Loading [MathJax]/extensions/tex2jax.js

0

1
0

文字

分享

0
1
0

數學是真理,還是美麗的錯誤?愛倫坡、黑天鵝、與占星術

林澤民_96
・2018/09/14 ・5092字 ・閱讀時間約 10 分鐘 ・SR值 569 ・九年級

「依我個人的看法,經濟學這一行之所以走歪是因為整個經濟學界誤把美麗的數學當成真理了。」

--Paul Krugman (2008年諾貝爾經濟學獎得主)

圖/wikipedia

用數學方法來分析人類行為,這是自從數學家 John von Neumann 和經濟學家 Oskar Morgenstern 於1944年出版《賽局理論與經濟行為》之後,許多學者致力的方向。然而 von Neumann 和 Morgenstern 的成就偏重在零和賽局和合作賽局,而這些賽局在實際的應用上相當有限。

一直要到 John Nash 發展出他那現在廣為人知的「納許均衡」概念,並用之於非零和、非合作賽局,賽局理論在人類行為的應用才漸漸擴展開來。另一方面,Paul Samuelson在1947年出版了《經濟分析原理》之後,數學變成了經濟學的語言,計量經濟學變成預測經濟動態不可或缺的工具。

數學在人類行為,特別是經濟行為上的應用,最近招受不小的挑戰。一方面,雖然 Thomas Schelling 在冷戰時期成功地把心理因素帶進賽局理論,跟隨他的行為經濟學者,像 Daniel Kahneman 及 Amos Tversky,指出一般人對數學的掌握——比如對於不確定性的估計——卻通常跟數學家的認知有差距。

圖/作者部落格

另一方面,2008年無預警爆發的經濟危機更引起許多學者深切反省計量經濟學的失敗,這包括上引 Krugman 對 Samuelson 把經濟學數學化的批評,以及這幾年暢銷作家 Nassim Nicholas Taleb 提出的「黑天鵝理論」,特別是他對計量經濟學模式廣泛使用常態(高斯)分配的批評。這些批評都值得重視;然而,也有一些對計量經濟學的批評是完全被誤導的。

-----廣告,請繼續往下閱讀-----

其實,對於用數學來分析人類行為的批評,古已有之。本文朔及美國作家愛倫坡(Edgar Allan Poe)藉他小說中人物提出的「詩人比數學家更能推理」的論述,由此引出晚近對經濟學數學化的批評,最後簡短地提出作者本人對這問題的保留看法。

愛倫坡:「數學家詩人」

愛倫波的小說以哥德式的陰暗氣氛著稱,有好幾個故事還以「活埋」為母題刻意引導出讀者的幽閉恐懼症,用張愛玲的名句「一級一級走進沒有光的所在」來形容甚為貼切。

圖/wikipedia

因為他這種嚴密、精準的寫作邏輯,愛倫坡有「數學家詩人」之稱。但愛倫坡在他的小說裡常藉角色之口來表達他對數學、科學的輕蔑。尤其在〈失竊的信〉(The Purloined Letter)這個短篇故事裡,他藉偵探杜彭之口,清楚表達了詩人比數學家更擅於推理的意見。他的意思應該從亞里斯多德所說的:

「The poet should prefer probable impossibilities to improbable possibilities(在情理上可能之現實不可能與情理上不可能之現實可能之間,詩人應偏愛前者)」 這句話去了解。

小說家在創作時,會依據情理來發展情節。在情理上可能的,即使現實上未必會發生,也值得書寫。反之,若情理上講不通,即使現實上因為偶然的原因而發生過,則不值得書寫。愛倫坡的意思是小說家的邏輯是人性的、情理的邏輯,而數學家的邏輯是數目的、機械的邏輯;當我們推論人類行為動機時,顯然前者比後者更為優越。

-----廣告,請繼續往下閱讀-----

愛倫坡的三篇杜彭故事的發表時間先於道爾的六十篇福爾摩斯故事。道爾的第一篇福爾摩斯小說《血字的研究》便藉福爾摩斯之口鄙夷杜彭,說他是賣弄、膚淺的劣等偵探。這雖是文人相輕,但杜彭的確是與福爾摩斯不同的顧問型偵探。福爾摩斯是一個科學家,他強調實驗,而他推理的方法則是所謂「演繹的科學」;杜彭則輕蔑數學,認為數學家的推理能力比詩人為劣。

圖/wikimedia

〈失竊的信〉這篇小說裡杜彭的對手D大臣是詩人也是數學家。杜彭認為他若只是一個數學家,他的才智是平庸的,但因為他也是一個詩人,杜彭對於他的推理能力必須另眼相看。杜彭說道:

「除了抽象的邏輯訓練…我並不認為推理分析能力能從其他方面養成,即使能夠,我也對其所養成的推理能力感到質疑。最讓我詬病的,莫過於研習數學能培養推理能力的迷思了。數學,是一種具象的、有特定形式與數量的演算學問,因此從學習數學得來的推理能力,只是一種觀察形式與數量變化的能力,並非真正的推理分析能力。數學做為一種具象有形的代數學問,竟被多數人誤以為是一門抽象的學問;而且人們竟也以為從演算得出的結論,代表了抽象的真理,甚或是一切事物的真理。我實在不懂人們為何會存此普遍想法,這是多麼荒謬的認知與推想啊,不是嗎?其實,進行數學運算前,那個被放在演算者心上的命題公理,即使經演算確實能回頭來驗證當初的命題公理,那又如何?不代表這些命題公理能被推及為一切事物的真理,這是推理者,也是一般人腦袋裡很大很大的謬誤。」(《愛倫坡驚悚小說全集》增修訂版,簡伊婕、林捷逸譯,好讀出版)

杜彭認為數學家的謬誤在於超越「形式與數量」之外的泛數學化,然而泛數學化不但在倫理學、形上學、化學不成立,在「考察動機的時候」也不成立。他對行為動機的想法,近於現代的行為經濟學者:要研究人類的行為動機,特別是個人層次的經濟決策,光靠數學是不夠的,還必須考慮人們的心理、認知、情緒、文化及社會背景等因素。

杜彭舉了一個後世數學家會稱為「賽局」的例子:

-----廣告,請繼續往下閱讀-----

兩位男孩各自手裡抓著一些彈珠要對方猜猜彈珠的數目是奇數還是偶數,猜對了便從對方贏得一顆彈珠。數學上,因為彈珠的數目不是奇數就是偶數,任何人若用丟銅板的方法—機率分配—隨機猜測,會有一半的機會猜對一半的機會猜錯;數學知識並無法讓他超越這個基本準確度。不過,杜彭認識一個男孩可以藉著對對方智力及思路的評估擊敗對手而贏得很多彈珠。

小說中的敘述者也表示了他的意見:「這個遊戲,…不就等於是兩方玩家鬥智,看誰能正確分析對方的思路罷了。」「玩家若想判斷出對方的思路,…得確切了解對方究竟有多聰明,聰明才智到達何種程度,才能推算對方的思路與思考邏輯?」

這個例子,其實類似《三國演義》所描述的,赤壁之戰後曹操敗績,諸葛亮命關羽率兵埋伏華容道,卻又教他在華容道放一把火煙引曹操來。智力一般的人如關雲長者,會想:「曹操望見煙,知有埋伏,如何肯來?」而聰明如諸葛亮則會先判斷曹操的智力與思路:「豈不聞兵法虛虛實實之論?操雖能用兵,只此可以瞞過他也。他見煙起,將謂虛張聲勢,必然投這條路。」

愛倫坡借杜彭之口以此例子說明數學之不足,而必須補之以非數學因素。他可以說是現代行為經濟學的先驅。

黑天鵝:美麗的錯誤

杜彭對數學家的批評,類似在2008年全球經濟危機之後,對經濟學,特別是總體經濟學,的批評。這當然是因為總體經濟學未能預測2008年的經濟危機。

-----廣告,請繼續往下閱讀-----
圖/wikipedia

2009年9月,本身是總體經濟學者,剛在2008年因為它在貿易理論和經濟地理學的貢獻而贏得諾貝爾經濟學獎的紐約時報專欄作家 Paul Krugman 便在紐時發表了一篇洋洋灑灑7千英文字的大文批評數理經濟學。這篇題為How Did Economists Get It So Wrong(為何經濟學者錯得這麼離譜)的文章提出一個簡單的論點:

「As I see it, the economics profession went astray because economists, as a group, mistook beauty, clad in impressive-looking mathematics, for truth.」(依我個人的看法,經濟學這一行之所以走歪是因為整個經濟學界誤把美麗的數學當成真理了)

同樣的,Nassim Nicholas Taleb 在其暢銷書《黑天鵝效應》中認為計量經濟學的模式,特別是基於常態(高斯)分配的機率模式,無法預測經濟上稀有而影響重大的事件,就如同在黑天鵝被發現之前,人們認為黑天鵝不存在一樣。

Telab 在書中批判了近代經濟學之父 Paul Samuelson,而 Samuelson 自己在他的名著《經濟分析原理》中承認他受到數學物理學家 Edwin Bidwell Wilson 的啟發,可以說近代計量經濟學乃是奠基於對物理學的羨慕和模仿。Samuelson 的成就受到多數經濟學者的尊崇,並贏得了1970年諾貝爾經濟學獎,但 Taleb 卻對他表示極度的輕蔑。

圖/taaze

Taleb 的書,得了行為經濟學者 Daniel Kahneman 的讚許。Kahneman 是2002年諾貝爾經濟學獎得主,他最主要的學術成就在於闡明人們用來估計不確定性的一些心理上的捷徑或「簡法」 (heuristics)。根據 Kahneman 的理論,人們對不確定性的機率估計常帶有主觀的、偏差的因素。如果經濟行為者對不確定性的估計並不符合客觀的機率,那麼用純數學來描述、預測經濟行為當然不會準確。在這一點上,Taleb 與 Kahneman 是一致的。

-----廣告,請繼續往下閱讀-----

但  Kahneman 雖然稱許《黑天鵝效應》一書改變了他對世界如何運作的看法,但他也指出 Taleb 過分重視黑天鵝事件其實是犯了所謂「定點調整簡法」(anchoring and adjustment heuristic)的謬誤:

當人們以一個數目為基底,然後再往上或往下調整來評估新的資訊時,經常會因基底的影響而造成偏差。

Kahneman 與 Tversky 曾做過一個實驗:兩組人被要求在5秒鐘內分別估計 1x2x3x4x5x6x7x8 及 8x7x6x5x4x3x2x1,結果第一組估計值的中位數是512,而第二組估計值的中位數是2,250!(正確值是40,320)換句話說:Taleb 太注重黑天鵝事件了,以至於他在處理非黑天鵝事件的資訊時未能完全擺脫黑天鵝事件的影響而有所偏差。

占星術:不美麗的錯誤

Krugman 及 Taleb 的批評值得我們嚴肅以對。然而,並不是所有對計量經濟學的批評都有令人信服的根據。

圖/pixabay

2016年,在維吉尼亞州詹姆斯麥迪遜大學教授哲學與宗教的 Alan Levinovitz 發表了一篇題為《新占星術》的長文。Levinovitz 這篇文章批評經濟學家物化數學模式,以致於把經濟學變成了像占星術那樣的偽科學。Levinovitz 是研究中國哲學與宗教的教授,他這篇文章把現代經濟學和占星術相比,引用了中國古代的數學巨著《周髀算經》,卻犯了一個不小的錯誤。

-----廣告,請繼續往下閱讀-----

Levinovitz 提到《周髀算經》,說: 「The books introduction to the Pythagorean theorem asserts that‘the methods used by Yu the Great in governing the world were derived from these numbers’. It was an unquestioned article of faith: the mathematical patterns that govern the stars also govern the world.」(此書在介紹畢氏定理時說“禹之所以治天下者,此數之所生也”。這是不容置疑的信念: 規制日月星辰的數學法則也是治理天下的法則)

我沒熟讀《周髀算經》,但隨手一查,《周髀算經》的原文是:「數之法,出於圓方。圓出於方,方出於矩。矩出於九九八十一。故折矩,以為句廣三,股脩四,徑隅五。既方之外,半其一矩。環而共盤,得成三、四、五。兩矩共長二十有五,是謂積矩。故禹之所以治天下者,此數之所生也。」

這裡所說「禹之所以治天下者」的「治」,恐怕不是 Levinovitz 所譯的 govern the world 的 govern (「治理天下」的「治理」),而是 flood control 的 control (「治水」的「治」)。

圖/pixabay

《周髀算經》這段話的意思應該是說作為工程師的大禹之所以能夠「治理洪水,安定天下」所仰賴的是像畢氏定理那樣的數學方法,而不是說作為帝王的大禹用數學來管理他所統轄的國家!Levinovitz 似乎只知道大禹是中國古代帝王,不知道他在中國人印象中更是一位治水工程師。

其實,《山海經:海外東經》便有這樣的記載:「帝命豎亥步,自東極至于西極,五億十選九千八百步。豎亥右手把算,左手指青丘北。一曰禹令豎亥。一曰五億十萬九千八百步。」

-----廣告,請繼續往下閱讀-----

可見數學(「算」)對大禹及其帶領的工程師豎亥們是工程上用來丈量的方法,而不是治理國家之道。我真懷疑 Levinovitz 沒有真正讀懂中國古書。相較之下,李約瑟在《中國科學技術史》名著中論及《周髀算經》時便精確多了:「《周髀》的偉大在於它著於占星術與卜莁佔支配地位的時期,而討論天地現象卻不帶迷信的成份。」

「一致性」 vs.「完全性」

如果一個數學模式不能準確描述或預測現象,問題是模式而不是數學。任何模式都是現實的簡化,因此我們本來不應期望模式具有「完全性」(completeness),也就是完全涵蓋現實的能力。

數學只是一種語言,一種媒體。 Paul Samuelson 的《經濟分析原理》首頁便題有J. Willard Gibbs 的名言:「Mathematics is a language」。使用數學,讓我們的論述能夠保持邏輯上的「一致性」(consistency)。批評數學模式應該批評模式之錯誤或不完全的假設,而不是批評數學。不使用數學的論述,難道就一定會更好?

-----廣告,請繼續往下閱讀-----
文章難易度
林澤民_96
37 篇文章 ・ 245 位粉絲
台大電機系畢業,美國明尼蘇達大學政治學博士, 現任教於美國德州大學奧斯汀校區政府系。 林教授每年均參與中央研究院政治學研究所及政大選研中心 「政治學計量方法研習營」(Institute for Political Methodology)的教學工作, 並每兩年5-6月在台大政治系開授「理性行為分析專論」密集課程。 林教授的中文部落格多為文學、藝術、政治、社會、及文化評論。

0

1
0

文字

分享

0
1
0
拆解邊緣AI熱潮:伺服器如何提供穩固的運算基石?
鳥苷三磷酸 (PanSci Promo)_96
・2025/05/21 ・5071字 ・閱讀時間約 10 分鐘

本文與 研華科技 合作,泛科學企劃執行。

每次 NVIDIA 執行長黃仁勳公開發言,總能牽動整個 AI 產業的神經。然而,我們不妨設想一個更深層的問題——如今的 AI 幾乎都倚賴網路連線,那如果哪天「網路斷了」,會發生什麼事?

想像你正在自駕車打個盹,系統突然警示:「網路連線中斷」,車輛開始偏離路線,而前方竟是萬丈深谷。又或者家庭機器人被駭,開始暴走跳舞,甚至舉起刀具向你走來。

這會是黃仁勳期待的未來嗎?當然不是!也因為如此,「邊緣 AI」成為業界關注重點。不靠雲端,AI 就能在現場即時反應,不只更安全、低延遲,還能讓數據當場變現,不再淪為沉沒成本。

什麼是邊緣 AI ?

邊緣 AI,乍聽之下,好像是「孤單站在角落的人工智慧」,但事實上,它正是我們身邊最可靠、最即時的親密數位夥伴呀。

當前,像是企業、醫院、學校內部的伺服器,個人電腦,甚至手機等裝置,都可以成為「邊緣節點」。當數據在這些邊緣節點進行運算,稱為邊緣運算;而在邊緣節點上運行 AI ,就被稱為邊緣 AI。簡單來說,就是將原本集中在遠端資料中心的運算能力,「搬家」到更靠近數據源頭的地方。

-----廣告,請繼續往下閱讀-----

那麼,為什麼需要這樣做?資料放在雲端,集中管理不是更方便嗎?對,就是不好。

當數據在這些邊緣節點進行運算,稱為邊緣運算;而在邊緣節點上運行 AI ,就被稱為邊緣 AI。/ 圖片來源:MotionArray

第一個不好是物理限制:「延遲」。
即使光速已經非常快,數據從你家旁邊的路口傳到幾千公里外的雲端機房,再把分析結果傳回來,中間還要經過各種網路節點轉來轉去…這樣一來一回,就算只是幾十毫秒的延遲,對於需要「即刻反應」的 AI 應用,比如說工廠裡要精密控制的機械手臂、或者自駕車要判斷路況時,每一毫秒都攸關安全與精度,這點延遲都是無法接受的!這是物理距離與網路架構先天上的限制,無法繞過去。

第二個挑戰,是資訊科學跟工程上的考量:「頻寬」與「成本」。
你可以想像網路頻寬就像水管的粗細。隨著高解析影像與感測器數據不斷來回傳送,湧入的資料數據量就像超級大的水流,一下子就把水管塞爆!要避免流量爆炸,你就要一直擴充水管,也就是擴增頻寬,然而這樣的基礎建設成本是很驚人的。如果能在邊緣就先處理,把重要資訊「濃縮」過後再傳回雲端,是不是就能減輕頻寬負擔,也能節省大量費用呢?

第三個挑戰:系統「可靠性」與「韌性」。
如果所有運算都仰賴遠端的雲端時,一旦網路不穩、甚至斷線,那怎麼辦?很多關鍵應用,像是公共安全監控或是重要設備的預警系統,可不能這樣「看天吃飯」啊!邊緣處理讓系統更獨立,就算暫時斷線,本地的 AI 還是能繼續運作與即時反應,這在工程上是非常重要的考量。

所以你看,邊緣運算不是科學家們沒事找事做,它是順應數據特性和實際應用需求,一個非常合理的科學與工程上的最佳化選擇,是我們想要抓住即時數據價值,非走不可的一條路!

邊緣 AI 的實戰魅力:從工廠到倉儲,再到你的工作桌

知道要把 AI 算力搬到邊緣了,接下來的問題就是─邊緣 AI 究竟強在哪裡呢?它強就強在能夠做到「深度感知(Deep Perception)」!

-----廣告,請繼續往下閱讀-----

所謂深度感知,並非僅僅是對數據進行簡單的加加減減,而是透過如深度神經網路這類複雜的 AI 模型,從原始數據裡面,去「理解」出更高層次、更具意義的資訊。

研華科技為例,旗下已有多項邊緣 AI 的實戰應用。以工業瑕疵檢測為例,利用物件偵測模型,快速將工業產品中的瑕疵挑出來,而且由於 AI 模型可以使用同一套參數去檢測,因此品管上能達到一致性,減少人為疏漏。尤其在高產能工廠中,檢測速度必須快、狠、準。研華這套 AI 系統每分鐘最高可處理 8,000 件產品,替工廠節省大量人力,同時確保品質穩定。這樣的效能來自於一台僅有膠囊咖啡機大小的邊緣設備—IPC-240。

這樣的效能來自於一台僅有膠囊咖啡機大小的邊緣設備—IPC-240。/ 圖片提供:研華科技

此外,在智慧倉儲場域,研華與威剛合作,研華與威剛聯手合作,在 MIC-732AO 伺服器上搭載輝達的 Nova Orin 開發平台,打造倉儲系統的 AMR(Autonomous Mobile Robot) 自走車。這跟過去在倉儲系統中使用的自動導引車 AGV 技術不一樣,AMR 不需要事先規劃好路線,靠著感測器偵測,就能輕鬆避開障礙物,識別路線,並且將貨物載到指定地點存放。

當然,還有語言模型的應用。例如結合檢索增強生成 ( RAG ) 跟上下文學習 ( in-context learning ),除了可以做備忘錄跟排程規劃以外,還能將實務上碰到的問題記錄下來,等到之後碰到類似的問題時,就能詢問 AI 並得到解答。

你或許會問,那為什麼不直接使用 ChatGPT 就好了?其實,對許多企業來說,內部資料往往具有高度機密性與商業價值,有些場域甚至連手機都禁止員工帶入,自然無法將資料上傳雲端。對於重視資安,又希望運用 AI 提升效率的企業與工廠而言,自行部署大型語言模型(self-hosted LLM)才是理想選擇。而這樣的應用,並不需要龐大的設備。研華的 SKY-602E3 塔式 GPU 伺服器,體積僅如後背包大小,卻能輕鬆支援語言模型的運作,實現高效又安全的 AI 解決方案。

但問題也接著浮現:要在這麼小的設備上跑大型 AI 模型,會不會太吃資源?這正是目前 AI 領域最前沿、最火熱的研究方向之一:如何幫 AI 模型進行「科學瘦身」,又不減智慧。接下來,我們就來看看科學家是怎麼幫 AI 減重的。

-----廣告,請繼續往下閱讀-----

語言模型瘦身術之一:量化(Quantization)—用更精簡的數位方式來表示知識

當硬體資源有限,大模型卻越來越龐大,「幫模型減肥」就成了邊緣 AI 的重要課題。這其實跟圖片壓縮有點像:有些畫面細節我們肉眼根本看不出來,刪掉也不影響整體感覺,卻能大幅減少檔案大小。

模型量化的原理也是如此,只不過對象是模型裡面的參數。這些參數原先通常都是以「浮點數」表示,什麼是浮點數?其實就是你我都熟知的小數。舉例來說,圓周率是個無窮不循環小數,唸下去就會是3.141592653…但實際運算時,我們常常用 3.14 或甚至直接用 3,也能得到夠用的結果。降低模型參數中浮點數的精度就是這個意思! 

然而,量化並不是那麼容易的事情。而且實際上,降低精度多少還是會影響到模型表現的。因此在設計時,工程師會精密調整,確保效能在可接受範圍內,達成「瘦身不減智」的目標。

當硬體資源有限,大模型卻越來越龐大,「幫模型減肥」就成了邊緣 AI 的重要課題。/ 圖片來源:MotionArray

模型剪枝(Model Pruning)—基於重要性的結構精簡

建立一個 AI 模型,其實就是在搭建一整套類神經網路系統,並訓練類神經元中彼此關聯的參數。然而,在這麼多參數中,總會有一些參數明明佔了一個位置,卻對整體模型沒有貢獻。既然如此,不如果斷將這些「冗餘」移除。

這就像種植作物的時候,總會雜草叢生,但這些雜草並不是我們想要的作物,這時候我們就會動手清理雜草。在語言模型中也會有這樣的雜草存在,而動手去清理這些不需要的連結參數或神經元的技術,就稱為 AI 模型的模型剪枝(Model Pruning)。

-----廣告,請繼續往下閱讀-----

模型剪枝的效果,大概能把100變成70這樣的程度,說多也不是太多。雖然這樣的縮減對於提升效率已具幫助,但若我們要的是一個更小幾個數量級的模型,僅靠剪枝仍不足以應對。最後還是需要從源頭著手,採取更治本的方法:一開始就打造一個很小的模型,並讓它去學習大模型的知識。這項技術被稱為「知識蒸餾」,是目前 AI 模型壓縮領域中最具潛力的方法之一。

知識蒸餾(Knowledge Distillation)—讓小模型學習大師的「精髓」

想像一下,一位經驗豐富、見多識廣的老師傅,就是那個龐大而強悍的 AI 模型。現在,他要培養一位年輕學徒—小型 AI 模型。與其只是告訴小型模型正確答案,老師傅 (大模型) 會更直接傳授他做判斷時的「思考過程」跟「眉角」,例如「為什麼我會這樣想?」、「其他選項的可能性有多少?」。這樣一來,小小的學徒模型,用它有限的「腦容量」,也能學到老師傅的「智慧精髓」,表現就能大幅提升!這是一種很高級的訓練技巧,跟遷移學習有關。

舉個例子,當大型語言模型在收到「晚餐:鳳梨」這組輸入時,它下一個會接的詞語跟機率分別為「炒飯:50%,蝦球:30%,披薩:15%,汁:5%」。在知識蒸餾的過程中,它可以把這套機率表一起教給小語言模型,讓小語言模型不必透過自己訓練,也能輕鬆得到這個推理過程。如今,許多高效的小型語言模型正是透過這項技術訓練而成,讓我們得以在資源有限的邊緣設備上,也能部署愈來愈強大的小模型 AI。

但是!即使模型經過了這些科學方法的優化,變得比較「苗條」了,要真正在邊緣環境中處理如潮水般湧現的資料,並且高速、即時、穩定地運作,仍然需要一個夠強的「引擎」來驅動它們。也就是說,要把這些經過科學千錘百鍊、但依然需要大量計算的 AI 模型,真正放到邊緣的現場去發揮作用,就需要一個強大的「硬體平台」來承載。

-----廣告,請繼續往下閱讀-----

邊緣 AI 的強心臟:SKY-602E3 的三大關鍵

像研華的 SKY-602E3 塔式 GPU 伺服器,就是扮演「邊緣 AI 引擎」的關鍵角色!那麼,它到底厲害在哪?

一、核心算力
它最多可安裝 4 張雙寬度 GPU 顯示卡。為什麼 GPU 這麼重要?因為 GPU 的設計,天生就擅長做「平行計算」,這正好就是 AI 模型裡面那種海量數學運算最需要的!

你想想看,那麼多數據要同時處理,就像要請一大堆人同時算數學一樣,GPU 就是那個最有效率的工具人!而且,有多張 GPU,代表可以同時跑更多不同的 AI 任務,或者處理更大流量的數據。這是確保那些科學研究成果,在邊緣能真正「跑起來」、「跑得快」、而且「能同時做更多事」的物理基礎!

二、工程適應性——塔式設計。
邊緣環境通常不是那種恆溫恆濕的標準機房,有時是在工廠角落、辦公室一隅、或某個研究實驗室。這種塔式的機箱設計,體積相對緊湊,散熱空間也比較好(這對高功耗的 GPU 很重要!),部署起來比傳統機架式伺服器更有彈性。這就是把高性能計算,進行「工程化」,讓它能適應台灣多樣化的邊緣應用場景。

三、可靠性
SKY-602E3 用的是伺服器等級的主機板、ECC 糾錯記憶體、還有備援電源供應器等等。這些聽起來很硬的規格,背後代表的是嚴謹的工程可靠性設計。畢竟在邊緣現場,系統穩定壓倒一切!你總不希望 AI 分析跑到一半就掛掉吧?這些設計確保了部署在現場的 AI 系統,能夠長時間、穩定地運作,把實驗室裡的科學成果,可靠地轉化成實際的應用價值。

-----廣告,請繼續往下閱讀-----
研華的 SKY-602E3 塔式 GPU 伺服器,體積僅如後背包大小,卻能輕鬆支援語言模型的運作,實現高效又安全的 AI 解決方案。/ 圖片提供:研華科技

台灣製造 × 在地智慧:打造專屬的邊緣 AI 解決方案

研華科技攜手八維智能,能幫助企業或機構提供客製化的AI解決方案。他們的技術能力涵蓋了自然語言處理、電腦視覺、預測性大數據分析、全端軟體開發與部署,及AI軟硬體整合。

無論是大小型語言模型的微調、工業瑕疵檢測的模型訓練、大數據分析,還是其他 AI 相關的服務,都能交給研華與八維智能來協助完成。他們甚至提供 GPU 與伺服器的租借服務,讓企業在啟動 AI 專案前,大幅降低前期投入門檻,靈活又實用。

台灣有著獨特的產業結構,從精密製造、城市交通管理,到因應高齡化社會的智慧醫療與公共安全,都是邊緣 AI 的理想應用場域。更重要的是,這些情境中許多關鍵資訊都具有高度的「時效性」。像是產線上的一處異常、道路上的突發狀況、醫療設備的即刻警示,這些都需要分秒必爭的即時回應。

如果我們還需要將數據送上雲端分析、再等待回傳結果,往往已經錯失最佳反應時機。這也是為什麼邊緣 AI,不只是一項技術創新,更是一條把尖端 AI 科學落地、真正發揮產業生產力與社會價值的關鍵路徑。讓數據在生成的那一刻、在事件發生的現場,就能被有效的「理解」與「利用」,是將數據垃圾變成數據黃金的賢者之石!

👉 更多研華Edge AI解決方案
👉 立即申請Server租借

-----廣告,請繼續往下閱讀-----
-----廣告,請繼續往下閱讀-----
文章難易度

討論功能關閉中。

0

30
1

文字

分享

0
30
1
民眾黨是未來台灣政治的樞紐?
林澤民_96
・2024/01/30 ・3382字 ・閱讀時間約 7 分鐘

一、前言

選後的立法院三黨不過半,但民眾黨有八席不分區立委,足以與民進黨或國民黨結成多數聯盟,勢將在國會居於樞紐地位。無獨有偶的是:民眾黨主席柯文哲在總統大選得到 26.5% 的選票,屈居第三,但因其獲得部分藍、綠選民的支持,在選民偏好順序組態的基礎上,它卻也同樣地居於樞紐地位。這個地位,將足以讓柯文哲及民眾黨在選後的台灣政壇持續激盪。

二、柯文哲是「孔多塞贏家」?

這次總統大選,誰能脫穎而出並不是一個特別令人殷盼的問題,更值得關心的問題是藍白綠「三跤㧣」在選民偏好順序組態中的消長。台灣總統大選採多數決選制,多數決選制英文叫 first-past-the-post(FPTP),簡單來講就是票多的贏,票少的輸。在 10 月中藍白合破局之後,賴蕭配會贏已經沒有懸念,但這只是選制定規之下的結果,換了另一個選制,同樣的選情可能就會險象環生。

從另一個角度想:選制是人為的,而選情反映的是社會現實。政治學者都知道天下沒有十全十美的選制;既定的選制推出了一位總統,並不代表選情的張力就會成為過眼雲煙。當三股社會勢力在制度的帷幕後繼續激盪,台灣政治將無法因新總統的誕生而趨於穩定。

圖/作者自製

如果在「三跤㧣」選舉之下,選情的激盪從候選人的得票多少看不出來,那要從哪裡看?政治學提供的一個方法是把候選人配對 PK,看是否有一位候選人能在所有的 PK 中取勝。這樣的候選人並不一定存在,如果不存在,那代表有 A 與 B 配對 A 勝,B 與 C 配對 B 勝,C 與 A 配對 C 勝的 A>B>C>A 的情形。這種情形,一般叫做「循環多數」(cyclical majorities),是 18 世紀法國學者孔多塞(Nicolas de Condorcet)首先提出。循環多數的存在意涵選舉結果隱藏了政治動盪。

-----廣告,請繼續往下閱讀-----

另一方面,如果有一位候選人能在配對 PK 時擊敗所有的其他候選人,這樣的候選人稱作「孔多塞贏家」(Condorcet winner),而在配對 PK 時均被擊敗的候選人則稱作「孔多塞輸家」(Condorcet loser)。三角嘟的選舉若無循環多數,則一定會有孔多塞贏家和孔多塞輸家,然而孔多塞贏家不一定即是多數決選制中贏得選舉的候選人,而多數決選制中贏得選舉的候選人卻可能是孔多塞輸家。

如果多數決選制中贏得選舉的候選人不是孔多塞贏家,那與循環多數一樣,意涵選後政治將不會穩定。

那麼,台灣這次總統大選,有沒有孔多塞贏家?如果有,是多數決選制之下當選的賴清德嗎?我根據戴立安先生調查規劃的《美麗島電子報》追蹤民調第 109 波(1 月 11 日至 12 日),也是選前最後民調的估計,得到的結果令人驚訝:得票墊後的柯文哲很可能是孔多塞贏家,而得票最多的賴清德很可能是孔多塞輸家。果然如此,那白色力量將會持續地激盪台灣政治!

我之前根據美麗島封關前第 101 波估計,侯友宜可能是孔多塞贏家,而賴清德是孔多塞輸家。現在得到不同的結果,顯示了封關期間的三股政治力量的消長。本來藍營期望的棄保不但沒有發生,而且柯文哲選前之夜在凱道浩大的造勢活動,還震驚了藍綠陣營。民調樣本估計出的孔多塞贏家本來就不準確,但短期內的改變,很可能反映了選情的激盪,甚至可能反映了循環多數的存在。

-----廣告,請繼續往下閱讀-----

三、如何從民調樣本估計孔多塞贏家

根據這波民調,總樣本 N=1001 位受訪者中,如果當時投票,會支持賴清德的受訪者共 355 人,佔 35.4%;支持侯友宜的受訪者共 247 人,佔 24.7%。支持柯文哲的受訪者共 200 人,佔 19.9%。

美麗島民調續問「最不希望誰當總統,也絕對不會投給他的候選人」,在會投票給三組候選人的 802 位支持者中,一共有 572 位對這個問題給予了明確的回答。《美麗島電子報》在其網站提供了交叉表如圖:

根據這個交叉表,我們可以估計每一位明確回答了續問的受訪者對三組候選人的偏好順序,然後再依這 572 人的偏好順序組態來判定在兩兩 PK 的情形下,候選人之間的輸贏如何。我得到的結果是:

  • 柯文哲 PK 賴清德:311 > 261(54.4% v. 45.6%)
  • 柯文哲 PK 侯友宜:287 > 285(50.2% v. 49.8%)
  • 侯友宜 PK 賴清德:293 > 279(51.2% v. 48.8%)

所以柯文哲是孔多塞贏家,賴清德是孔多塞輸家。當然我們如果考慮抽樣誤差(4.1%),除了柯文哲勝出賴清德具有統計顯著性之外,其他兩組配對可說難分難解。但在這 N=572 的小樣本中,三位候選人的得票率分別是:賴清德 40%,侯友宜 33%,柯文哲 27%,與選舉實際結果幾乎一模一樣。至少在這個反映了選舉結果的樣本中,柯文哲是孔多塞贏家。依多數決選制,孔多塞輸家賴清德當選。

-----廣告,請繼續往下閱讀-----

不過以上的分析有一個問題:各陣營的支持者中,有不少人無法明確回答「最不希望看到誰當總統,也絕對不會投給他做總統」的候選人。最嚴重的是賴清德的支持者,其「無反應率」(nonresponse rate)高達 34.5%。相對而言,侯友宜、柯文哲的支持者則分別只有 24.1%、23.8% 無法明確回答。為什麼賴的支持者有較多人無法指認最討厭的候選人?一個假設是因為藍、白性質相近,對許多綠營選民而言,其候選人的討厭程度可能難分軒輊。反過來說,藍、白陣營的選民大多數會最討厭綠營候選人,因此指認較無困難。無論如何,把無法明確回答偏好順序的受訪者歸為「遺失值」(missing value)而棄置不用總不是很恰當的做法,在這裡尤其可能會造成賴清德支持者數目的低估。

補救的辦法之一是在「無法明確回答等於無法區別」的假設下,把「遺失值」平分給投票對象之外的其他兩位候選人,也就是假設他們各有 1/2 的機會是無反應受訪者最討厭的候選人。這樣處理的結果,得到

  • 柯文哲 PK 賴清德:389 > 413(48.5% v. 51.5%)
  • 柯文哲 PK 侯友宜:396 > 406(49.4% v. 50.6%)
  • 侯友宜 PK 賴清德:376 > 426(46.9% v. 53.1%)

此時賴清德是孔多塞贏家,而柯文哲是孔多塞輸家。在這 N=802 的樣本中,三位候選人的得票率分別是:賴清德 44%,侯友宜 31%,柯文哲 25%。雖然依多數決選制,孔多塞贏家賴清德當選,但賴的得票率超過實際選舉結果(40%)。用無實證的假設來填補遺失值,反而造成賴清德支持者數目的高估。

如果擔心「無法明確回答等於無法區別」的假設太勉強,補救的辦法之二是把「遺失值」依有反應受訪者選擇最討厭對象的同樣比例,分給投票對象之外的其他兩位候選人。這樣處理的結果,得到

-----廣告,請繼續往下閱讀-----
  • 柯文哲 PK 賴清德:409 > 393(51.0% v. 49.0%)
  • 柯文哲 PK 侯友宜:407 > 395(50.8% v. 49.2%)
  • 侯友宜 PK 賴清德:417 > 385(52.0% v. 48.0%)

此時柯文哲又是孔多塞贏家,而賴清德又是孔多塞輸家了。這個樣本也是 N=802,三位候選人的得票率分別是:賴清德 44%,侯友宜 31%,柯文哲 25%,與上面的結果一樣。

以上三種無反應處理方法都不盡完美。第一種把無反應直接當遺失值丟棄,看似最不可取。然而縮小的樣本裡,三位候選人的支持度與實際選舉結果幾乎完全一致。後兩種以不同的假設補足了遺失值,但卻過度膨脹了賴清德的支持度。如果以樣本中候選人支持度與實際結果的比較來判斷遺失值處理方法的效度,我們不能排斥第一種方法及其結果。

無論如何,在缺乏完全資訊的情況下,我們發現的確有可能多數決輸家柯文哲是孔多塞贏家,而多數決贏家賴清德是孔多塞輸家。因為配對 PK 結果缺乏統計顯著性,我們甚至不能排除循環多數的存在。此後四年,多數決選制產生的總統能否在三角嘟力量的激盪下有效維持政治穩定,值得我們持續觀察。

四、結語

柯文哲之所以可以是孔多塞贏家,是因為藍綠選民傾向於最不希望對方的候選人當總統。而白營的中間偏藍位置,讓柯文哲與賴清德 PK 時,能夠得到大多數藍營選民的奧援而勝出。同樣的,當他與侯友宜 PK 時,他也能夠得到一部份綠營選民的奧援。只要他的支持者足夠,他也能夠勝出。反過來看,當賴清德與侯友宜 PK 時,除非他的基本盤夠大,否則從白營得到的奧援不一定足夠讓他勝出。民調 N=572 的樣本中,賴清德得 40%,侯友宜得 33%,柯文哲得 27%。由於柯的支持者討厭賴清德(52.5%)遠遠超過討厭侯友宜(23.7%),賴雖然基本盤較大,能夠從白營得到的奧援卻不多。而侯雖基本盤較小,卻有足夠的奧援。柯文哲之所以成為孔多塞贏家,賴清德之所以成為孔多塞輸家,都是這些因素的數學結果。

-----廣告,請繼續往下閱讀-----

資料來源

-----廣告,請繼續往下閱讀-----

討論功能關閉中。

林澤民_96
37 篇文章 ・ 245 位粉絲
台大電機系畢業,美國明尼蘇達大學政治學博士, 現任教於美國德州大學奧斯汀校區政府系。 林教授每年均參與中央研究院政治學研究所及政大選研中心 「政治學計量方法研習營」(Institute for Political Methodology)的教學工作, 並每兩年5-6月在台大政治系開授「理性行為分析專論」密集課程。 林教授的中文部落格多為文學、藝術、政治、社會、及文化評論。

0

2
2

文字

分享

0
2
2
數學無聊是誰的錯?數學家其實很幽默?——《數盲、詐騙與偽科學》
大牌出版.出版大牌_96
・2024/01/08 ・2441字 ・閱讀時間約 5 分鐘

雖然很少有學生小學畢業後還不懂乘法表,但有很多人確實不會算,如果一個人開車的速度是每小時 56 公里,開了 4 小時之後,他就開了 224 公里。要是每公克花生賣 40 美分,而 1 袋花生賣 2.2 美元,那麼,這袋花生裡就有 5.5 公克花生。假如全世界人口中有 1/4 是中國人,其餘的 1/5 是印度人,那麼,印度人在全世界的人口中就占了 3/20,或說是 15%。當然,要理解這些問題,並不像學會算 35×4=140、(2.2)/(0.4)=5.5、1/5×(1–1/4)=3/20=0.15=15% 這麼簡單。對很多小學生來說,這不是自然而然就會的東西,要靠做很多很實用、或是純屬想像的問題,才能進一步學會。

至於估計,學校裡除了教一些四捨五入之外,通常也沒有別的了。四捨五入和合理的估計與真實人生大有關係,但課堂上很少串起這樣的連結。學校不會帶著小學生估計學校砌一面牆要用掉多少塊磚、班上跑最快的人速度多快、班上同學爸爸是禿頭的比例多高、一個人的頭圍與身高之比是多少、要堆出一座高度和帝國大廈等高的塔需要幾枚 5 美分硬幣,還有他們的教室能否容納這些 5 美分硬幣。

幾乎也沒人教歸納推理,也不會用猜測相關性質和規則的角度,來研究數學現象。在小學數學課裡談到非形式邏輯(informal logic)的機率,就跟講到冰島傳說一樣高。當然,也不會有人提到難題、遊戲和謎語。我相信,這是因為很多時候,聰明的 10 歲小孩輕輕鬆鬆就能打敗老師。

數學科普作家葛登能最不遺餘力探索數學和這些遊戲之間的密切關係。他寫了很多極有吸引力的書,也在《科學美國人》撰寫專欄,而這些都是會讓高中生或大學生感到很刺激的課外讀物(前提是有人指定他們去讀的話)。此外,數學家喬治.波利亞(George Polya)的《怎樣解題》(How to Solve It)和《數學與合情判讀》(Mathematics and Plausible Reasoning),或許也屬於這一類。有一本帶有這些人的文風、但屬於較初階的有趣好書,是瑪瑞琳.伯恩斯(Marilyn Burns)所寫的《我恨數學》(The I Hate Mathematics! Book),書裡有很多啟發性的提示,帶領讀者解題與發想各種奇思異想,是小學數學課本裡罕見的內容。

-----廣告,請繼續往下閱讀-----
圖/envato

有太多教科書仍列出太多人名和術語,就算有說明解析,也很少。比方說,教科書上會說加法是一種結合律運算(associative operation),因為(a + b)+ c=a +(b + c)。但很少人會提到非結合律運算,因此,充其量來說,結合律運算的定義是畫蛇添足。不管是結合律或非結合律,你知道了這些資訊之後要怎麼應用?書上還會介紹到其他術語,但除了用粗體字印在書頁中間的小框框裡,看起來很了不起之外,也沒什麼值得提的理由。這些術語滿足了很多人認為,知識就好比一門普通植物學,每種學問都可以在體系中,找到自己的類別和位置。相比之下,把數學當成有用的工具、思維方式或是獲得樂趣的途徑,在多數小學教育課綱中都是很陌生的概念(即使教科書內容不錯也一樣)。

或許有人會認為,在小學階段,可以用電腦軟體,來幫助學生掌握基本的算數原理及相關應用(應用題、估計等等)。可惜的是,目前可用的程式通常是從教科書上擷取無趣的例行練習,轉化成電腦螢幕版本而已。我不知道有任何軟體可用整合、一致且有效的方法,來教算術與解題應用。

小學階段的數學教學品質普遍不佳,最終必會有人怪罪於老師能力不足,而且對數學沒什麼興趣、或不懂欣賞數學。我認為,這當中有一部分又要歸咎於大專院校的師資培養課程中,很少或根本不強調數學。以我自己的教學經驗來說,我教過的學生中,表現最差的是中學生,而不是大學主修數學的學生。準小學老師的數學背景也很糟,很多時候甚至根本沒有相關的數學教學經歷。

而每所小學聘用一、兩位數學專才,在學校裡每天分別到不同班級輔導(或教授)數學,或許可以解決部分問題。有時我認為,如果大學數學教授和小學老師每年可以交換個幾星期,會是個好方法。同樣的,把主修數學的大學生和研究生交到小學老師手裡,不會造成傷害(事實上,後者或許能從前者身上學到一些東西)。而三、四、五年級的小學生則可以在完全適任的老師教導下,接觸到數學謎題與遊戲,將可大大獲益。

-----廣告,請繼續往下閱讀-----
圖/envato

稍微打個岔,謎題與數學之間很有關係,而且相關性會一直延續到大學與研究階段的數學。當然,把謎題換成幽默也通。我在《數學與幽默》(Mathematics and Humor)書中試著說明,數學和幽默都是某種益智遊戲,與猜謎、解題、遊戲和悖論多有共通之處。

數學和幽默都是把概念組合、拆開再拼回來,然後從中得到樂趣。慣用的手法包括並列、歸納、迭代和倒向(比方說「aixelsyd」就是把「dyslexia」﹝閱讀障礙﹞的字序倒過來)。那麼,如果我放寬這個條件,但緊縮另一個條件會怎樣?某一個領域的概念(像是綁辮子),和另一個看來完全不同領域的概念(如某些幾何圖形的對稱性)有什麼共通點?當然,即便不是數盲,可能也不熟悉數學這個面向,因為你必須要先具備一定程度的數學概念,才可以拿來耍弄。其他像獨創性、不協調感以及精簡的表達,對於數學和幽默來說也都同樣重要。

可能有人說過,因為所受訓練之故,數學家有一種特殊的幽默感。他們往往會接受字面意義,但字面上的解讀又常和標準用法的意義不同,因此很好笑。比方說,哪種運動比賽時要蓋臉?答案是,冰上曲棍球以及痲瘋病人拳擊(按:原文「Which two sports have face-offs」,「face-off」其中一個字面意義為「蓋臉」,而這也是冰上曲棍球常用的術語,意指「爭奪球權」)。他們也很沉溺於歸謬法(reductio ad absurdum),或設定極端前提條件然後做邏輯演練,以及各式各樣的字組遊戲。

如果可以透過小學、中學或大學階段的正式數學教育,或是非正式的數學科普書籍,傳達數學有趣的面向。我認為,數盲就不會像現在這麼普遍。

-----廣告,請繼續往下閱讀-----

——本書摘自《數盲、詐騙與偽科學》,2023 年 11 月,大牌出版,未經同意請勿轉載。

-----廣告,請繼續往下閱讀-----

討論功能關閉中。

大牌出版.出版大牌_96
3 篇文章 ・ 0 位粉絲
閱讀的大牌不侷限於單一領域, 視野寬廣,知識豐富,思考獨立。