Loading [MathJax]/extensions/tex2jax.js

0

1
0

文字

分享

0
1
0

你所不知道的核酸:足以取代抗體搜尋功能的「適體」是什麼?有什麼作用?

活躍星系核_96
・2019/05/09 ・3182字 ・閱讀時間約 6 分鐘 ・SR值 595 ・九年級

-----廣告,請繼續往下閱讀-----

什麼是適體?

提到 DNA 與 RNA,大家腦海裡第一個浮現出來的就是生物課的內容吧:

DNA 以具備 ATCG 四種不同含氮鹼基的核苷酸來記載生物遺傳資訊,而 RNA 負責翻譯這些遺傳資訊,進而製造生物體的一切構築原料。

但是 DNA 和 RNA 就只有像字典和翻譯機的功能嗎?如果你把他們想像的這麼簡單,那可是大錯特錯喔。他們可還有精確搜尋出目標的偵探能力呢!

你腦海中浮現的 DNA 是不是長這樣。圖/ Pennsylvania State University

首先,在你認知中的核酸構型長怎樣呢?所聯想到的大概就是那看起來神秘又唯美的雙股螺旋狀。因為許多影視作品的推廣,在大眾的印象中,DNA 的形象和雙股螺旋已經合而為一了。的確,配對後的 DNA 序列經 X光晶體分析是雙股螺旋狀,這在當時還是轟動世人的重要發現呢!

但那只是 DNA 做為遺傳物質時的一種經典樣貌。事實上,單股核酸在不同序列的組合下也是有千變萬化的構型。就如同人體內的 RNA 就根據不同的功能而有著不同構型,甚至也有些特殊構型具備酵素的相似功能,被稱為核酶(ribozyme)

-----廣告,請繼續往下閱讀-----

而不同的核酸序列能產生不同構型,這個特性是不是就跟我們熟知的蛋白質一樣呢?沒錯,蛋白質也透過不同胺基酸組合,產生許多具功能性的構型,並成為所有生物體內生化反應進行的必要推手。於是就有些人想到了,既然如此,我們何不使用核酸的這個特性發展成工具使用呢?

特定構型的適體可以與目標物專一性結合。圖/ Hongguang Sun

在 1990 年,Szostak 及 Gold 實驗團隊便分別發展出了類似的篩選技術,可在體外篩選、分離並放大特定的 RNA 序列片段。這些序列片段構型可以如探針一樣,專一性地辨識目標物。而這些具辨識能力的 RNA 片段就被 Szostak 實驗室命名為 aptamer,取自拉丁文 aptus,有適合的意思。由 Gold 實驗室提出的篩選方式則被命名為 systematic evolution of ligands by exponential enrichment,可譯為配體指數增長系統進化技術,也就是後人泛稱的SELEX

在兩間實驗室發現了 RNA 具備的特殊能力後不久,DNA 也被發現可做為適體的原料。在後續20多年的研究發展更證實了適體在生物檢測與醫療領域上的諸多可能性,也陸續吸引了許多實驗室繼續投入研究。

適體V.S. 抗體

說到適體能專一性辨識目標分子的能力,這聽起來是不是很熟悉?

-----廣告,請繼續往下閱讀-----

沒錯,適體跟抗體都能經適當設計後,成為生物檢測的工具。但是抗體的發現早了適體將近百年,無數的研發成果讓抗體早已成為生物檢測市場上的老大哥了。那做為後起之秀的適體,究竟有什麼優勢之處能與抗體一較高下呢?不妨讓我們一同瞧瞧。

  1. 適體對於給定的任何目標特徵都有高度的特異度與親和力,範圍從小分子到較大的蛋白質,甚至連整顆活細胞都在他的守備範圍內。使適體具有發展成廣範圍生物感測工具的潛力。而抗體只能辨識具有免疫活性的分子,泛用度上就有相當大的差距。
  2. 適體被篩選出來後,其後續生產原料來自商業來源,可以固相合成技術在數小時內批量生產,並同時具有高重現度與純度。反觀一般抗體藥物需要由哺乳動物細胞培養,且從生產製造到純化需耗費數天至數月。時間成本上抗體輸了一大截。
  3. 與蛋白質構成的抗體或酵素相比,DNA構成的適體具有高度化學穩定性,不易因酸鹼熱等環境因子而破壞活性。但是未經過適當化學修飾的適體在血液中將面臨核酸酶的破壞,未能如抗體一般穩定存在。
  4. 適體在與目標結合後,構型會有顯著的變化。使它可以被設計成更為靈活的生物檢測器,並有高度的偵測特異度與選擇性。

既便宜又多用途,使適體成為十分有潛力的發展目標。然而適體也有其弱點:雖然有好的化學穩定性,但由於其小分子量使其生物穩定性較差。體內半衰期短限制了適體在臨床應用上的發展。且傳統的 SELEX技術無法預測適體和目標分子結合的位置,與結合後的具體作用功能。因此短時間內,適體還不能動搖已經有穩健根本的抗體檢測市場,但相信假以時日,這些技術層面的障礙也將被孜孜不倦的研發人員們突破。

適體與抗體的各項比較。表/ 修改自DOIT 經濟部技術處

適體的誕生之路—SELEX

介紹完了適體,那麼回頭來看看SELEX。究竟是經過怎樣的流程,能讓一般的核酸分子大翻身變成大家眼中生物檢測界的明日之星呢?

SELEX可大致分為三個流程:

篩選出可結合目標的配體序列:

目標會與核酸序列庫內各種隨機的單鏈核酸序列作用。藉以找出能與目標物結合的適體。在這個階段,平均可以從 10到 1013 的隨機序列中找到一條能結合上目標物。

-----廣告,請繼續往下閱讀-----

分離出有結合到目標物的適體:

在第一個步驟後,將未結合上目標物的核酸分子分離,再將有結合的適體與目標物分離並收集起來。

放大適體數量:

收集完的那些適體分子,再進一步以聚合酶連鎖反應(PCR)的方式放大其數量。

透過重複這三個步驟的流程,並在每一次循環中,調整培養的時間、溶液的性質、目標分子的數量等方式,使篩選條件更加嚴苛。以篩選出真正具高度專一性與親和力的適體分子。

並且,做為保險機制,會在前期的某次循環中進行反向篩選,即以另一種跟目標物有相似處的不同物質進行篩選。而這次篩選出有結合的那些適體分子會被判定不及格,只留下沒結合上的適體分子。這個步驟的目的是要篩去那些雖然有親和力但是專一性不高的適體。

-----廣告,請繼續往下閱讀-----

通過了如此層層關卡後篩出來的極少數核酸分子,才是真正符合我們要求的高品質適體。並進一步應用到生物檢測或其他用途。

以SELEX技術篩選適體。圖/ DOIT 經濟部技術處

適體在臨床與科學應用上有著許多抗體所沒有的優勢,雖然目前市場上適體的相關產品較為罕見,一方面因為過去SELEX的技術受到專利的保護,只有少數公司享有開發產品的權利;另一方面,適體要從實驗室跨足到商業應用也仍有許多問題需要克服。

相較已經熟為人知並有成熟體系的抗體,適體的產品仍舊較為弱勢。但期待隨著各項適體相關專利的解禁,更多的實驗室投入適體的改良與開發,未來適體能夠成為臨床與科研領域發展上的強力推手!

  1. Shiping Song, Lihua Wang, Jiang Li, Chunhai Fan, Jianlong Zhao (2008). Aptamer-based biosensors. Elsevier. doi: 10.1016/j.trac.2007.12.004
  2. Subash Chandra Bose Gopinath (2007). Methods developed for SELEX. Analytical and Bioanalytical Chemistry.
  3. Regina Stoltenburg, Christine Reinemann, Beate Strehlitz (2007). SELEX—A (r)evolutionary method to generate high-affinity nucleic acid ligands. Elsevier. doi: 10.1016/j.bioeng.2007.06.001
  4. DOIT 經濟部技術處(2017)—產業技術評析 核酸適體(Apatamer)新藥研發商機

 

-----廣告,請繼續往下閱讀-----
文章難易度
活躍星系核_96
778 篇文章 ・ 128 位粉絲
活躍星系核(active galactic nucleus, AGN)是一類中央核區活動性很強的河外星系。這些星系比普通星系活躍,在從無線電波到伽瑪射線的全波段裡都發出很強的電磁輻射。 本帳號發表來自各方的投稿。附有資料出處的科學好文,都歡迎你來投稿喔。 Email: contact@pansci.asia

0

0
0

文字

分享

0
0
0
LDL-C 正常仍中風?揭開心血管疾病的隱形殺手 L5
鳥苷三磷酸 (PanSci Promo)_96
・2025/06/20 ・3659字 ・閱讀時間約 7 分鐘

本文與 美商德州博藝社科技 HEART 合作,泛科學企劃執行。

提到台灣令人焦慮的交通,多數人會想到都市裡的壅塞車潮,但真正致命的「塞車」,其實正悄悄發生在我們體內的動脈之中。

這場無聲的危機,主角是被稱為「壞膽固醇」的低密度脂蛋白( Low-Density Lipoprotein,簡稱 LDL )。它原本是血液中運送膽固醇的貨車角色,但當 LDL 顆粒數量失控,卻會開始在血管壁上「違規堆積」,讓「生命幹道」的血管日益狹窄,進而引發心肌梗塞或腦中風等嚴重後果。

科學家們還發現一個令人困惑的現象:即使 LDL 數值「看起來很漂亮」,心血管疾病卻依然找上門來!這究竟是怎麼一回事?沿用數十年的健康標準是否早已不敷使用?

膽固醇的「好壞」之分:一場體內的攻防戰

膽固醇是否越少越好?答案是否定的。事實上,我們體內攜帶膽固醇的脂蛋白主要分為兩種:高密度脂蛋白(High-Density Lipoprotein,簡稱 HDL)和低密度脂蛋白( LDL )。

-----廣告,請繼續往下閱讀-----

想像一下您的血管是一條高速公路。HDL 就像是「清潔車隊」,負責將壞膽固醇( LDL )運來的多餘油脂垃圾清走。而 LDL 則像是在血管裡亂丟垃圾的「破壞者」。如果您的 HDL 清潔車隊數量太少,清不過來,垃圾便會堆積如山,最終導致血管堵塞,甚至引發心臟病或中風。

我們體內攜帶膽固醇的脂蛋白主要分為兩種:高密度脂蛋白(HDL)和低密度脂蛋白(LDL)/ 圖片來源:shutterstock

因此,過去數十年來,醫生建議男性 HDL 數值至少應達到 40 mg/dL,女性則需更高,達到 50 mg/dL( mg/dL 是健檢報告上的標準單位,代表每 100 毫升血液中膽固醇的毫克數)。女性的標準較嚴格,是因為更年期後]pacg心血管保護力會大幅下降,需要更多的「清道夫」來維持血管健康。

相對地,LDL 則建議控制在 130 mg/dL 以下,以減緩垃圾堆積的速度。總膽固醇的理想數值則應控制在 200 mg/dL 以內。這些看似枯燥的數字,實則反映了體內一場血管清潔隊與垃圾山之間的攻防戰。

那麼,為何同為脂蛋白,HDL 被稱為「好」的,而 LDL 卻是「壞」的呢?這並非簡單的貼標籤。我們吃下肚或肝臟製造的脂肪,會透過血液運送到全身,這些在血液中流動的脂肪即為「血脂」,主要成分包含三酸甘油酯和膽固醇。三酸甘油酯是身體儲存能量的重要形式,而膽固醇更是細胞膜、荷爾蒙、維生素D和膽汁不可或缺的原料。

-----廣告,請繼續往下閱讀-----

這些血脂對身體運作至關重要,本身並非有害物質。然而,由於脂質是油溶性的,無法直接在血液裡自由流動。因此,在血管或淋巴管裡,脂質需要跟「載脂蛋白」這種特殊的蛋白質結合,變成可以親近水的「脂蛋白」,才能順利在全身循環運輸。

肝臟是生產這些「運輸用蛋白質」的主要工廠,製造出多種蛋白質來運載脂肪。其中,低密度脂蛋白載運大量膽固醇,將其精準送往各組織器官。這也是為什麼低密度脂蛋白膽固醇的縮寫是 LDL-C (全稱是 Low-Density Lipoprotein Cholesterol )。

當血液中 LDL-C 過高時,部分 LDL 可能會被「氧化」變質。這些變質或過量的 LDL 容易在血管壁上引發一連串發炎反應,最終形成粥狀硬化斑塊,導致血管阻塞。因此,LDL-C 被冠上「壞膽固醇」的稱號,因為它與心腦血管疾病的風險密切相關。

高密度脂蛋白(HDL) 則恰好相反。其組成近半為蛋白質,膽固醇比例較少,因此有許多「空位」可供載運。HDL-C 就像血管裡的「清道夫」,負責清除血管壁上多餘的膽固醇,並將其運回肝臟代謝處理。正因為如此,HDL-C 被視為「好膽固醇」。

-----廣告,請繼續往下閱讀-----
為何同為脂蛋白,HDL 被稱為「好」的,而 LDL 卻是「壞」的呢?這並非簡單的貼標籤。/ 圖片來源:shutterstock

過去數十年來,醫學界主流觀點認為 LDL-C 越低越好。許多降血脂藥物,如史他汀類(Statins)以及近年發展的 PCSK9 抑制劑,其主要目標皆是降低血液中的 LDL-C 濃度。

然而,科學家們在臨床上發現,儘管許多人的 LDL-C 數值控制得很好,甚至很低,卻仍舊發生中風或心肌梗塞!難道我們對膽固醇的認知,一開始就抓錯了重點?

傳統判讀失準?LDL-C 達標仍難逃心血管危機

早在 2009 年,美國心臟協會與加州大學洛杉磯分校(UCLA)進行了一項大型的回溯性研究。研究團隊分析了 2000 年至 2006 年間,全美超過 13 萬名心臟病住院患者的數據,並記錄了他們入院時的血脂數值。

結果發現,在那些沒有心血管疾病或糖尿病史的患者中,竟有高達 72.1% 的人,其入院時的 LDL-C 數值低於當時建議的 130 mg/dL「安全標準」!即使對於已有心臟病史的患者,也有半數人的 LDL-C 數值低於 100 mg/dL。

-----廣告,請繼續往下閱讀-----

這項研究明確指出,依照當時的指引標準,絕大多數首次心臟病發作的患者,其 LDL-C 數值其實都在「可接受範圍」內。這意味著,單純依賴 LDL-C 數值,並無法有效預防心臟病發作。

科學家們為此感到相當棘手。傳統僅檢測 LDL-C 總量的方式,可能就像只計算路上有多少貨車,卻沒有注意到有些貨車的「駕駛行為」其實非常危險一樣,沒辦法完全揪出真正的問題根源!因此,科學家們決定進一步深入檢視這些「駕駛」,找出誰才是真正的麻煩製造者。

LDL 家族的「頭號戰犯」:L5 型低密度脂蛋白

為了精準揪出 LDL 裡,誰才是最危險的分子,科學家們投入大量心力。他們發現,LDL 這個「壞膽固醇」家族並非均質,其成員有大小、密度之分,甚至帶有不同的電荷,如同各式型號的貨車與脾性各異的「駕駛」。

為了精準揪出 LDL 裡,誰才是最危險的分子,科學家們投入大量心力。發現 LDL 這個「壞膽固醇」家族並非均質,其成員有大小、密度之分,甚至帶有不同的電荷。/ 圖片來源:shutterstock

早在 1979 年,已有科學家提出某些帶有較強「負電性」的 LDL 分子可能與動脈粥狀硬化有關。這些帶負電的 LDL 就像特別容易「黏」在血管壁上的頑固污漬。

-----廣告,請繼續往下閱讀-----

台灣留美科學家陳珠璜教授、楊朝諭教授及其團隊在這方面取得突破性的貢獻。他們利用一種叫做「陰離子交換層析法」的精密技術,像是用一個特殊的「電荷篩子」,依照 LDL 粒子所帶負電荷的多寡,成功將 LDL 分離成 L1 到 L5 五個主要的亞群。其中 L1 帶負電荷最少,相對溫和;而 L5 則帶有最多負電荷,電負性最強,最容易在血管中暴衝的「路怒症駕駛」。

2003 年,陳教授團隊首次從心肌梗塞患者血液中,分離並確認了 L5 的存在。他們後續多年的研究進一步證實,在急性心肌梗塞或糖尿病等高風險族群的血液中,L5 的濃度會顯著升高。

L5 的蛋白質結構很不一樣,不僅天生帶有超強負電性,還可能與其他不同的蛋白質結合,或經過「醣基化」修飾,就像在自己外面額外裝上了一些醣類分子。這些特殊的結構和性質,使 L5 成為血管中的「頭號戰犯」。

當 L5 出現時,它並非僅僅路過,而是會直接「搞破壞」:首先,L5 會直接損傷內皮細胞,讓細胞凋亡,甚至讓血管壁的通透性增加,如同在血管壁上鑿洞。接著,L5 會刺激血管壁產生發炎反應。血管壁受傷、發炎後,血液中的免疫細胞便會前來「救災」。

-----廣告,請繼續往下閱讀-----

然而,這些免疫細胞在吞噬過多包括 L5 在內的壞東西後,會堆積在血管壁上,逐漸形成硬化斑塊,使血管日益狹窄,這便是我們常聽到的「動脈粥狀硬化」。若這些不穩定的斑塊破裂,可能引發急性血栓,直接堵死血管!若發生在供應心臟血液的冠狀動脈,就會造成心肌梗塞;若發生在腦部血管,則會導致腦中風。

L5:心血管風險評估新指標

現在,我們已明確指出 L5 才是 LDL 家族中真正的「破壞之王」。因此,是時候調整我們對膽固醇數值的看法了。現在,除了關注 LDL-C 的「總量」,我們更應該留意血液中 L5 佔所有 LDL 的「百分比」,即 L5%。

陳珠璜教授也將這項 L5 檢測觀念,從世界知名的德州心臟中心帶回台灣,並創辦了美商德州博藝社科技(HEART)。HEART 在台灣研發出嶄新科技,並在美國、歐盟、英國、加拿大、台灣取得專利許可,日本也正在申請中,希望能讓更多台灣民眾受惠於這項更精準的檢測服務。

一般來說,如果您的 L5% 數值小於 2%,通常代表心血管風險較低。但若 L5% 大於 5%,您就屬於高風險族群,建議進一步進行影像學檢查。特別是當 L5% 大於 8% 時,務必提高警覺,這可能預示著心血管疾病即將發作,或已在悄悄進展中。

-----廣告,請繼續往下閱讀-----

對於已有心肌梗塞或中風病史的患者,定期監測 L5% 更是評估疾病復發風險的重要指標。此外,糖尿病、高血壓、高血脂、代謝症候群,以及長期吸菸者,L5% 檢測也能提供額外且有價值的風險評估參考。

隨著醫療科技逐步邁向「精準醫療」的時代,無論是癌症還是心血管疾病的防治,都不再只是單純依賴傳統的身高、體重等指標,而是進一步透過更精密的生物標記,例如特定的蛋白質或代謝物,來更準確地捕捉疾病發生前的徵兆。

您是否曾檢測過 L5% 數值,或是對這項新興的健康指標感到好奇呢?

-----廣告,請繼續往下閱讀-----
文章難易度

討論功能關閉中。

0

0
0

文字

分享

0
0
0
科學家創造出DNA第5個「字母」
陸子鈞
・2014/05/08 ・1129字 ・閱讀時間約 2 分鐘 ・SR值 588 ・九年級

-----廣告,請繼續往下閱讀-----

1.15179

超過半世紀以來,生物課本一定會提到DNA由四個「字母」組成:A、T、C、G,不過現在科學家成功將新的「字母」新增到細菌中,而且和「天然」DNA一樣,在實驗室中具有轉錄、轉譯的生物功能。

加州斯克里普斯研究所(Scripps Research Institute)的生物學家羅莫斯伯格(Floyd Romesberg)努力15年,終於創造出帶有人造DNA「字母」的細菌,他說:「我們現在有一個帶有更多遺傳訊息的活生生細菌」。相關的研究成果發表在這一期的《自然》期刊。

DNA的四個「字母」其實是四種不同的含氮鹼基(base):A-腺嘌呤(Adenine)、T-胸腺嘧啶(Thymine、G-鳥糞嘌呤(Guanine、C-胞嘧啶(Cytosine)。而且A與T配對,C與G配對,互補的兩股DNA就這樣編成完美的雙螺旋結構(如下圖)。要是能找到互補的兩種分子,並且像這四種鹼基一樣接在磷酸骨架上,理論上就能用新的「字母」寫出新的遺傳密碼。

dna-base

這個簡單的想法在華生、克里克發表DNA雙螺旋結構不久後,就有科學家提出。不過一直到了1989年,蘇黎世聯邦理工學院(Swiss Federal Institute of Technology)的賓勒(Steven Benner)才和研究團隊將修改後的胞嘧啶(C, Cytosine)植入活體細菌中,讓細菌得以複製帶有「新.胞嘧啶」的DNA。

-----廣告,請繼續往下閱讀-----

然而羅莫斯伯格這次的研究成果,又比先前賓勒的「新.胞嘧啶」更稱得上是一個「新字」。研究團隊列出60種有望成為「新字母」的分子,從3600種配對中發現 d5SICS 和 dNaM 最有希望成功(如下圖),特別是這兩種分子又和既有的DNA複製 / 轉錄機制相容,在試管中能轉譯成RNA,也能夠複製。未命名-1

研究團隊讓這兩種分子合成在細菌質體DNA中,再將質體植入大腸桿菌(E. coli)。這段帶有「新字母」的DNA成功在細菌中複製還有轉錄,而且當細菌分裂時,還會帶著這段獨特的質體一起分裂。未來有可能找到更多能夠充當遺傳密碼「新字母」的分子,甚至整段DNA都不包含自然存在的A、T、C、G。

這項技術對遺傳工程來說,具有提高安全性的應用潛力。舉例來說,如果用來製藥的細菌使用人工「新字母」,那麼當細菌逃逸出實驗室,也會因為在自然界中得不到人造的「字母」,缺乏原料而無法複製繁殖。

羅莫斯伯格的研究團隊正在嘗試「寫出」更多胺基酸「單字」。目前已知的生物都是三個字母為一組「密碼子」(codons),轉錄/轉譯出胺基酸,有了新的「字母」,就有機會設計出能夠轉錄/轉譯更多胺基酸的生物。潛在的應用像是設計出精準毒殺癌細胞的胺基酸來治療癌症,或者具有螢光反應的胺基酸讓科學可以追蹤細胞。

-----廣告,請繼續往下閱讀-----

 

參考資料:First life with ‘alien’ DNA. Nature News [07 May 2014]

研究文獻:Malyshev, D. A. et al. Nature http://dx.doi.org/10.1038/nature13314 (2014).

-----廣告,請繼續往下閱讀-----
陸子鈞
294 篇文章 ・ 4 位粉絲
Z編|台灣大學昆蟲所畢業,興趣廣泛,自認和貓一樣兼具宅氣和無窮的好奇心。喜歡在早上喝咖啡配RSS,克制不了跟別人分享生物故事的衝動,就連吃飯也會忍不住將桌上的食物作生物分類。

0

0
0

文字

分享

0
0
0
懷男孩會改變妳的大腦
cleo
・2012/10/03 ・1059字 ・閱讀時間約 2 分鐘 ・SR值 495 ・六年級

-----廣告,請繼續往下閱讀-----

「懷孕中的大腦」有了新的定義,研究指出男性DNA(去氧核醣核酸)–可能是懷孕時間男寶寶遺留在母體內的–能夠永遠存在母親大腦裡。雖然這個外來DNA造成的生物影響尚未明確,研究也發現大腦裡有較多的男性DNA的女性,較不易患有阿茲海默症–據研究所說,男性DNA可能降低母親患有阿茲海默症的機率。

哺乳類懷孕期間,母體與胎兒互換DNA及細胞。早先的研究指出,胎兒的細胞能遺留於母體的血管及骨骼內,長達數十年之久,研究人員稱此現象為母胎微嵌合(fetal microchimerism)。研究指出,遺留在母體內的胎兒DNA對母體或許有壞的影響也有好的影響:藉由促使組織修復及增進免疫系統,使母體健康受惠–但也可能造成負面影響,如自體免疫(autoimmune reactions)。

其中一個問題就是,遺留下來的胎兒細胞是如何影響大腦的。研究人員指出母胎微嵌合發生於鼠類大腦裡,但尚未有資料顯示母胎微嵌合發生於人體。因此,弗雷德哈欽森癌症研究中心(華盛頓州,西雅圖)的自體免疫及風濕病學家J. Lee Nelson採集了五十九位,過世時為三十九至一零一歲的女性大腦解剖樣本。藉由測試Y染色體特有的基因發現,五十九位女性中,63%大腦中有男性DNA。(研究人員並沒有她們的懷孕資料)男性DNA分布於大腦不同部位中。

因有些研究指出懷孕的次數愈多,患得阿茲海默症的機率愈高,為找出阿茲海默症的跡象,此研究團隊也檢測了大腦,進而判定阿茲海默症是否與母胎微嵌合相關。五十九位女性中,有三十三位患有阿茲海默症–但研究結果與研究團隊所預計的大為不同,患有阿茲海默症的女性,腦中的男性DNA明顯少於二十六位未患病女性腦中的男性DNA。

-----廣告,請繼續往下閱讀-----

然而,胎兒的男性DNA是否降低女性阿茲海默症患病率仍未明確。「對我來說,這表示母體大腦中的胎兒細胞能預防疾病。」紐約西奈山醫學院心臟科醫師Hina Chaudhry說道。

去年底發表在「Circulation Research 」網站上的一項研究中,Chaudhry與同事發現在鼠體內胎兒細胞移轉到母體心臟裡,分化成能夠作用的心臟細胞且加速受損心臟組織的修復。因此,Chaudhry說道,相似的情形可會能發生胎兒細胞移轉至大腦時。「我想這些細胞移轉到母親大腦裡,且分化成神經元。」

一項2010年發表在《Stem Cells and Development》上的研究指出,胎兒細胞能移轉至母鼠大腦裡,且生成神經元,Nelson說道。但她也說道,相似的情形是否也發生於人體上,目前仍不明確–而且要確切地提出證據,證明阿茲海默症與母胎微嵌合之間的關聯十分地困難。一部分是因他們沒有這些女性的懷孕資料。「 必須說,我們真的不知道。希望這樣的研究在未來能被完成,但是以人體為樣本做研究實在是太困難了。」

資料來源:Bearing Sons Can Alter Your Mind – ScienceNow [26 SEPTEMBER 2012]

-----廣告,請繼續往下閱讀-----
-----廣告,請繼續往下閱讀-----
cleo
49 篇文章 ・ 1 位粉絲
是個標準的文科生,最喜歡讀的卻是科學雜誌。一天可以問上十萬個為什麼。