意,這張黑洞影像是與廣義相對論的預測「一致」,但不確定是否只有廣義相對論能夠解釋。EHT發表的論文說明,這次拍到的影像與與克爾黑洞一致,並且檢驗了其他幾個替代方案(包括相對論及非相對論的其他黑洞假說)。這張照片確實殺掉了幾種假說,不過還有一些理論是不被排除的,而目前仍無法分辨。

科學家不斷尋求在各種情境下測試相對論,黑洞觀測即是強重力場下的測試。黑洞是相對論可解釋的邊緣地帶,現在相對論暫時通過了測試,但是繼續測試過程中,也許會發現更多問題。

因此,觀測到事件視界並不是終點,廣義相對論與量子力學的戰場於茲揭幕。這次EHT發表的一系列論文中,第一篇第一段就談到,「在史瓦西之後超過一個世紀,在廣義相對論與量子力學統合上,黑洞仍處於基本問題的心臟地帶。」未來有更高解析度的黑洞影像,科學家將有機會測試不同重力理論的預測,而後可以繼續詢問:一定是廣義相對論嗎?

-----廣告,請繼續往下閱讀-----

我還可以從另一個角度切入思考,一定是廣義相對論嗎?前文說過,牛頓力學也可以描述某種「黑洞」(黑星)現象,而且還與相對論預測的黑洞有幾分相似。假想一個情境,在相對論出現之前,人類就看到黑洞,說不定也會認為這是牛頓力學的成功預測?我們發覺,牛頓力學也有能力粗糙地描摹或預測黑洞,只不過歷史發展沒有給牛頓這樣的表現機會。

這意味著,不同理論可能都有能力在某些程度上成功掌握著黑洞樣貌。是誰暫時取勝,則牽涉到科學史的複雜背景。人類尋找黑洞的過程,主要是以相對論作為重力理論的典範(註:孔恩的術語),於是當科學家發覺相對論真的預測黑洞,其中包括一些牛頓力學無法說明的現象,這時就會說,相對論取得一定的成功。相對論目前成功了,但不是絕對的勝利,黑洞不見得是專屬於相對論的東西。

我們看到,理論都有成功之處,也都有侷限。在黑洞的解釋上,牛頓力學不如想像那麼失敗,而相對論與量子力學在黑洞的不合,則顯現了相對論的侷限。今天看到黑洞與相對論的預測一致,也許只是暫時的一致。量子重力或未來的其他理論,可能將更成功地解釋黑洞的觀測現象,甚至促成新的科學革命。

我們不用過度迷信愛因斯坦。不過話說回來,仍然無庸置疑的是,廣義相對論在這一百年來取得了重大的成功。當我們了解到科學理論的侷限,反而更懂得欣賞廣義相對論革命性的意義。在廣義相對論典範之下的黑洞探尋,經歷多年的相信與懷疑,終於在理論與觀測的辯證之中,把人類的心智推進到一個從未能以現實經驗想像的領域。

參考資料:

  • Bartusiak, Black Hole: How an Idea Abandoned by Newtonians Hated by Einstein and Gambled on by Hawking Became Loved. New Haven: Yale University Press, 2015.
  • Begelman, Mitchell C., and Martin J. Rees. Gravity’s Fatal Attraction : Black Holes in the Universe. Cambridge: Cambridge University Press,
  • Curiel, “Singularities and Black Holes.” Stanford Encyclopedia of Philosophy. February 27, 2019. Accessed April 15, 2019. https://plato.stanford.edu/entries/spacetime-singularities/.
  • “Event Horizon Telescope.” Event Horizon Telescope. Accessed April 15, https://eventhorizontelescope.org/.
  • Event Horizon Telescope Collaboration, et al. 2019, ApJL, 875, L1, L4, L5, L6
  • Kuhn, Thomas S. The Structure of Scientific Revolutions. Chicago, IL: University of Chicago Press,
  • Melia, Cracking the Einstein Code: Relativity and the Birth of Black Hole Physics. Chicago: University of Chicago Press, 2009.
  • Thorne, Kip S. Black Holes and Time Warps: Einsteins Outrageous Legacy. New York: W.W. Norton,
  • Will, Clifford M. Was Einstein Right? : Putting General Relativity to the Test. 2nd ed. Oxford, UK: Oxford University Press,
  • 史蒂芬霍金著,郭兆林、周念縈譯,《圖解時間簡史》,台北:大塊,2014。
-----廣告,請繼續往下閱讀-----
文章難易度
歐柏昇
13 篇文章 ・ 6 位粉絲
台大物理與歷史系雙主修畢業,台大物理碩士。現為台大物理系、中研院天文所博士生,全國大學天文社聯盟理事長。盼望從天文與人文之間追尋更清澈的世界觀,在浩瀚宇宙中思考文明,讓科學走向人群。

0

1
1

文字

分享

0
1
1
伺服器過熱危機!液冷與 3D VC 技術如何拯救高效運算?
鳥苷三磷酸 (PanSci Promo)_96
・2025/04/11 ・3194字 ・閱讀時間約 6 分鐘

-----廣告,請繼續往下閱讀-----

本文與 高柏科技 合作,泛科學企劃執行。

當我們談論能擊敗輝達(NVIDIA)、Google、微軟,甚至是 Meta 的存在,究竟是什麼?答案或許並非更強大的 AI,也不是更高速的晶片,而是你看不見、卻能瞬間讓伺服器崩潰的「熱」。

 2024 年底至 2025 年初,搭載 Blackwell 晶片的輝達伺服器接連遭遇過熱危機,傳聞 Meta、Google、微軟的訂單也因此受到影響。儘管輝達已經透過調整機櫃設計來解決問題,但這場「科技 vs. 熱」的對決,才剛剛開始。 

不僅僅是輝達,微軟甚至嘗試將伺服器完全埋入海水中,希望藉由洋流降溫;而更激進的做法,則是直接將伺服器浸泡在冷卻液中,來一場「浸沒式冷卻」的實驗。

-----廣告,請繼續往下閱讀-----

但這些方法真的有效嗎?安全嗎?從大型數據中心到你手上的手機,散熱已經成為科技業最棘手的難題。本文將帶各位跟著全球散熱專家 高柏科技,一同看看如何用科學破解這場高溫危機!

運算=發熱?為何電腦必然會發熱?

為什麼電腦在運算時溫度會升高呢? 圖/unsplash

這並非新問題,1961年物理學家蘭道爾在任職於IBM時,就提出了「蘭道爾原理」(Landauer Principle),他根據熱力學提出,當進行計算或訊息處理時,即便是理論上最有效率的電腦,還是會產生某些形式的能量損耗。因為在計算時只要有訊息流失,系統的熵就會上升,而隨著熵的增加,也會產生熱能。

換句話說,當計算是不可逆的時候,就像產品無法回收再利用,而是進到垃圾場燒掉一樣,會產生許多廢熱。

要解決問題,得用科學方法。在一個系統中,我們通常以「熱設計功耗」(TDP,Thermal Design Power)來衡量電子元件在正常運行條件下產生的熱量。一般來說,TDP 指的是一個處理器或晶片運作時可能會產生的最大熱量,通常以瓦特(W)為單位。也就是說,TDP 應該作為這個系統散熱的最低標準。每個廠商都會公布自家產品的 TDP,例如AMD的CPU 9950X,TDP是170W,GeForce RTX 5090則高達575W,伺服器用的晶片,則可能動輒千瓦以上。

-----廣告,請繼續往下閱讀-----

散熱不僅是AI伺服器的問題,電動車、儲能設備、甚至低軌衛星,都需要高效散熱技術,這正是高柏科技的專長。

「導熱介面材料(TIM)」:提升散熱效率的關鍵角色

在電腦世界裡,散熱的關鍵就是把熱量「交給」導熱效率高的材料,而這個角色通常是金屬散熱片。但散熱並不是簡單地把金屬片貼在晶片上就能搞定。

現實中,晶片表面和散熱片之間並不會完美貼合,表面多少會有細微間隙,而這些縫隙如果藏了空氣,就會變成「隔熱層」,阻礙熱傳導。

為了解決這個問題,需要一種關鍵材料,導熱介面材料(TIM,Thermal Interface Material)。它的任務就是填補這些縫隙,讓熱可以更加順暢傳遞出去。可以把TIM想像成散熱高速公路的「匝道」,即使主線有再多車道,如果匝道堵住了,車流還是無法順利進入高速公路。同樣地,如果 TIM 的導熱效果不好,熱量就會卡在晶片與散熱片之間,導致散熱效率下降。

-----廣告,請繼續往下閱讀-----

那麼,要怎麼提升 TIM 的效能呢?很直覺的做法是增加導熱金屬粉的比例。目前最常見且穩定的選擇是氧化鋅或氧化鋁,若要更高效的散熱材料,則有氮化鋁、六方氮化硼、立方氮化硼等更高級的選項。

典型的 TIM 是由兩個成分組成:高導熱粉末(如金屬或陶瓷粉末)與聚合物基質。大部分散熱膏的特點是流動性好,盡可能地貼合表面、填補縫隙。但也因為太「軟」了,受熱受力後容易向外「溢流」。或是造成基質和熱源過分接觸,高分子在高溫下發生熱裂解。這也是為什麼有些導熱膏使用一段時間後,會出現乾裂或表面變硬。

為了解決這個問題,高柏科技推出了凝膠狀的「導熱凝膠」,說是凝膠,但感覺起來更像黏土。保留了可塑性、但更有彈性、更像固體。因此不容易被擠壓成超薄,比較不會熱裂解、壽命也比較長。

OK,到這裡,「匝道」的問題解決了,接下來的問題是:這條散熱高速公路該怎麼設計?你會選擇氣冷、水冷,還是更先進的浸沒式散熱呢?

-----廣告,請繼續往下閱讀-----

液冷與 3D VC 散熱技術:未來高效散熱方案解析

除了風扇之外,目前還有哪些方法可以幫助電腦快速散熱呢?圖/unsplash

傳統的散熱方式是透過風扇帶動空氣經過散熱片來移除熱量,也就是所謂的「氣冷」。但單純的氣冷已經達到散熱效率的極限,因此現在的散熱技術有兩大發展方向。

其中一個方向是液冷,熱量在經過 TIM 後進入水冷頭,水冷頭內的不斷流動的液體能迅速帶走熱量。這種散熱方式效率好,且增加的體積不大。唯一需要注意的是,萬一元件損壞,可能會因為漏液而損害其他元件,且系統的成本較高。如果你對成本有顧慮,可以考慮另一種方案,「3D VC」。

3D VC 的原理很像是氣冷加液冷的結合。3D VC 顧名思義,就是把均溫板層層疊起來,變成3D結構。雖然均溫板長得也像是一塊金屬板,原理其實跟散熱片不太一樣。如果看英文原文的「Vapor Chamber」,直接翻譯是「蒸氣腔室」。

在均溫板中,會放入容易汽化的工作流體,當流體在熱源處吸收熱量後就會汽化,當熱量被帶走,汽化的流體會被冷卻成液體並回流。這種利用液體、氣體兩種不同狀態進行熱交換的方法,最大的特點是:導熱速度甚至比金屬的熱傳導還要更快、熱量的分配也更均勻,不會有熱都聚集在入口(熱源處)的情況,能更有效降溫。

-----廣告,請繼續往下閱讀-----

整個 3DVC 的設計,是包含垂直的熱導管和水平均溫板的 3D 結構。熱導管和均溫板都是採用氣、液兩向轉換的方式傳遞熱量。導熱管是電梯,能快速把散熱工作帶到每一層。均溫板再接手將所有熱量消化掉。最後當空氣通過 3DVC,就能用最高的效率帶走熱量。3DVC 跟水冷最大的差異是,工作流體移動的過程經過設計,因此不用插電,成本僅有水冷的十分之一。但相對的,因為是被動式散熱,其散熱模組的體積相對水冷會更大。

從 TIM 到 3D VC,高柏科技一直致力於不斷創新,並多次獲得國際專利。為了進一步提升 3D VC 的散熱效率並縮小模組體積,高柏科技開發了6項專利技術,涵蓋系統設計、材料改良及結構技術等方面。經過設計強化後,均溫板不僅保有高導熱性,還增強了結構強度,顯著提升均溫速度及耐用性。

隨著散熱技術不斷進步,有人提出將整個晶片組或伺服器浸泡在冷卻液中的「浸沒式冷卻」技術,將主機板和零件完全泡在不導電的特殊液體中,許多冷卻液會選擇沸點較低的物質,因此就像均溫板一樣,可以透過汽化來吸收掉大量的熱,形成泡泡向上浮,達到快速散熱的效果。

然而,因為水會導電,因此替代方案之一是氟化物。雖然效率差了一些,但至少可以用。然而氟化物的生產或廢棄時,很容易產生全氟/多氟烷基物質 PFAS,這是一種永久污染物,會對環境產生長時間影響。目前各家廠商都還在試驗新的冷卻液,例如礦物油、其他油品,又或是在既有的液體中添加奈米碳管等特殊材質。

-----廣告,請繼續往下閱讀-----

另外,把整個主機都泡在液體裡面的散熱邏輯也與原本的方式大相逕庭。如何重新設計液體對流的路線、如何讓氣泡可以順利上浮、甚至是研究氣泡的出現會不會影響元件壽命等等,都還需要時間來驗證。

高柏科技目前已將自家產品提供給各大廠商進行相容性驗證,相信很快就能推出更強大的散熱模組。

-----廣告,請繼續往下閱讀-----
文章難易度

討論功能關閉中。

0

101
2

文字

分享

0
101
2
時間與空間的顛覆!如何用簡單的方式了解「相對論」?——《物理角色圖鑑》
azothbooks_96
・2024/09/16 ・2086字 ・閱讀時間約 4 分鐘

-----廣告,請繼續往下閱讀-----

時間不再絕對?牛頓與愛因斯坦的時間觀差異

川村老師,請用簡單的方式告訴我「相對論」是什麼?

圖/《物理角色圖鑑》

老師:狹義相對論源自相對性原理(Principle of relativity,指物理定律〔Physical law〕適用於所有以等速直線運動的物體) 與光速恆定原理。根據這個理論,時間是相對的,依不同觀察者而有所差異。牛頓力學中的時間是絕對的,愛因斯坦則認為,可依不同的觀察者位置對時間進行不同定義。

圖/《物理角色圖鑑》

老師:之前在討論「力」時,也提過離心力。離心力是「慣性力」的一種,慣性力指物體在加速運動時感受到的與加速方向相反的力。置身在沒有窗戶的電梯中,當電梯向上加速,電梯內的人會受到向下的慣性力(譯注:因看不到外面,使得他無法判斷電梯的運動情況)。若加速度為 g,物體質量為 m,則物體所受慣性力為 mg,與在地面所受的重力 mg 相同。愛因斯坦無法區別這兩種 mg 的差異,所以視為等效。但無論慣性力的方向為何,物體都會往向量合成後的視重力場方向掉落。

時間在任何地方都固定不變嗎?

世界上最快的速度是光速。物體的移動速度若接近光速,它的時間進程就會變慢。也就是說,在接近光速的太空船上,時間會變得悠長。而且,接近光速的物體長度會朝行進方向收縮。

物體只要具有質量,即使在靜止狀態依然擁有能量(其能量 E mc2,稱為靜止能量(Rest energy)。

-----廣告,請繼續往下閱讀-----

提到光的運動,我們已經知道光的路徑會彎曲。

1919 年,天文學家觀測到恆星發出的光線在經過太陽附近時被偏折,這種現象稱為「重力透鏡效應」(Gravitational lens),有助於了解黑洞等宇宙中質量分布的情況。此外,天體物理學家也觀測到時間的延遲。簡而言之,接近地面的時鐘行進速度會比高處的時鐘慢,GPS 也是依據這種效應來進行校正。

圖/《物理角色圖鑑》
圖/《物理角色圖鑑》

時間

牛頓力學中的「時間」(也就是我們一般理解的時間)和相對論中的時間大異其趣。牛頓在《自然哲學的數學原理》(Philosophiæ Naturalis Principia Mathematica,1687)中,假設空間是均勻平坦的;從過去到未來,在任何地方都平均延伸。在牛頓力學中,全宇宙的時間一致。

但相對論否定了這一點。

-----廣告,請繼續往下閱讀-----
圖/《物理角色圖鑑》

光速恆定原理指出,光的速度是固定不變的。這種狀況下,空間中不同地點發生的兩件事,對某個觀測者來說是同時發生,但對另一參考系的觀測者而言則非同時發生。也就是說,時間的前進速度並非在任何地方都相同。因此,時間和空間不能視為各自獨立的兩回事,應該一體化,視為四維空間(時空,Spacetime)。

不過,這是指物體移動速度接近光速時的情況。日常生活中,使用過去的時間觀不會有任何問題。

黑洞

黑洞(Black hole)是一種天體,因為密度極高,重力極強, 不只物質,連光都會被吸進去,無法逃逸。天體是宇宙中所有物體的總稱,具體來說,指太陽、恆星、行星、星團、星雲等。從相對論來看,黑洞周圍空間是扭曲的。照以下方式想像應該會比較容易理解:

把重物放在一大塊展開的薄橡皮布上,放置處就會凹下去,而這塊凹陷會影響到周圍。同樣的,黑洞所在之處會發生猛烈的空間扭曲,經過附近的天體會被極強的重力吸引,落入其中,連光也難逃魔掌。

-----廣告,請繼續往下閱讀-----

銀河系有許多黑洞,但具體數字不詳。2019 年,一個跨國研究計畫團隊首次拍攝到黑洞的「影子」,掀起一陣討論熱潮。

——本文摘自《物理角色圖鑑:用35個萌角色掌握最重要的物理觀念,秒懂生活中的科普知識》,2024 年 9 月,漫遊者文化,未經同意請勿轉載。

-----廣告,請繼續往下閱讀-----

討論功能關閉中。

azothbooks_96
55 篇文章 ・ 21 位粉絲
漫遊也許有原因,卻沒有目的。 漫遊者的原因就是自由。文學、人文、藝術、商業、學習、生活雜學,以及問題解決的實用學,這些都是「漫遊者」的範疇,「漫遊者」希望在其中找到未來的閱讀形式,尋找新的面貌,為出版文化找尋新風景。

0

3
1

文字

分享

0
3
1
用「世界上最大的望遠鏡」觀測黑洞!臺灣也參與其中!
PanSci_96
・2024/07/15 ・3876字 ・閱讀時間約 8 分鐘

-----廣告,請繼續往下閱讀-----

台北時間 1 月 18 號下午四點,中研院天文所公布了一張黑洞照!別小看這張照片,裡頭有玄機!不論是驗證愛因斯坦的廣義相對論,還是要研究 M87 黑洞有沒有什麼特性,都得從這張照片著手。

為什麼我們能拍到比之前更清楚的照片呢?這是因為,這次「事件視界望遠鏡」的團隊,加入了格陵蘭望遠鏡的觀測數據。它不僅是全球第一座位於北極圈內的重要天文觀測站,此外,這座觀測站,也和台灣脫不了關係喔!

就讓我們來看看,這張黑洞照到底是怎麼拍的?這幾張黑洞甜甜圈照,又藏有哪些重要資訊?

近年的黑洞觀測

大家應該都還記得 2019 年的黑洞熱潮,當年 4 月,人類第一張黑洞照——M87 的真面目,被公開了,我們終於取得了黑洞存在的最直接證據。3 年後的 2022 年 5 月,我們也終於看清楚那個在我們所在的星系中,在銀河系最深處的黑洞——人馬座 A*。這兩張像是甜甜圈的照片,掀起黑洞熱潮,也帶給我們不少感動,想必很多人都還記得。

-----廣告,請繼續往下閱讀-----
圖/ESO、EHT Collaboration

但是,這兩張模糊的甜甜圈,不管對於科學家還是我們,想必都還不滿足!我們想看到的,是能跟電影星際效應中一樣,帶給我們強烈震撼的完整黑洞樣貌。

很快就有好消息,在 M87 照片公開的三年後。2022 年 4 月,天文學家展示了另一組 M87 的照片,除了原本的黑洞以外,還能看到外圍三條噴流,與圍繞在黑洞旁邊的吸積流,更加完整的黑洞結構同時存在在一張照片上。

圖/Lu, RS., Asada, K., Krichbaum, T.P. et al. A ring-like accretion structure in M87 connecting its black hole and jet. Nature 616, 686–690 (2023). https://doi.org/10.1038/s41586-023-05843-w

有趣的是,在 2022 發表的觀測結果中,黑洞似乎胖了一圈,直徑比 2019 年發表的結果大了 50%。這可不是說黑洞在幾年間就變胖了 1.5 倍,不用擔心,宇宙不會因此毀滅。這主要是選用觀察的電磁波波段不一樣,2019 年觀察的電磁波波長是 1.3 毫米,2022 年的波長則是 3.5 毫米。但其實,1.3 毫米比 3.5 毫米的電磁波穿透力更好。也就是 2019 年的影像更接近黑洞的實際長相。

對了,2022 年的黑洞照並不是事件視界望遠鏡發的。你知道「事件視界望遠鏡」並不是唯一在進行黑洞觀測的計劃嗎?

-----廣告,請繼續往下閱讀-----

為了觀測黑洞,全球的電波望遠鏡進行同步串聯,打算打造一個等效直徑幾乎等於地球直徑的超大望遠鏡。因為我們無法直接打造一面面積跟地球一樣大的望遠鏡,因此我們得將分布在各地的望遠鏡同步串聯,由數據分析來拼湊出整體樣貌。你可能不知道,全球的大型黑洞觀測國際合作計畫其實有兩個,一個就是大家比較常聽到的「事件視界望遠鏡 」,簡稱 EHT,主要以 1.3 毫米的波段進行觀測,也就是大家熟悉的甜甜圈照。而另一個大計畫是「全球毫米波特長基線陣列」,簡稱 GMVA,以 3.5 毫米為主要觀測波段。2018 年 GMVA 還加入了新成員,讓我們能看到最新的這張照片。其中一個是超強力助手 ALMA,另一個,就是第一座位於北極圈內,由台灣中研院主導的格陵蘭望遠鏡 GLT。

為什麼黑洞會那麼難觀察?

現在大家都知道,我們已經能確實拍到黑洞了。即使黑洞的本體是全黑的,圍繞在黑洞周邊快速旋轉的物質,也會因為彼此摩擦與同步輻射,放出強烈的電磁波,被我們看到。

但即便它會發光,仍然是個難以觀測的天體,直到近年,我們才補捉到它樣貌。這是因為,比起亮度,更難的地方在於尺寸,黑洞好小,更準確來說,是看起來好小。M97 和人馬座 A* 實際上都比太陽大上不少,但因為距離我們十分遙遠,從地球上來看,人馬座 A* 與 M87 黑洞的陰影尺寸,分別是 50 微角秒和 64 微角。從我們的視角來看,就跟月球上的一顆甜甜圈一樣大。

但即便很困難,看到黑洞對我們來說十分重要,我們需要有確切的證據來證明我們對於黑洞的預測並沒有錯。例如在 2022 年有照片證明「銀河系中間真的有黑洞!」之前,2020 的諾貝爾物理獎頒獎時,仍以「大質量緻密天體」來稱呼銀河系中央的「那個東西」。現在,從黑洞噴流、吸積盤、自轉軸、到光子球層,我們還有好多黑洞特性,需要更高解析度的照片來幫我們驗證,驗證廣義相對論的預測是否正確,而我們對於黑洞與宇宙的認識是否需要調整。

-----廣告,請繼續往下閱讀-----

好的,我們知道為了追星,嗯,是追黑洞,科學家無不卯足全力提升望遠鏡的解析度。但是為何格陵蘭望遠鏡的加入,就能提升照片解析度呢?

組成世界上最大的望遠鏡?

越大的望遠鏡看得越清楚,為了將全世界的電波望遠鏡串聯,打造等效口徑幾乎等於地球的超大望遠鏡。這些望遠鏡使用了特長基線干涉測量法,這些望遠鏡則稱為電波干涉儀。

這些電波干涉儀通常由一系列的天線組成,例如位於智利的阿塔卡瑪大型毫米及次毫米波陣列 ALMA,就是由 66 座天線組成,最遠的兩座天線距離長達 16 公里。在觀測同一個訊號時,透過比較每座望遠鏡收到訊號的相位差,就能計算出訊號的方位角,進一步推算出原始訊號的樣貌。而當這些天線數量越多、距離越遠,就等於是一座更高解析度、口徑更大的望遠鏡。例如 ALMA 的影像解析度高達 4 毫角秒,能力比知名的哈伯太空望遠鏡還要好上 10 倍。另一座位於夏威夷的次毫米波陣列望遠鏡 SMA,則是由 8 座天線組成,雖然單座天線的直徑只有 6 公尺,卻足以以模擬出一座直徑 508 公尺的大型望遠鏡。

利用相同技術,只要透過原子鐘將全球的望遠鏡同步,就能模擬出直徑幾乎等於地球直徑的超巨大望遠鏡,也就是「事件視界望遠鏡 」或是「全球毫米波特長基線陣列」。

-----廣告,請繼續往下閱讀-----

沒錯,格陵蘭望遠鏡 GLT 也扮演重要角色。但為什麼要把望遠鏡建在北極圈內?

畢竟這可不簡單,為了讓望遠鏡能在最低零下 70 度 C 的嚴苛環境中工作,還期望它能發揮超越過去的實力,科學家改造了不少設備,甚至還要加裝除霜裝置。

但這一些都是值得的,因為光是 ALMA、SMA、GLT 三座望遠鏡,就可以在地球上構成一個大三角型,等於一台巨大的電波干涉儀。

圖/First M87 Event Horizon Telescope Results. II. Array and Instrumentation – Scientific Figure on ResearchGate. Available from: https://www.researchgate.net/figure/Map-of-the-EHT-Stations-active-in-2017-and-2018-are-shown-with-connecting-lines-and_fig1_333104103 [accessed 15 Jul, 2024]

而對於事件視界望遠鏡來說也十分重要,因為在地球的南邊已經有南極望遠鏡了,東西向則有許多來自中低緯度的望遠鏡。剩下的關鍵位置,當然就是北極的格陵蘭望遠鏡了。而特長基線干涉技術要在不同頻段發揮作用,每個望遠鏡的相對位置也十分重要。格陵蘭的地理位置與良好的大氣環境,讓格陵蘭望遠鏡可以觀測 230GHz 這個特殊波段的訊號,並且補足黑洞的諸多細節。根據官方消息,未來還要真的登高望遠,更上一層樓地把整座格陵蘭望遠鏡搬上格陵蘭島山頂的峰頂站台基地 (Summit Camp ),觀測 690GHz 的特殊訊號,期待能看到黑洞的光子球層,驗證廣義相對論的預測。

-----廣告,請繼續往下閱讀-----

順帶一提,這邊提到的 SMA、ALMA 和格陵蘭望遠鏡,不僅合作關係密切,這些重要計畫台灣還都參與其中!

SMA 是 2003 年啟用,全世界第一座可觀測次毫米波的望遠鏡陣列,也是史密松天體物理台與台灣中研院天文所合作興建與運作的望遠鏡,每年也有許多台灣參與或主導的研究發表。

2013 年啟用,位於智利的 ALMA,則是由東亞、歐洲、北美共同合作的國際計畫,台灣當然也參與其中。擁有66座望遠鏡的 ALMA,也是地面上最大的天文望遠鏡計畫。而有趣的是,由中研院主導的格陵蘭望遠鏡所使用的天線,就是使用 ALMA 的原型機改造而成的!

最後,這次最新的黑洞照就是這張,在 2018 年 4 月拍攝,歷經將近 6 年分析,才正式公布的照片。它與 2017 拍攝,2019 年公開的第一張黑洞照一樣,主角都是 M87。

-----廣告,請繼續往下閱讀-----

你說兩張照片看起來都一樣?嗯,沒錯,雖然還是看得出差異,但兩張照片大致上看起來的確差不多。

這兩張照片所得出的光環半徑相同,代表在相隔一年的拍攝期間,黑洞半徑並沒有產生變化。因為 M87 並不會快速增加質量,所以這個觀測結果非常符合廣義相對論對於光環直徑的預測。並且這張照片也讓我們更加確定,2017 年拍攝到的甜甜圈結構,並不是黑洞的偶然樣貌。

有相同的地方,也有不一樣的地方。這兩張照片光環上最亮的位置逆時針偏轉了 30 度,光是這點,就將開啟下一波的黑洞研究熱潮。透過比較不同時間拍攝的照片,科學家將可以深入研究黑洞的自轉軸角度,以及自轉軸隨著時間偏轉的「進動」現象,並更進一步分析黑洞周圍的磁場與電漿理論。

因為 GLT 的加入,有效提升了 EHT 的影像保真度,科學家能取得更加真實的黑洞照,為未來的黑洞研究打下基礎,例如挑戰很難被拍到的光子環。

-----廣告,請繼續往下閱讀-----

特別感謝中研院天文所研究員,同時也是格陵蘭望遠鏡計畫執行負責人的陳明堂老師協助製作。我們還有一場與陳明堂老師的直播對談,直接來和大家聊聊這次的黑洞結果以及回答各式各樣的黑洞問題。一起繼續來體驗黑洞的魅力吧!

也想問問大家,現在有了一批新資料,你最期待下一次的黑洞成果發表,帶來什麼消息呢?

  1. 我們成功觀察到了霍金輻射!
  2. 黑洞的模擬結果發現超越廣義相對論的新理論!
  3. 黑洞中其實有其他文明,而且我們已經成功接觸了!

歡迎訂閱 Pansci Youtube 頻道 獲取更多深入淺出的科學知識!

-----廣告,請繼續往下閱讀-----

討論功能關閉中。