0

0
0

文字

分享

0
0
0

那些年,科學家一起研究的全球暖化——《讓人生從此改變的科學思考》

PanSci_96
・2019/01/21 ・4346字 ・閱讀時間約 9 分鐘 ・SR值 532 ・七年級

全球暖化陰謀論?人們稱它「氣候門」

科學從懷疑開始。

所以我們首先試著對常識提出質疑吧!地球正在暖化是現在普遍的說法,但這是真的嗎?全球暖化真的正在發生嗎?

實際上,科學家之中,也有人對全球暖化提出質疑。

南極和格陵蘭冰芯中,氫或氧的同位素比例紀錄了地球 140000 年來的冷暖期變化。圖 / wikipedia

綜觀地球的歷史,冰河覆蓋整個地球的寒冷時代,與溫暖的時代一直交替出現。考慮到這樣的循環,認為地球今後不可能持續暖化,總有一天必定會進入寒冷的時期。這就是暖化懷疑論。

但專家已經對懷疑論提出反駁,認為地球在不久的將來進入冰河期的機率極低,很難認為暖化懷疑論是個具有說服力的論點。但現在依然有許多人對全球暖化抱持質疑的態度,起因是二○○九年的「氣候門事件」——這起事件讓人聯想到迫使美國尼克森總統辭職的「水門事件」,因此稱為「氣候門」。 當時英國溫室效應研究者之間的電子郵件往來遭到駭客入侵,公開在網路上。郵件內容包含「捏造」證明溫室效應的數據、對批評溫室效應的研究者所寫的論文施壓等等,這些內容也被當成醜聞報導出來。

「我就說吧!」這起事件助長了懷疑論者的氣焰,據說歐美質疑全球暖化者的比例也一口氣提高。媒體還報導,美國「近半數的國民都開始對全球暖化抱持著懷疑的看法」。

都是政治惹的禍:研究掛勾利害關係?

這起事件在溫室效應專家之間也成為嚴重的問題,於是展開了各式各樣的調查,最後發現:

暖化正在發生的結論並沒有改變,爭議姑且算是塵埃落定。

但是懷疑論者對全球暖化研究的質疑依然根深柢固。理由之一,就是連一般人也很容易就能推測出,全球暖化的研究背後,有許許多多的利害關係。

舉例來說,有人以懷疑的眼光看待主張「暖化正在發生」的研究者,認為他們之所以這麼說,目的是為了爭取研究預算。或者是只要以「暖化正在發生」為由,嚴格限制二氧化碳的排放量,就能減少煤炭與石油等化石燃料的使用,推動核能發電。因此也有人懷疑,這是否代表擁核派與研究者彼此勾結呢?

隨著暖化的推進,政治上與經濟上也都會採取各種措施,這表示不論科學上的實證性如何,溫室效應的研究原本就容易遭到懷疑,也容易成為政治鬥爭的工具。

但否定暖化的人不也一樣嗎?

哈!全球暖化,我不吃這套。圖 / Michael Vadon@staticflickr

舉例來說,以美國總統川普為首,共和黨議員大多主張「全球暖化並未發生」。美國有個針對政治人物發言進行驗證的網站「政治真相( PolitiFact.com)」,根據該網站二○一四年的資料顯示,二七八名共和黨議員中,只有八名承認人為引發的全球暖化,這些議員多半從石油產業與煤炭產業收受高額的政治獻金。因此不禁令人懷疑,他們或許就是因為這樣,才無法說出「暖化正在發生」。

由傅立葉奠基的溫室效應概念

懷疑雖然重要,但基於政治上的疑慮而懷疑全球暖化的態度並不科學。

接下來就讓我們翻開科學的歷史,來看看科學家對全球暖化進行了那些研究。 現代的我們已經知道全球暖化是由「溫室效應」引起的,但科學家到底是如何發現溫室效應的呢?

法國物理學家傅立葉在一八二七年的論文中,提出了日後發展成「溫室效應」的最初概念。

 

法國物理學家傅立葉的兩個假說,為日後「溫室效應」奠定了基礎。圖 / wikimedia

他首先提出了這樣的疑問:地球在接受太陽光能量的同時,也會以紅外線的形式朝著宇宙釋放能量。如果兩者的能量相等,地球的溫度理論上應該更低,但現實的氣溫卻比理論值高。這是為什麼呢?

為了解答這個疑問,傅立葉建立了兩個假說。

第一個假說是,地球也接收了來自宇宙的其他能量。

宇宙中還有其他和太陽一樣,能靠自己燃燒而發光發熱的恆星。地球是否也接收了這些恆星發出的能量?

第二個假說是,地球的大氣是否儲存了這些原本應該往外釋放的能量。

而這個假說就是發展成溫室效應的想法。

兩個假說中,第一個假說已因為理論上的瑕疵而遭到否定,使得第二個假說變得有力。但傅立葉並未發展到實證階段,後來由愛爾蘭的物理學家廷得耳透過實驗證實他的理論。

溫室氣體:會吸熱的不只是二氧化碳

廷得耳認為,地球的大氣中說不定存在著能吸收紅外線的物質,因此他進行了以下實驗:

首先,廷得耳準備了幾只長筒,在各筒裝入構成大氣的氣體,並以紅外線照射其中一端,另一端則裝置能感測紅外線量的偵測器。如此一來,應該就能知道哪種氣體會吸收紅外線了吧?

結果,氧氣與氮氣完全不會吸收紅外線,但水蒸氣、二氧化碳,以及氮氧化物都會吸收紅外線,並儲存熱量。透過這個實驗,廷得耳找出了能吸收地球朝宇宙放射的紅外線的氣體。

經過現代科學的計算,如果地球朝宇宙放射的能量完全不受阻擋,地球的平均氣溫將在負十八度到十九度左右。但實際上,地球整體的平均氣溫約有十四度到十五度。兩者之間的溫度差異,明顯來自水蒸氣、二氧化碳、氮氧化物吸收紅外線所儲存的熱量。帶來溫室效應的氣體就此發現。

大家提到全球暖化的原因時,往往只會把注意力擺在二氧化碳,然而從廷得耳的實驗中我們知道,水蒸氣與氮氧化物同樣能吸收紅外線。所以,未來海水若因全球暖化持續蒸發,暖化的速度也將會加快。

冰封的甲烷氣泡。圖 / wikimedia

此外,西伯利亞的永凍土中冰封著大量甲烷,若永凍土融化,冰凍的甲烷將以氣體形式釋放出來。甲烷的帶來的溫室效應遠高於二氧化碳,科學家預測,這也會加速全球暖化。

《卜多力的一生》:文學家宮澤賢治筆下樂觀的暖化現象

廷得耳透過實驗發現溫室氣體,是一八六一年的事情。三十五年後的一八九六年,瑞典學者阿瑞尼斯證明了大氣中的二氧化碳濃度增加,將使氣溫產生變化。雖然廷得耳已經發現二氧化碳能儲存熱量,但真正證明二氧化碳含量增加,將會加速暖化的,其實是阿瑞尼斯。

二氧化碳變多?我覺得可以。 阿瑞尼斯照片。圖 / wikimedia

不過阿瑞尼斯對於溫室效應的看法卻很樂觀。他認為二氧化碳增加得越多,人類就越能擁有溫和舒適的氣候;穀物的產量會因此提高,人類也將從糧食不足中獲得解放,並使得全球的人口急速成長。

在這裡,我們要請一位大家意想不到的人物登場──日本文學家宮澤賢治。

宮澤賢治在一九三二年寫了一部小說《卜多力的一生》。小說採用傳記體,描述卜多力這名虛構人物的一生。 宮澤賢治生長的時代,東北總是受寒害所苦;主角卜多力居住的地方,也因為日漸寒冷而完全採收不到農作物。想要解決這個問題的卜多力注意到二氧化碳,並與博士之間有了如下的對話:

「老師,如果大氣層裡的二氧化碳增加,地球就會變溫暖嗎?」
「應該會吧。甚至有人說,地球形成至今的氣溫,大致上取決於空氣中的二氧化碳量呢。」
「如果現在卡爾波納度火山島爆發,會噴出足以改變氣候的二氧化碳嗎?」
「這個我也計算過了,如果火山現在爆發,氣體應該就會立刻與大循環上層的風混合,包覆整個地球。如此一來,就能防止下層的空氣與地表的熱發散,我想地球整體的平均氣溫大約可以上升五度左右。」

本書的觀點與阿瑞尼斯一樣,將暖化視為能夠拯救寒害的現象。雖然沒有確切證據,但宮澤賢治曾就讀於盛岡高等農林學校(現在的岩手大學農學院),因此或許讀過阿瑞尼斯論文的英譯本。

如果多些二氧化碳,是不是就能溫暖點了呢。圖 / satoshi sawada

只不過,在宮澤賢治生長的時代,尚未把暖化當成危機。

來看看碳十四吧!以放射性定年法佐證二氧化碳變化

阿瑞尼斯雖然證明了二氧化碳增加會使氣溫升高,卻沒有證明與過去相比,二氧化碳實際上增加了多少。

至於這一點,要等到第二次世界大戰結束後的一九五五年,才透過美國物理學家漢斯.蘇斯的研究確認。當時他使用的方法,就是「放射性碳定年法」。

蘇斯首先調查周邊的樹木中,含有多少放射性物質碳十四。放射性物質有半衰期,含量將隨著時間減少,因此越老的樹木,碳十四的濃度應該越少才合理。但調查結果卻相反。老樹的碳十四濃度,竟然比年輕的樹還要多。

這到底是怎麼回事呢?他根據調查結果,建立了驚人的假說:

老樹總有一天會埋入地底成為煤炭,但碳十四仍會持續衰減。因此,燃燒煤炭所排放出來的二氧化碳中,碳十四的含量極少,甚至沒有,並不影響定年結果。

蘇斯認為,年輕的樹木在進行光合作用時,或許就吸收了燃燒煤炭所產生(沒有碳十四)的二氧化碳,使得年輕樹木中的碳十四濃度降低。

年輕樹木吸收燃燒煤炭所產生的二氧化碳,碳十四含量因而比老樹木低。圖 / Pixabay

當時是一九五五年,正是大量使用化石燃料的時候,地球上的二氧化碳也因燃燒煤炭而逐漸增加。年輕的樹木吸收了這些二氧化碳,使得碳十四的濃度被稀釋;換句話說,蘇斯得到的結論就是,地球因人類持續燃燒煤炭,充滿大量的二氧化碳

匯集各方證據,二氧化碳真的在上升

蘇斯證明了他的假說之後,科學家也開始使用各式各樣的方法觀測二氧化碳。譬如從南極的冰層,也能觀測到二氧化碳濃度的變化。

藉由南極冰層中的冰封空氣,我們就可得知大氣組成。圖 / pixabay

南極從很久以前就開始結冰積雪。這些雪越堆越高,使得下方的雪積壓成冰。由於空氣被冰封起來,所以只要調查堆積的冰層,就能得知各個年代的大氣成分。

透過這樣的分析發現,二氧化碳從工業革命後開始急速增加。南極雖然距離英國很遠,但由於大氣循環的緣故,就算是南極,二氧化碳含量也同樣越來越高。

此外,科學家也從一九五八年開始,持續在夏威夷茂納羅亞火山的山頂附近觀測二氧化碳的變化。結果發現,從開始觀測後,二氧化碳的量就不斷增加。

工業革命後,大氣中二氧化碳的含量急遽增加。圖 / pixabay

這堂課開頭曾試著提出「全球暖化是真的嗎」的質疑。但既然有這麼多的科學根據,我們應該承認,至少在目前,「地球正因為二氧化碳增加而暖化」的假說是事實吧?

 

 

本文摘自《讓人生從此改變的科學思考》,2018 年 9 月,究竟出版。

文章難易度
PanSci_96
1190 篇文章 ・ 1755 位粉絲
PanSci的編輯部帳號,會發自產內容跟各種消息喔。

0

7
0

文字

分享

0
7
0
氣候變遷會讓世界變得又熱又病嗎?暖化之下的寄生關係可不簡單
阿咏_96
・2023/05/15 ・3188字 ・閱讀時間約 6 分鐘

近年來,氣候變遷已經變成一個眾所皆知的熱門話題,不僅影響著我們身處的自然環境,以及人類生活,也對生物的繁殖、生長、分布等造成衝擊。不過,今天我們沒有要討論海平面上升、極端天氣等這些巨觀環境的改變,而是要來談談或許你我體內都有的——寄生蟲。

提到寄生蟲,大家比較熟悉的或許是蟯蟲、蛔蟲等,有機會寄生於人類體內的寄生蟲,而自然中許多物種之間也有寄生關係,但這與氣候變遷有什麼關係呢?

有許多研究顯示,氣溫升高會導致寄生蟲爆發事件增加,也有些研究說寄生蟲在高溫下的表現比宿主好,因此暖化可能會造成相關疾病越來越嚴峻,後來也衍生出「地球越溫暖,流行病越多」的假說。

地球越溫暖,流行病越多」的假說近來相當盛行。圖/envatoelements

寄生不是哩想ㄟ那麼簡單

俗話說:魔鬼藏在細節裡。腹肌藏在脂肪裡。

如同在生物課本裡學過的,寄生關係是生物間的交互作用,一種生物寄居在另一種生物的體表或體內,獲取營養得以生存、繁殖,所以也並非只有寄生蟲的事,和宿主的生理也有很大關係。找到溫度升高會影響寄生過程的哪些步驟,以及背後的機制怎麼運作,是了解氣候變遷對寄生關係影響的關鍵。

近期發表在英國皇家學會《自然科學會報》(Philosophical Transactions of the Royal Society B)的一項新研究就發現,溫度能夠調節寄生真菌在宿主水蚤體內的感染機制。

這個研究由臺灣大學氣候變遷與永續發展學程助理教授孫烜駿與美國密西根大學研究團隊合作,利用暖化實驗觀察水蚤和真菌之間的寄生關係。

他們將一種水蚤 Daphnia dentifera 作為實驗物種,水蚤平常吃藻類等浮游植物,然後也會被更大的捕食者吃掉,因此水蚤在淡水食物網中扮演著重要角色。而今天的另一個主角 —— 寄生真菌 Metschnikowia bicuspidata ,則是一種會感染多種水蚤的酵母菌。

那水蚤是怎麼被感染的呢?

宿主與寄生真菌之間的攻防戰

水蚤在濾食水中浮游植物時,寄生真菌的孢子可能會一起被牠吃進去,這時感染過程就開始了(水蚤表示:窩⋯⋯窩不知道QQ)首先,寄生真菌的針狀孢子需要先刺穿水蚤的腸道上皮細胞,才能進到體腔內開始發育、繁殖,感染初期有些水蚤還可能痊癒,否則就會進到最終感染階段,一旦水蚤體腔內充滿寄生真菌的孢子或孢子囊,便不可能康復,最終走向死亡,之後下一代孢子釋放回環境中,再被新宿主吃掉,完成感染週期。

寄生真菌在水蚤中的感染過程。生真菌的針狀孢子會先刺穿水蚤的腸道上皮細胞。圖/英國皇家學會《自然科學會報》

也不是所有被吃進去的孢子都能夠成功感染宿主,必須要經過重重關卡,畢竟水蚤也不是吃素的(好啦水蚤真的吃素沒錯 XD)

而兩道最重要的關卡就是「物理屏障」與「細胞免疫」。

物理屏障是一種常見的防禦形式,例如我們的皮膚和植物的角質層,在水蚤與寄生真菌的感染過程裡,腸道上皮細胞就是抵抗孢子進入體腔的物理屏障,像是一道能夠抵抗外來敵人的城牆。

但如果孢子還是順利進到水蚤的體腔內,細胞免疫就像一支軍隊,免疫細胞士兵們會聚集到被感染的部位,開啟防禦模式,共同抵禦外敵,也就是前面提到的,有些剛被感染的水蚤有機會康復的原因。

健康的 Daphnia dentifera 水蚤(左圖)與被寄生真菌 Metschnikowia bicuspidata 感染的水蚤(右圖)。圖/國立台灣大學

暖化之下,寄生關係會怎麼樣

研究團隊想知道:溫度對物裡屏障和細胞免疫的影響,以及會不會影響最終感染的機率。

因此他們把水蚤放到 20°C 和 24°C 下的環境飼養,為甚麼是這兩個溫度呢?

根據先前研究,20°C 是適合水蚤生長繁殖的溫度,而 24°C 則是來自 2100 年氣候變遷預測下的平均溫度變化,自西元 1985 年起,夏季的湖面溫度以每十年 0.34°C 攀升,到本世紀末預計上升 4°C。

並將不同溫度下飼養的水蚤,分別放入有寄生真菌和沒有寄生真菌的環境,總共四種環境條件的組別。

  1. 實驗組:24°C,沒有寄生真菌
  2. 實驗組:24°C,有寄生真菌
  3. 控制組:20°C,沒有寄生真菌
  4. 控制組:20°C,有寄生真菌

接著,為了知道感染初期的情形,針對有寄生真菌的組別,研究團隊在放入真菌 24 小時後,用複式顯微鏡觀察,檢查水蚤腸道和體腔內是否有孢子,以及孢子的數量。

那要怎麼知道物理屏障和細胞免疫的防禦效果呢?

如同前段提過的,我們將作為物理屏障的腸道上皮細胞想像成城牆,免疫細胞想像成軍隊,而寄生真菌的孢子是試圖入侵的外敵

腸道的防禦力便是用「後來在體腔內的孢子數」與「所有試圖刺穿腸道上皮的孢子數」相除;也就是「進到城牆內的敵人數」除以「所有一開始來城牆外攻擊的敵人數量」。(編按:每一百個攻擊城牆的敵人,會有多少人突破城牆的防禦進到牆內)

除此之外,團隊也觀察在不同溫度下水蚤腸壁上皮的厚度,畢竟城牆的厚度可能是防禦的關鍵。

而細胞免疫則是以「前來支援的免疫細胞數」除以「體腔內的孢子數」計算,可以想像成一個敵人需要幾個士兵一起抵抗

除了兩道關卡的抵禦能力外,為了解水蚤的健康狀態,研究團隊紀錄牠們在感染後的死亡率和繁殖力。

溫度影響的不只是寄生關係

實驗結果發現,較溫暖環境下的水蚤腸壁上皮細胞比控制組厚,但腸壁是越厚越好嗎?

另一個結果顯示,其實較厚和較薄的腸壁上皮細胞,比較能抵抗寄生孢子的攻擊,反而是有中等腸道厚度的水蚤防禦孢子進入體腔的能力較弱。

而關於細胞免疫,則發現隨著成功進入體腔的孢子數量增加,附著在孢子上的免疫細胞總數也跟著增加,但在較溫暖環境下飼養的水蚤召集來的免疫細胞,比控制環境下來得少。也就是說,越多敵人入侵,軍隊會募集越多士兵來共同對抗,但在溫暖環境下召來的士兵較少

那物理屏障和細胞免疫之間有什麼關係呢?

在 20°C 下,腸道上皮細胞越厚,每個寄生孢子所需要的免疫細胞數就越少,這似乎蠻容易理解的,若城牆越厚,軍隊火力就不需要太強,反之亦然。

但在 24°C 卻看不到同樣的趨勢,我們知道的只有在溫暖環境下,同樣腸道厚度免疫細胞仍比控制組少。

最後,不論是繁殖力還是存活率,都是在溫暖環境下被感染的水蚤敬陪末座。

從這個研究,我們可以得知,溫度上升不僅會改變宿主的物理屏障,也會影響細胞免疫,進而改變寄生真菌對水蚤的感染結果。在更了解溫度影響寄生關係中的哪些關鍵特徵和結果後,便能預測在暖化環境中,宿主與寄生蟲之間的交互作用,以及所導致的後果。

參考文獻

  1. Sun, S. J., Dziuba, M. K., Jaye, R. N., & Duffy, M. A. (2023). Temperature modifies trait-mediated infection outcomes in a Daphnia–fungal parasite system. Philosophical Transactions of the Royal Society B, 378(1873), 20220009.
  2. Rohr, J. R., & Cohen, J. M. (2020). Understanding how temperature shifts could impact infectious disease. PLoS biology, 18(11), e3000938.
  3. Harvell, C. D., Mitchell, C. E., Ward, J. R., Altizer, S., Dobson, A. P., Ostfeld, R. S., & Samuel, M. D. (2002). Climate warming and disease risks for terrestrial and marine biota. Science, 296(5576), 2158-2162.
  4. Miner, B. E., De Meester, L., Pfrender, M. E., Lampert, W., & Hairston Jr, N. G. (2012). Linking genes to communities and ecosystems: Daphnia as an ecogenomic model. Proceedings of the Royal Society B: Biological Sciences, 279(1735), 1873-1882.
  5. Ozersky, T., Nakov, T., Hampton, S. E., Rodenhouse, N. L., Woo, K. H., Shchapov, K., … & Moore, M. V. (2020). Hot and sick? Impacts of warming and a parasite on the dominant zooplankter of Lake Baikal. Limnology and Oceanography, 65(11), 2772-2786.
阿咏_96
12 篇文章 ・ 526 位粉絲
You can be the change you want to see in the world.

1

1
2

文字

分享

1
1
2
2022 年《Science》年度十大科學突破(下):EBV 病毒與發燒的地球
PanSci_96
・2022/12/30 ・2786字 ・閱讀時間約 5 分鐘

接續上篇:2022 年《Science》年度十大科學突破(上):持續進化的 AI 與韋伯太空望遠鏡

看過 2022 年十大科學突破的前五項後,你是否迫不及待想知道另外五項呢?讓我們繼續看下去吧!

多發性硬化症的元兇:EBV 病毒

多發性硬化症(Multiple sclerosis)是一種中樞神經系統疾病,初期症狀只有視力模糊、手腳麻木、走路不穩等,到了後期便逐漸讓病患喪失視力、無法說話和行走。

長久以來,科學家懷疑多發性硬化症的元兇是「人類疱疹病毒第四型病毒」(EBV)。這種病毒主要透過唾液傳播,幾乎每個人一生中都會感染到,然後病毒會潛伏在白血球中。雖然患者大多都有 EBV 抗體,但 95% 的健康成年人也有,難以作為判定依據。

然而,今年 1 月刊載在《Science》的研究指出,感染 EBV 將導致罹患多發性硬化症的風險增加 32 倍。另一篇《Science》研究也發現潛伏在白血球中的病毒可能會「甦醒」,而病毒的其中一種蛋白質,會誘使免疫系統攻擊中樞神經細胞。

這些新發現給了科學家開發疫苗的方向。目前,有一種 EBV 疫苗正在進行臨床試驗,要是數據顯示疫苗有效,那麼在未來,多發性硬化症或許就能像小兒麻痺一樣,從此絕跡。

新研究確定了 EBV 病毒(藍色)與多發性硬化症的關聯。圖/Science

美國簽署《降低通膨法案》,搶救發燒的地球

今年 2 月,聯合國 IPCC 第六次評估報告指出,若是全球平均升溫超過 1.5°C,各地都將出現多種極端氣候災害,部分地區也將不再適合人類居住。

8 月,美國總統拜登(Joe Biden)簽署了《降低通膨法案》(Inflation Reduction Act),試圖從綠能、醫療、稅收等三大面向解決通貨膨脹的問題,同時減少溫室氣體排放,堪稱美國史上最重要的氣候法案。

身為全球第二的溫室氣體排放國,美國將在未來 10 年撥出 3690 億美元,投入綠能、電動車、核能發電等產業,目標是在 10 年後(2032 年)將溫室氣體排放量降低到 2005 年的 40%。

目前,全球平均升溫(相較於工業革命前)來到 1.2°C,而且今年的溫室氣體排放量仍持續上升,沒有下降趨勢。許多氣候科學家都認為升溫幅度必然超過《巴黎協定》規範的 1.5°C 上限,因此我們都需要盡快採取更多行動保護地球。

《降低通膨法案》將補貼太陽能在內的綠能產業。圖/Science

逃過黑死病的方法,竟然是遺傳?

700 年前,橫行歐洲的黑死病殺死了 1/3 到 1/2 的人口。關於那些倖存者,科學家好奇了很久,想知道他們當初是如何逃過一劫,以及黑死病究竟帶來了什麼影響。

今年 10 月, ㄧ篇《Science》的研究顯示倖存者體內可能有基因變異,提升他們對鼠疫桿菌(Yersinia pestis)的免疫反應。團隊分析了 500 多具遺骨中的古代 DNA,發現在英國倫敦爆發黑死病後,倖存者體內有 245 處的基因都有出現變異。

在這些 DNA 裡,內質網胺肽酶 2(ERAP2)引起了科學家的注意。這種蛋白酶有兩種變體:一種是完整尺寸,另一種較短,但都可以幫助免疫細胞識別、對抗病毒。科學家發現,遺傳完整尺寸 ERAP2 的人類存活機率是 2 倍,因為他們能夠生成更多細胞激素,協助免疫系統對抗鼠疫桿菌。

如今,約有 45% 的英國人體內還存有完整尺寸的 ERAP2 變體,但代價就是 ERAP2 也會增加罹患克羅恩病(Crohn’s disease)和類風濕性關節炎等自體免疫性疾病的風險。

從 14 世紀英國倫敦的遺骨中採集 DNA 並紀錄變化。圖/Science

碰!NASA 撞歪小行星!

多年來,NASA 持續監測直徑超過 0.5 公里的近地小行星,並且透過「雙小行星重定向測試計劃」(DART)研究多種讓小行星偏離軌道的方法。

今年 9 月,NASA 讓 DART 飛行器以 22,530 公里的時速撞擊小行星 Dimorphos,讓 Dimorphos 更靠近它繞行的另一顆小行星 Didymos,縮短了 32 分鐘的公轉週期,比 NASA 原先設定的目標還要高出 26 倍。

目前為止,天文學家估計軌道與地球軌道相交的近地小行星有 25,000 顆,大小都足以摧毀一座大城市。雖然行星防禦系統(Planetary Defense)尚未建構出完整情報,但針對人類首次改變天體運行的壯舉,NASA 署長表示「這是行星防禦任務的分水嶺,也是人類文明的分水嶺」,有助於降低小行星或隕石撞到地球的機率。

寬達 160 公尺的小行星 Dimorphos。圖/Science

從永凍土提取環境 DNA,重建古代生態系統

以往普遍認為 DNA 的保質期約為 100 萬年,但在今年 12 月,科學家從北極寒漠的永凍土中,提取了 200 萬年前殘留至今的環境 DNA 片段。透過分析這些片段,科學家還原了格陵蘭東北部皮里地(Peary Land)約 200 萬年前生態系統的樣貌。

英國劍橋大學研究顯示,在 200 萬至 300 萬年前,皮里地的平均氣溫比現在高 11℃ 至 19℃。從 5 處沉積層中提取的 41 個 DNA 片段,證實了當時有楊樹、樺樹、崖柏和各種針葉樹,也有野兔旅鼠、馴鹿、囓齒動物,以及 1 萬年前滅絕的大象近親——乳齒象。過去從來沒有科學家料到乳齒象的活動範圍竟然延伸到那麼遠的北方。

可惜的是,因為缺少脊椎動物的化石,目前還不清楚確切的生物群落組成,但這項研究證明了利用環境 DNA 追溯 200 萬年前的古生物是可行的,而這也有助於科學家進一步探討生物和環境的演化。

環境 DNA 揭示了 200 萬年前格陵蘭的生態。圖/Science
所有討論 1
PanSci_96
1190 篇文章 ・ 1755 位粉絲
PanSci的編輯部帳號,會發自產內容跟各種消息喔。

0

4
2

文字

分享

0
4
2
熱穹所壟罩的世界!——熱浪對全球造成的衝擊——《科學月刊》
科學月刊_96
・2022/11/26 ・4035字 ・閱讀時間約 8 分鐘

  • 駱世豪/中研院環境變遷研究中心博士後研究學者。

Take Home Message

  • 歐美熱浪的主因是噴流增強了熱穹的下沉,造成熱空氣北移和累積。臺灣的熱浪則是受到副熱帶高壓的影響。
  • 熱浪發生頻率變頻繁且強度變強,與溫室氣體排放造成的全球暖化效應增加有很大的關係。
  • 熱浪事件對生態、糧食、經濟和健康等面向都造成威脅,全球與臺灣熱浪的持續天數和強度都有增加的趨勢。

古代傳說中,后羿射下九個太陽讓地上的氣候適宜、萬物得以生長,古代的預言已經告訴我們,炎熱的氣候條件不利於萬物的生長。而在現今全球暖化的情況下,另外九個太陽會復活嗎?以上雖是玩笑話,但今(2022)年歐洲國家就受到熱浪(heatwave)嚴重影響,葡萄牙與西班牙最高溫度達到 45℃ 以上;英國更出現 54℃ 以上的極端高溫,發布有史以來第一個紅色高溫預警,並進入緊急狀態。

據統計,歐洲各國在 6 月因熱浪死亡的人數高達 2468 人。中國的溫度也突破近 62 年的歷史同期最高夏季平均氣溫,有 23 個省分出現 40℃ 以上高溫,許多地方都出現因熱浪致死的案例。臺灣也在 7 月中出現接近 40℃ 的溫度,並在多地出現 35℃ 左右、維持數天的極端高溫。近年來熱浪的強度和發生頻率不斷提高,造成人員經濟的損傷也愈來愈多,而究竟什麼是熱浪?它形成的背後機制為何?

熱浪是什麼?

「熱浪」是夏季主要造成災害的極端事件之一,根據世界氣象組織(World Meteorological Organization, WMO)的定義:「熱浪現象是指一個地區超過該地區的歷年最高溫度平均值 5℃ 以上,並且持續 5 天以上。」一個地區能維持極端高溫並持續一段時間,背後一定有些天氣系統所導致。

如近年歐洲、北美熱浪頻傳,主要因素就是噴流(jet stream)與熱穹(heat dome)所造成;東亞主要受太平洋副熱帶高壓(subtropical high)影響;印度和亞馬遜等熱帶區域則主要是受到降雨的影響。各區域因為氣候背景與緯度位置不同,造成熱浪的成因也有所不同,接下來我們會依序介紹世界各地氣候與緯度間的相互關係。

高空之龍所環抱的氣團

當北半球夏季中高緯地區噴流向北蜿蜒形成一個像 Ω(omega)的形狀時,就有可能形成熱浪(圖一),或因為它的特殊形狀而被稱為阻塞高壓(omega blocking)。噴流是一股由西往東的氣流,通常位於對流層頂,它的水平長度達上萬公里、寬數百公里,中心風速有時可達每小時 200~300 公里。

而噴流就像一個在地上亂甩的水管,蜿蜒的波動有時往北有時往南,當噴流在北美或歐洲地區蜿蜒向北時,會形成一個 Ω 的形狀,也會造成反氣旋(順時針)式風切,進而讓大氣產生下沉運動。在此區域內不易形成對流,造成穩定且乾燥的環境,也就是所謂的熱穹,或是阻塞高壓。噴流和熱穹是相輔相成的關係,噴流增強熱穹的下沉機制,將南邊的暖空氣往北傳送,並將熱空氣累積,所以才形成熱浪。

圖一:熱浪形成原理與機制
(資料來源:AFPgraphics)

而在東亞的夏季,氣溫主要受太平洋副熱帶高壓(subtropical high,以下簡稱副高)影響。副高中心約位於太平洋(東經 160 度、北緯 30 度左右),在它的增強過程中會向西伸擴張至中國東南沿岸,而當副高處於增強的狀態時,副高系統會再向西延伸且壟罩整個臺灣。

如上述所說,高壓壟罩的狀況下屬於對流穩定的晴朗天氣,配合上夏季的西南季風,將暖濕空氣往北傳送並堆積在副高所壟罩的區域上,最後在此區域形成熱浪現象。相較於北美、歐洲區域的乾熱浪,臺灣的熱浪屬於濕熱浪(wet heatwave)。除了極端高溫外,還有著高濕度的影響,悶熱的環境對人體有更大的傷害和影響。

另外,印度和亞馬遜熱帶區域雖屬於終年偏高溫的地區,但仍有熱浪現象產生,主要原因是降雨。熱帶地區主要氣候分為乾季與溼季,溼季通常為該地區的夏天,下雨能有助於該地區降溫,所以當降雨系統未出現、延遲或偏移,就很有可能會造成嚴重的熱浪。

熱浪造成的嚴重影響

熱浪事件對生態、糧食、經濟、健康等面向都造成諸多影響,以下將分為四類說明:

生態浩劫

根據聯合國(United Nations, UN)底下的政府間氣候變遷專門委員會(Intergovernmental Panel on Climate Change, IPCC)第六次評估報告預測,如果到了 2100 年全球的溫度升高達到 2℃,陸地上大約 18% 的物種將面臨滅絕的高風險;如果升溫至 4.5℃,在我們有紀錄的所有動植物物種中約有一半將受到威脅。臺灣也面臨相同的狀況,當熱浪發生的頻率愈來愈高,持續時間和強度也都增加的狀況下,將發生物種多樣性減少、物種的分布改變、增加外來物種入侵機會等情況,對整體生態系平衡或農業生產造成衝擊。

糧食危機

IPCC 於 2019 年報告中指出,全球主要農產品(如玉米、小麥、大豆)產量都會受到全球暖化影響減產 1.8~4.5%。若情況持續惡化,到 21 世紀中則可能導致產量下降 5~30%。

經濟損害

美國報導指出熱浪會造成極端高溫,進而對人體產生危害,所以對於生產力(gross domestic product, GDP)也有影響。在高於平均水平的夏季氣溫下,每升高 1℃,美國各州的 GDP 就會下降 0.25%。國際信評機構標普全球(S&P Global)的報告預測,氣候變遷恐導致 2050 年前全球每年經濟產出損失 4%,臺灣位處的東亞區域則會有 1% 左右的損失(圖二)。

圖二:全球GDP損失分布預測
預估全球於 2050 年在中度暖化情境(RCP4.5)下,GDP 因水災、自然災害以及熱浪所造成的損失分布。
(資料來源:S&P Global Ratings, Trucost, 2022)

人體危害

對於人體而言,熱浪最嚴重的傷害為熱衰竭(heat exhaustion)。根據臺灣氣候變遷推估資訊與調適知識平臺計畫(TCCIP)的報告指出,2003 年的歐洲熱浪估計已造成七萬多人死亡;2010 年俄羅斯熱浪則導致超過 5 萬 6000 人死亡。科學家警告:「如果各國家和企業不採取激烈行動來削減溫室氣體排放,2050 年時的英國與高溫相關的死亡人數預計將增加兩倍,而且世界將經歷更頻繁、更強烈、更危險的熱浪危機。」

越來越熱的台灣——極端高溫天氣的頻率增加

熱浪發生頻率變頻繁且強度變強,主要與溫室氣體排放造成全球暖化效應增加有很大的關係。更進一步使用溫度發生機率圖解釋(圖三),若峰值愈接近右邊,代表高溫事件發生的機率愈高;反之,若峰值愈接近左邊,低溫事件發生的機率愈高。當全球暖化效應增強時,就如同圖三所顯示的新氣候,整體機率分布相較於舊氣候來說會往右偏移,往更高溫度的地方移動,造成熱浪事件的發生機率更高。

而實際上全球的變化也是如此,根據科技部、中央研究院環境變遷中心以及國家防災中心的報告,比較全球早期(1951~1980 年)和近期(1981~2010 年)的日最高溫資料(圖四左),在機率分布圖上可以看到往右偏移的情形,表示極端高溫事件的頻率與溫度都有增加的趨勢。

臺灣的夏季日最高溫度也有相同的趨勢變化,以臺北的資料為例,比對早期(1960~1990 年)和近期(2006~2017 年)的夏季日最高溫度,能發現近期的頻率分布向右偏移,夏季日最高溫度的發生機率增加,平均值也增加近 1℃(圖四右)。全球與臺灣的平均氣溫或極端溫度發生頻率皆有增加的趨勢。

圖三:全球溫度發生機率變化分布圖
若峰值愈接近右邊,代表高溫事件發生的機率愈高;愈接近左邊,低溫事件發生的機率愈高。當全球暖化效應增強時(新氣候),整體機率分布會往右偏移,造成熱浪事件機率增加。而實際上全球的變化也是如此。(資料來源:Matt 科學Taylor, BBC Weather)
圖四:日最高溫與日最低溫觀測頻率分布圖
(資料來源:《臺灣氣候變遷科學報告2017-物理現象與機制報告》)

在未來(21 世紀中後期)趨勢的變化中,研究學者利用模式推估,指出以現在的熱浪門檻為標準,未來若是能將全球暖化程度控制在低暖化情境(RCP2.6),則臺灣地區的熱浪不管是在頻率、持續時間或強度上,和現今的差異不大。相反的,在高暖化情境(RCP8.5)情境下,21 世紀末臺灣整個夏季都可能處於熱浪狀態。未來若暖化情況持續增長,熱浪的發生將成為常態,而且持續天數和強度也有增加的趨勢。

TCCIP 計畫依據 IPCC 所設定的溫室氣體排放情境,進行臺灣地區的溫度模擬:在高暖化情境(RCP8.5)推估下,世紀末可能增溫超過 4℃,而北部地區增溫較南部嚴重,高溫有可能影響農作物生長與收成。臺灣在未來將面臨更嚴重的熱浪衝擊,對於能源使用、公共衛生健康等都可能帶來前所未有的考驗,而這急迫性的問題,就像電影《普羅米修斯》(Prometheus)裡女主角說的:

「如果不阻止它,我們就會無家可歸!」(If we don’t stop it, there won’t be any home to go back to!)

溫室氣體排放情境假設:「RCP」

IPCC 的報告中長使用到的濃度路徑「RCP」為 representative concentration pathways 的英文縮寫,代表不同程度暖化路徑的人為溫室氣體排放量的「情境假設」,其中假設四種不同暖化情境,由輕微到最嚴重分別為 RCP2.6、RCP4.5、RCP6.0、RCP8.5,分別代表的意義如下:

  • RCP2.6:增溫最小且緩慢的情境,輻射強迫力先在 21 世紀中期達到最大值 3 Wm-2,大約和二氧化碳濃度 490 ppm 相似,然後再緩慢下降到 21 世紀末。
  • RCP4.5:輻射強迫力會在 21 世紀末達到一個穩定狀態的情境,約為 4.5Wm-2,和二氧化碳濃度 650 ppm 相似,代表世界各國會想盡辦法做到溫室氣體減量的目標。
  • RCP6.0:和 RCP4.5 相似,但輻射強迫力為 6 Wm-2,約為二氧化碳濃度 850 ppm,代表世界各國並沒有盡全力積極做到溫室氣體減量的目標。
  • RCP8.5:輻射強迫力持續的增加到大於 8.5 Wm-2,即二氧化碳濃度會大於 1370 ppm,代表世界各國並無任何減量的動作。
圖五:輻射強迫力隨時間的變化圖
(資料來源:TCCIP; Representative Concentration Pathway, GRID-Arendal/Studio Atlantis, 2021)
  • 〈本文選自《科學月刊》2022 年 11 月號〉
  • 科學月刊/在一個資訊不值錢的時代中,試圖緊握那知識餘溫外,也不忘科學事實和自由價值至上的科普雜誌。
科學月刊_96
241 篇文章 ・ 2988 位粉絲
非營利性質的《科學月刊》創刊於1970年,自創刊以來始終致力於科學普及工作;我們相信,提供一份正確而完整的科學知識,就是回饋給讀者最好的品質保證。