Loading [MathJax]/extensions/tex2jax.js

0

1
0

文字

分享

0
1
0

幼童剛學寫字就要寫在格子裡?科學地看看學寫字這回事

林希陶_96
・2018/10/04 ・2926字 ・閱讀時間約 6 分鐘 ・SR值 454 ・五年級

-----廣告,請繼續往下閱讀-----

你的孩子不是你的孩子:上小學前是巧虎的,上小學後則是老師的。(誤?)圖/flickr

我家兩個小娃最近升上大班,幼稚園老師也開始教授注音符號課程,並分派回家作業。她們兩個過幾天就異常認真地在學寫字,而且嚴格告訴我一定要寫漂亮、寫整齊。如果稍微凸出去一點點,她們會很小心的擦掉再重來。

即使父母說明這樣已經很好了,不需要擦掉重寫她們也不聽他們這個階段,老師講的就跟聖旨沒兩樣,即便我認真跟她們說,老爸也是這方面的專家,他們也不信。在她們眼中老爸只會打電動跟看漫畫嗎?怎麼會是專家?

圖/flickr

關於不管幼稚園老師還是國小老師,一定要嚴格要求所有學生「寫字一定要在格子內、寫字一定要依照學字的虛線照描,一點都不能凸出去」,個人有非常多疑問。這也跟我過去的發展心理學所學不同。為了這件事最近不打電動,也不看漫畫,認真的在論文資料庫中搜尋一番,總算找到一篇回顧性研究〔1],好好談談學寫字這件事。

即便現在是電腦時代,寫字在當今這個社會還是非常重要的技能,會寫字跟閱讀能力、寫作能力、學業成績一定是正相關的。後續也跟寫信、寫筆記、陳述意見、講電話、填文件、查資料等社會生活技能有關。寫字寫不好的人,甚至可能被長輩誤認為懶惰、動機低、不守規矩的小孩。

-----廣告,請繼續往下閱讀-----

寫字的能力是怎麼發展的?

圖/pxhere

幼兒大約兩歲左右,開始學握筆時,最先出現的寫法就是塗鴉,也就是亂寫亂畫一通。接著才會出現垂直線、水平線、圓形等圖案。仿畫更為困難的圖案大約四歲開始出現,會依序出現十字、方形、三角形等等。至少要五歲左右,大約一半的人才能正確畫出三角形[2]

寫字能力大約要六到七歲(小學一年級)才能慢慢發展出來,七到八歲(小學二年級)才會到達一個高峰期,也就是大部分的人在運筆寫字上已無問題。八到九歲(小學三年級)是寫字發展的另外一個階段,在這個時期,小孩才能主動的寫出字,組織字,並運用自己懂的字,表達出一段別人看得懂的話(這也是為何這個時期才會有寫短文、寫日記的作業出現,也才有意義)。

若再進一步考慮以性別作為區分,七歲以上的小孩,女童在寫字品質與寫字速度上明顯較男童為佳。因此男童若在寫字方面稍微慢一些,也不需要過於驚嚇。

拆解寫字牽涉到的元素

這形容…不說是在學寫字的話我還以為是要練習念能力呢。圖/imdb

寫字能力牽涉到複雜、多重的元素,包含視覺動作協調能力、精細動作控制、視知覺能力、動作計畫、認知能力、觸覺、本體感覺、身體兩側的協調、持續注意力。若我們將「寫字」這件事從頭到尾一一拆解,就可理解為何需要有那麼多功能同時配合。

-----廣告,請繼續往下閱讀-----

所謂的視覺動作協調能力是指要學寫字,先要看字,傳回到大腦先理解一番,再將訊息傳到動作區域,接著才指揮手指運筆。在理解時,則牽涉到記憶能力、空間能力、字型恆常知覺(簡單舉例:英文中 b、d、p、q 是不同的字;注音符號中ㄇ、ㄈ、ㄩ是不同的;ㄏ、ㄟ也不同;中文字裡左阜與右邑也是不同的)。

運筆部分牽涉到良好的精細動作控制能力,這個能力要六到七歲才完全成熟。有了動作控制,才能在寫字時將一筆一畫停頓、區隔開來。良好握筆需要運用手指,掌握住鉛筆,且有彈性的延展手指、停頓手掌與小肌肉,才能順利的控制寫字工具,讓筆往不同軸向旋轉,也才有可能寫出良好的筆畫。不成熟的握筆會影響精細動作能力,可先讓小孩試著握住粗一點筆桿的鉛筆,接著再轉換成一般粗細的鉛筆為宜。

講到學寫字,莫忘永字八法。圖/wikipedia

動作計畫也是重要的。筆畫順序需遵循一定的方向,在中文字是由左而右,由上而下。字形部件的良好組合,才能讓偏旁是偏旁,部首是部首,頭是頭、腳是腳才可能讓字形較為協調,也才能讓寫出的字易於辨識。

另外,觸覺、本體感覺與全身動作的協調也需要注重。觸覺、本體感覺讓小孩可在寫字時感受到筆、紙、桌面、橡皮擦,並且時時監控自己所寫出的字是正確的。而全身的協調牽涉到各個部位的肌肉使用,如當常用的那隻慣用手在寫字時,另外一手要知道扶住紙張,才能寫出較為正確的字形。

-----廣告,請繼續往下閱讀-----

最後持續性注意力也是必須的,如果小孩不能持續的注意,並且讓自己一直保持專心的話,是不可能完成一段作業的。注意力不足的孩子,寫字的整體能力也不佳,也常常無法完成回家功課。

上述之相關能力,都是六到七歲才能完全成熟。因此,在幼稚園或小一階段,只是在發展寫字能力的初始時期,在這個時間點就一定要求寫到完美,完全寫在格子裡,這其實是非常違反生理與心理發展的。

寫字的外部環境

圖/wikimedia

寫字要寫得好,也與許多外部環境有關。包含坐姿、椅子桌子的高度、寫字工具、紙張的類型、燈光明暗、外部是否有噪音、作業份量多寡、與黑板的距離、視力等等。

理想上,小孩的坐姿要正確,身體軀幹與臀部、膝蓋部位成90度,手腕、前臂可放鬆地放於桌面上。桌子椅子不可太低,太低也容易讓小孩往前傾;但也不可太高,太高會讓腳無以支撐。在寫字時,讓整個環境越單純越好,玩具、故事書都收去一邊,大人也不要同時在一邊看電視,只會形成不當的外部干擾。

-----廣告,請繼續往下閱讀-----

總而言之,寫字是一個非常複雜的事情,需要協調身體各個部位,調動各種認知能力,才可能好好的寫出一個字。等到所有能力都練習妥當,才可能成為身體自動化的一部份,可以不加思索的寫出一連串文字。

最後,個人還是要再次澄清,寫這篇文章並不是認為寫字這件事情不重要,也不是反對學寫字,而是對於「在學寫字的初始階段,就一定要寫到漂漂亮亮,完全在格子裡」有不同意見。如果我們是站在發展心理學與科學研究的最前沿,就不得不思考嚴格規定的學寫字到底有何實質意義。

參考資料:

  1. Feder, K. P. & Majnemer A. (2007). Handwriting development, competency, and intervention. Developmental Medicine & Child Neurology. 49(4):312-7. DOI:10.1111/j.1469-8749.2007.00312.x
  2. Beery, K.E. & Buktenica, N.A. (1989). Developmental Test of Visual-Motor Integration – Revised. Chicago, IL: Follett Publishing Company.
-----廣告,請繼續往下閱讀-----
文章難易度
林希陶_96
80 篇文章 ・ 53 位粉絲
作者為臨床心理師,專長為臨床兒童心理病理、臨床兒童心理衡鑑、臨床兒童心理治療與親子教養諮詢。近來因生養雙胞胎,致力於嬰幼兒相關教養研究,並將科學育兒的經驗,集結為《心理師爸爸的心手育嬰筆記》。與許正典醫師合著有《125遊戲,提升孩子專注力》(1)~(6)、《99連連看遊戲,把專心變有趣》、《99迷宮遊戲,把專心變有趣》。並主持FB專頁:林希陶臨床心理師及部落格:暗香浮動月黃昏。

0

1
1

文字

分享

0
1
1
伺服器過熱危機!液冷與 3D VC 技術如何拯救高效運算?
鳥苷三磷酸 (PanSci Promo)_96
・2025/04/11 ・3194字 ・閱讀時間約 6 分鐘

-----廣告,請繼續往下閱讀-----

本文與 高柏科技 合作,泛科學企劃執行。

當我們談論能擊敗輝達(NVIDIA)、Google、微軟,甚至是 Meta 的存在,究竟是什麼?答案或許並非更強大的 AI,也不是更高速的晶片,而是你看不見、卻能瞬間讓伺服器崩潰的「熱」。

 2024 年底至 2025 年初,搭載 Blackwell 晶片的輝達伺服器接連遭遇過熱危機,傳聞 Meta、Google、微軟的訂單也因此受到影響。儘管輝達已經透過調整機櫃設計來解決問題,但這場「科技 vs. 熱」的對決,才剛剛開始。 

不僅僅是輝達,微軟甚至嘗試將伺服器完全埋入海水中,希望藉由洋流降溫;而更激進的做法,則是直接將伺服器浸泡在冷卻液中,來一場「浸沒式冷卻」的實驗。

-----廣告,請繼續往下閱讀-----

但這些方法真的有效嗎?安全嗎?從大型數據中心到你手上的手機,散熱已經成為科技業最棘手的難題。本文將帶各位跟著全球散熱專家 高柏科技,一同看看如何用科學破解這場高溫危機!

運算=發熱?為何電腦必然會發熱?

為什麼電腦在運算時溫度會升高呢? 圖/unsplash

這並非新問題,1961年物理學家蘭道爾在任職於IBM時,就提出了「蘭道爾原理」(Landauer Principle),他根據熱力學提出,當進行計算或訊息處理時,即便是理論上最有效率的電腦,還是會產生某些形式的能量損耗。因為在計算時只要有訊息流失,系統的熵就會上升,而隨著熵的增加,也會產生熱能。

換句話說,當計算是不可逆的時候,就像產品無法回收再利用,而是進到垃圾場燒掉一樣,會產生許多廢熱。

要解決問題,得用科學方法。在一個系統中,我們通常以「熱設計功耗」(TDP,Thermal Design Power)來衡量電子元件在正常運行條件下產生的熱量。一般來說,TDP 指的是一個處理器或晶片運作時可能會產生的最大熱量,通常以瓦特(W)為單位。也就是說,TDP 應該作為這個系統散熱的最低標準。每個廠商都會公布自家產品的 TDP,例如AMD的CPU 9950X,TDP是170W,GeForce RTX 5090則高達575W,伺服器用的晶片,則可能動輒千瓦以上。

-----廣告,請繼續往下閱讀-----

散熱不僅是AI伺服器的問題,電動車、儲能設備、甚至低軌衛星,都需要高效散熱技術,這正是高柏科技的專長。

「導熱介面材料(TIM)」:提升散熱效率的關鍵角色

在電腦世界裡,散熱的關鍵就是把熱量「交給」導熱效率高的材料,而這個角色通常是金屬散熱片。但散熱並不是簡單地把金屬片貼在晶片上就能搞定。

現實中,晶片表面和散熱片之間並不會完美貼合,表面多少會有細微間隙,而這些縫隙如果藏了空氣,就會變成「隔熱層」,阻礙熱傳導。

為了解決這個問題,需要一種關鍵材料,導熱介面材料(TIM,Thermal Interface Material)。它的任務就是填補這些縫隙,讓熱可以更加順暢傳遞出去。可以把TIM想像成散熱高速公路的「匝道」,即使主線有再多車道,如果匝道堵住了,車流還是無法順利進入高速公路。同樣地,如果 TIM 的導熱效果不好,熱量就會卡在晶片與散熱片之間,導致散熱效率下降。

-----廣告,請繼續往下閱讀-----

那麼,要怎麼提升 TIM 的效能呢?很直覺的做法是增加導熱金屬粉的比例。目前最常見且穩定的選擇是氧化鋅或氧化鋁,若要更高效的散熱材料,則有氮化鋁、六方氮化硼、立方氮化硼等更高級的選項。

典型的 TIM 是由兩個成分組成:高導熱粉末(如金屬或陶瓷粉末)與聚合物基質。大部分散熱膏的特點是流動性好,盡可能地貼合表面、填補縫隙。但也因為太「軟」了,受熱受力後容易向外「溢流」。或是造成基質和熱源過分接觸,高分子在高溫下發生熱裂解。這也是為什麼有些導熱膏使用一段時間後,會出現乾裂或表面變硬。

為了解決這個問題,高柏科技推出了凝膠狀的「導熱凝膠」,說是凝膠,但感覺起來更像黏土。保留了可塑性、但更有彈性、更像固體。因此不容易被擠壓成超薄,比較不會熱裂解、壽命也比較長。

OK,到這裡,「匝道」的問題解決了,接下來的問題是:這條散熱高速公路該怎麼設計?你會選擇氣冷、水冷,還是更先進的浸沒式散熱呢?

-----廣告,請繼續往下閱讀-----

液冷與 3D VC 散熱技術:未來高效散熱方案解析

除了風扇之外,目前還有哪些方法可以幫助電腦快速散熱呢?圖/unsplash

傳統的散熱方式是透過風扇帶動空氣經過散熱片來移除熱量,也就是所謂的「氣冷」。但單純的氣冷已經達到散熱效率的極限,因此現在的散熱技術有兩大發展方向。

其中一個方向是液冷,熱量在經過 TIM 後進入水冷頭,水冷頭內的不斷流動的液體能迅速帶走熱量。這種散熱方式效率好,且增加的體積不大。唯一需要注意的是,萬一元件損壞,可能會因為漏液而損害其他元件,且系統的成本較高。如果你對成本有顧慮,可以考慮另一種方案,「3D VC」。

3D VC 的原理很像是氣冷加液冷的結合。3D VC 顧名思義,就是把均溫板層層疊起來,變成3D結構。雖然均溫板長得也像是一塊金屬板,原理其實跟散熱片不太一樣。如果看英文原文的「Vapor Chamber」,直接翻譯是「蒸氣腔室」。

在均溫板中,會放入容易汽化的工作流體,當流體在熱源處吸收熱量後就會汽化,當熱量被帶走,汽化的流體會被冷卻成液體並回流。這種利用液體、氣體兩種不同狀態進行熱交換的方法,最大的特點是:導熱速度甚至比金屬的熱傳導還要更快、熱量的分配也更均勻,不會有熱都聚集在入口(熱源處)的情況,能更有效降溫。

-----廣告,請繼續往下閱讀-----

整個 3DVC 的設計,是包含垂直的熱導管和水平均溫板的 3D 結構。熱導管和均溫板都是採用氣、液兩向轉換的方式傳遞熱量。導熱管是電梯,能快速把散熱工作帶到每一層。均溫板再接手將所有熱量消化掉。最後當空氣通過 3DVC,就能用最高的效率帶走熱量。3DVC 跟水冷最大的差異是,工作流體移動的過程經過設計,因此不用插電,成本僅有水冷的十分之一。但相對的,因為是被動式散熱,其散熱模組的體積相對水冷會更大。

從 TIM 到 3D VC,高柏科技一直致力於不斷創新,並多次獲得國際專利。為了進一步提升 3D VC 的散熱效率並縮小模組體積,高柏科技開發了6項專利技術,涵蓋系統設計、材料改良及結構技術等方面。經過設計強化後,均溫板不僅保有高導熱性,還增強了結構強度,顯著提升均溫速度及耐用性。

隨著散熱技術不斷進步,有人提出將整個晶片組或伺服器浸泡在冷卻液中的「浸沒式冷卻」技術,將主機板和零件完全泡在不導電的特殊液體中,許多冷卻液會選擇沸點較低的物質,因此就像均溫板一樣,可以透過汽化來吸收掉大量的熱,形成泡泡向上浮,達到快速散熱的效果。

然而,因為水會導電,因此替代方案之一是氟化物。雖然效率差了一些,但至少可以用。然而氟化物的生產或廢棄時,很容易產生全氟/多氟烷基物質 PFAS,這是一種永久污染物,會對環境產生長時間影響。目前各家廠商都還在試驗新的冷卻液,例如礦物油、其他油品,又或是在既有的液體中添加奈米碳管等特殊材質。

-----廣告,請繼續往下閱讀-----

另外,把整個主機都泡在液體裡面的散熱邏輯也與原本的方式大相逕庭。如何重新設計液體對流的路線、如何讓氣泡可以順利上浮、甚至是研究氣泡的出現會不會影響元件壽命等等,都還需要時間來驗證。

高柏科技目前已將自家產品提供給各大廠商進行相容性驗證,相信很快就能推出更強大的散熱模組。

-----廣告,請繼續往下閱讀-----
文章難易度

討論功能關閉中。

0

0
0

文字

分享

0
0
0
一摸就知道?人天生就可以辨識摸到的東西是什麼形狀嗎?——《為何三歲開始說謊?》
親子天下_96
・2023/09/17 ・1914字 ・閱讀時間約 3 分鐘

-----廣告,請繼續往下閱讀-----

人類天生可以連結視覺與觸覺經驗

這組研究團隊,是由法國的發展心理學家阿萊特.史翠麗(Arlette Streri)所領導。史翠麗的實驗室特色,就是使用嬰兒進行認知研究。值得注意的是,她們研究的不是一般的嬰兒,而是剛出生僅僅數十個小時的「極新」嬰兒。至於為什麼要使用這麼小的嬰兒,讀者應該也已經猜到原因:因為嬰兒的學習能力又強又快,只要一接觸這個世界,嬰兒的學習就已經開始。所以如果要回答涉及先天或後天的爭議問題,自然是使用愈小的嬰兒愈好。

為了回答莫里內的問題,史翠麗找來了二十四位出生不到五天的小嬰兒,她想知道,小嬰兒在僅透過觸覺感受過某物體的形狀後,能不能改用視覺辨識出同一個形狀的物體。她在實驗中,讓小嬰兒用右手抓握物體(並確保小嬰兒看不到該物體),其中有些小嬰兒抓握的是一個三角形的物體,另一些小嬰兒則是抓握一個圓柱形的物體。在抓握物體後,小嬰兒的眼前會出現兩個物體(一個三角形物體和一個圓柱形物體;其中一個是剛剛抓握過的物體,另一個是不曾抓握過的物體)。結果發現,小嬰兒對於不曾抓握過的物體,會有較久的凝視時間(Streri and Gentaz, 2003)。

為了驗證人類是否天生就能連結視覺與觸覺經驗,史翠麗找了二十四位新生兒來做測試。圖/Pexels

這項發現,看似給了莫里內問題的正方經驗論者一記重擊,因為實驗結果發現,小嬰兒在出生後短短五天內,好像就能將眼前的視覺形狀和抓握時的觸覺形狀連結在一起。而且嬰兒的這項能力,似乎不是透過學習而來,因為在嬰兒剛出生的這五天內,幾乎不可能摸過和看過實驗中所使用的三角形和圓柱形物體。

然而,這項結果仍然有人不服。比方說,經驗論者可以提出質疑:雖然嬰兒在出生後的五天內可能沒有看過三角形與圓柱形物體,但是他們可能已經透過其他方式學到了觸覺與視覺之間的局部緊密關聯性。例如嬰兒在剛出生時,就會不斷的揮手踢腳,他們不但可以看到自己的手部形狀(張掌或握拳),也可以透過觸覺去感受自己的手指、拳頭和指甲的形狀和感觸。這些基本的視覺與觸覺感受,可能就足以讓小嬰兒學習到尖銳與圓滑物體之間的視覺與觸覺差異,並因此導致上述的實驗結果。若真是如此,那麼這項實驗結果就無法拿來回應莫里內的問題,因為小嬰兒可能早在實驗前就已經學到觸覺與視覺之間的關聯性了。

-----廣告,請繼續往下閱讀-----

天生盲人恢復視力後的視覺認知狀態

由於史翠麗的實驗仍有瑕疵,因此無法對莫里內的問題給出一槌定讞的結論。不過在二○一○年左右,另一項契機開始逐漸浮現,而其中的主角,就是麻省理工學院的帕萬.辛哈教授(Pawan Sinha)。

帕萬.辛哈教授(Pawan Sinha)。
圖/美國在台協會 AIT

辛哈是美籍印度裔的知名視覺神經科學家,是我相當敬重的一位視覺科學前輩。他的實驗室,就位於我當年在麻省理工學院研究空間的隔壁,我也因此常有機會聽到辛哈和他的實驗室同仁談及研究計畫和成果。辛哈早年的研究主題,著重於人類大腦如何透過視覺進行學習,他在一九九九年剛到達麻省理工學院的腦與認知科學系任教時,仍不太確定自己該如何做出突破性的研究,但是在一次回印度探親的旅程中,他發現了一個可以同時在科學與社會福祉都有所貢獻的研究機會。

在印度,每一百個人中就有一位是盲人,而且印度孩童的失明比例還比西方國家高出三倍,其中很多孩童是先天性白內障,因為偏鄉缺乏醫療資源而導致失明。這些失明的孩童,一般都會經歷痛苦的人生。根據統計,印度失明孩童的受教育和受雇機率不到一○%,平均壽命也比一般孩童要少十五年,孩童時期的死亡率更是超過五○%。

在明白印度失明孩童的困境後,辛哈立下一個心願,他想透過自己的研究計畫來幫助這些孩子,並且同時進行有意義的科學實驗。就在這樣的背景下,他開始推動「光明」(Prakash)計畫,希望能在印度各地找出先天性白內障的孩童,幫他們免費進行白內障切除手術,然後同時研究他們恢復視覺後的認知與大腦變化。而辛哈的義舉,也讓爭論長達三百多年的莫里內思想實驗,出現了近乎完美的真實實驗契機:讓看不見的盲人恢復視力,然後檢視其視覺認知狀態,這不正是莫里內問題的初衷嗎?

-----廣告,請繼續往下閱讀-----

——本文摘自《為何三歲開始說謊?》,2023 年 7 月,親子天下出版,未經同意請勿轉載。

-----廣告,請繼續往下閱讀-----
親子天下_96
26 篇文章 ・ 25 位粉絲
【親子天下】起源於雜誌媒體和書籍出版,進而擴大成為華文圈影響力最大的教育教養品牌,也是最值得信賴的親子社群平台:www.parenting.com.tw。我們希望,從線上(online)到實體(offline),分齡分眾供應華人地區親子家庭和學校最合身體貼的優質內容、活動、產品與服務。