0

1
0

文字

分享

0
1
0

史上第一道雷射光:梅曼誕辰 │ 科學史上的今天:07/11

張瑞棋_96
・2015/07/11 ・1092字 ・閱讀時間約 2 分鐘 ・SR值 584 ・九年級

國小高年級科普文,素養閱讀就從今天就開始!!

就是那道光!一九五○年代,包括貝爾實驗室等各路人馬競相研發雷射,卻始終難以突破;沒想到最後殺出重圍的,竟是製造飛機的休斯公司旗下實驗室的一名工程師。1960 年 5 月 16 日,物理博士梅曼率(Theodore H. Maiman, 1927-2007)先射出人類史上第一道雷射光。

雷射的原理最早是由愛因斯坦在 1917 年的論文中所提出,基本上就是利用光子激發原子或分子輻射出波長、相位都一模一樣(同調)的光子,然後這兩個光子又激發出更多光子,如此持續倍增而產生能量極強又集中的光束。此所以雷射原來的全名叫做「受激輻射造成的光增強(Light Amplification by Stimulated Emission of Radiation, 簡稱 LASER)」。

但這畢竟只是理論,實務上如何做出來又是另一回事。經過許多物理學家提供實驗與理論上的貢獻,直到 1953 年,美國物理學家湯斯(Charles H. Townes)才成功做出邁射(MASER),可以發射放大集中的微波束。五年後,他再偕同蕭洛(Arthur L. Schawlow)發表論文,根據邁射的工作原理提出打造雷射的建議方案,這也成為大家研發的指導方針。但梅曼採取的是完全不同的進路。

不同於大家選擇氣體做為激發介質,梅曼採用的是紅寶石(當然不是昂貴的天然紅寶石,而是用人工合成的);而且另闢蹊徑使用閃光燈以脈衝的方式照射,而非大家一貫地持續不斷輸入能量。他在紅寶石表面鍍上一層銀作為反射鏡,紅寶石晶體內的鉻原子受到強光激發後輻射出光子,這些光子在紅寶石兩端的反射鏡來回反射,又激發出更多同調光子,如此不斷倍增;其中部分光子從半反射鏡那一端穿透而出,就是雷射光。

梅曼於當年八月在《自然》(Nature)科學期刊發表論文,只用了 240 個字,就跟他的方法一樣簡明。在此鑽研已久的科學家們都難以置信,如法炮製後才恍然大悟,深受啟發,很快地開發出不同材料的固態雷射,以及半導體雷射、染料雷射、……等等不同的雷射方式。而今雷射已經普遍應用於各個領域:科學研究(1969 年就用來測量月亮的距離)、醫療(如眼睛手術、皮膚美容)、工業(如切割、焊接)、軍事、建築等等,日常生活中更是到處有它的蹤跡,例如超市掃描條碼、雷射印表機、DVD/藍光播放器、光纖網路、……等等。

1964 年,湯斯與同樣在雷射做出先驅性研究的蘇聯物理學家巴索夫(Nikolay Basov)、普羅霍羅夫(Alexander Prokhorov, 他的生日也是這一天)三人共同獲頒諾貝爾物理獎,而率先發明雷射的梅曼卻始終未獲青睞。但這無礙於他受到各界的肯定;在他的追悼會上,湯斯如此推崇他那篇猶如暮鼓晨鐘的論文:「以平均每個字而言,應該是《自然》過去百年以來最具份量的論文。」

 

本文同時收錄於《科學史上的今天:歷史的瞬間,改變世界的起點》,由究竟出版社出版。

文章難易度
張瑞棋_96
423 篇文章 ・ 570 位粉絲
1987年清華大學工業工程系畢業,1992年取得美國西北大學工業工程碩士。浮沉科技業近二十載後,退休賦閒在家,當了中年大叔才開始寫作,成為泛科學專欄作者。著有《科學史上的今天》一書;個人臉書粉絲頁《科學棋談》。

2

10
2

文字

分享

2
10
2
2021 諾貝爾物理獎得主真鍋淑郎——地表模型開山始祖,研究地表模式都要引用他的論文
Y.-S. Lu
・2021/10/14 ・2990字 ・閱讀時間約 6 分鐘

  • 作者|盧彥森,目前任職於 德國于利希研究中心 能源與氣候研究所

第一個地表模型的開發者——真鍋淑郎

在大氣科學領域中,有一部份專業領域統稱為「氣象模擬」,其中,有一門名為「地表模式」的領域,是專門算地表上各種物理、化學、生物作用的行為。

在做這些模擬的研究者中,有個很有名的日本名字,叫做 Manabe,他的論文會一直出現在大家眼前,也就是(只有我們在乎的)《 Manabe 1969, CLIMATE AND THE OCEAN CIRCULATION I : THE ATMOSPHERIC CIRCULATION AND THE HYDROLOGY OF THE EARTH’S SURFACE 》[1]最近因為大量的報導,我才知道原來他名字的漢字是——真鍋淑郎,也就是第一個地表模型的開發者,而在 2021 年時,他拿下了諾貝爾獎。

真鍋淑郎,2021年諾貝爾物理學獎得主之一。圖/維基百科

地表模式(Land Surface Model)在大氣模擬中有舉足輕重的地位,可以算地面是怎麼跟大氣作反應的,像是降水是怎麼被樹冠層截流、土壤水是怎麼變成地表逕流跟地下水、水是怎麼靠蒸散發回到大氣中;還有太陽光怎麼被地面或葉面吸收、能量怎麼被蒸散發作用給吸收、地面上的溫度增加或減少了多少,還有太陽輻射是有多少返回大氣層。

而真鍋淑郎的地表模式,則涵蓋了一大部份的物理反應,供美國國家海洋暨大氣總署(NOAA)的 Geophysical Fluid Dynamics Laboratory 的全球大氣模型使用。

Geophysical Fluid Dynamics Laboratory 圖/Geophysical Fluid Dynamics Laboratory

不過學界是殘酷的。在那個電腦比房子貴的年代(房價在 1960 年的中位數約為$11,900,CNBC報導),真鍋順便背了個學界的鍋,像是:你的模型是不夠真實的、你的土壤濕度估算不夠物理……等因為電腦計算跟理論發展還不夠成熟,所以尚未發展的物理與計算方法。

後來的論文也會稱真鍋的地表模式是水桶模型(因為其計算土壤濕度的方法宛如水桶一樣,滿了就去除,而非經土壤中水流方法流走的)。但無論如何,第一個地表模型,基本上就是真鍋與他在普林斯頓的好夥伴們發展出來的。因此,真鍋的地表模型也在後來的論文中,尊稱為第一代的地表模式,建立起祖師爺等級的封號(Sellers et al., 1997)。

水桶模型後,百家爭鳴的地表模式大戰

雖然第一代的地表模式,土壤當做水桶,地上也沒有植物,更不要說可以進行光合作用或是碳排放來研究二氧化碳是怎麼搞壞我們的人生,但也讓後續的第二代地表模型有了出發點。

1980年後,在個人電腦逐漸普及後,地表模式也開始百家爭鳴,其中真鍋的身影也就只存在各家論文的引用中了。後來再出現時,則是在地表模式大戰——PILPS(Project for the Intercomparison of Land-surface Parametrization Schemes)[2]。這個計畫中,以水桶模型這個稱號出現。基本上始於 1995 年的 PILPS 計畫,就是利用荷蘭的 Cabauw 量測站測到的氣象狀況,來驗證各家第二代的地表模式中,誰才是最強的。

荷蘭 Cabauw 村莊。圖/維基百科

當然結果就是,沒有誰家最強。

更重要的是,雖然地表模式都比真鍋的模型更複雜了一點,但是有個東西是沒有人考慮到的:光合作用

當時各家的蒸散發公式,主要都是用Jarvis的葉面氣孔參數化公式做考量[3],所以也沒有真的考慮到二氧化碳、水、太陽之間的直接關聯。而做出這個關連性主要公式——Farquhar等人[4] 的二氧化碳同化作用公式,才在 1980 年時正式發表,離他同事 Berry 拿去演化成植物氣孔跟光合作用的連動公式[5],還有七年。而在地表模型大戰中發表的模型,其實都長得 87% 像。

在 1997 年時,NASA 的 Sellers等人[6],與多位同樣是地表模式的作者與植物氣孔模擬專家,在《Science》期刊中,登高一呼:我們要有能夠計算生態跟複雜物理的模型!畢竟在 PILPS 的大戰中,沒有真正的勝者,也沒有真正的輸家,甚至我們的真鍋大哥在水文計算上也沒有輸[2]

所以在 2003 年,集合了 PILPS 大戰中和解的部份朋友們,第一支集眾人之力誕生的通用地表模式(Common Land Model)上線了[7],這支從 1998 年開始寫的程式,過了近五年後才發表,算是第三代地表模式的代表作

而這個第三代中,植物終於開始有了它的意義,這植物的葉子終於可以隨四季生長了,也會行光合作用了,土壤也增厚到兩公尺多了,土壤也會依不飽和水流公式往下滲流,也可以計算堆雪了。其中最重要的,就是那光合作用公式的應用。

持續再精進與貢獻

之後的地表模式,就一直著重在地面植物的改良,讓植物越來越真,從一開始的沒有植物,到會蒸發水,再到會跟二氧化碳互動,以及跟氮交互作用,計算植物的農作產出,一步步朝著更精細的方向前進。

當然地表模式也有很多需要改良的地方,首先是地表模型是假設地表跟大氣是一維方向的互動,而土壤中水流也是只會向下滲流,如果要計算真正的水流,就必須要進行三維的地下水流動,這就是另外一個耗資源的計算。另外植物也不是真的植物,植物被假設只有四片葉子,還只有一層。

英國的「JULES」模型曾報告說他們做了個多層葉冠層的模型,最後只能淡淡的說因為計算資源耗太兇,所以沒算完 [8]。更甚者,地底下的根是「死」的,一年四季,不生不滅、不垢不淨,持續地在只有兩公尺厚的土裡,把水吸到植物中行光合作用(Pitman, 2003)[9]

所以無論如何,地表模型不僅不死,其勢更烈,因為有太多的東西可以靠地表模式來計算,像是人類對地球表面的影響、化合物排放,也都可以靠地表模式計算其對大氣的影響,就連地下水模型也都要拜託地表模式處理複雜的地表水文狀況[10]

從 1969 年到 2021 年,無數的改良與改版,還有兩次的超級地表模式大戰(第二次利用 Rhône 流域量測結果[11]),都增加了人們對大氣系統的了解,並且一步步改善天氣預報的準確度,而其中的功臣之一,當然是真鍋博士在 1969 年,比 Unix 更早發表的地式模型,所以的確功不可沒,而現在地球科學的眾多估算中,地表模式解決了很多的水文與能量問題,更遑論對氣候變遷的計算,才能在1975年提出二氧化碳加劇溫度上升的研究[12]。拿下諾貝爾獎,不僅僅是贊同真鍋博士的功勞,更是對大氣模擬界的慰勞吧。

參考資料

  1. Manabe S. (1969). CLIMATE AND THE OCEAN CIRCULATION 1: I. THE ATMOSPHERIC CIRCULATION AND THE HYDROLOGY OF THE EARTH’S SURFACE. Mon. Weather Rev. 97:739–774.
  2. Pitman, A. J., Henderson-Sellers, A., Desborough, C. E., Yang, Z. L., Abramopoulos, F., Boone, A., … & Xue, Y. (1999). Key results and implications from phase 1 (c) of the Project for Intercomparison of Land-surface Parametrization Schemes. Climate Dynamics, 15(9), 673-684.
  3. Jarvis PG. (1976). The Interpretation of the Variations in Leaf Water Potential and Stomatal Conductance Found in Canopies in the Field. Philos. Trans. R. Soc. Lond. B Biol. Sci. 273:593–610.
  4. Farquhar, G. D., von Caemmerer, S. V., & Berry, J. A. (1980). A biochemical model of photosynthetic CO 2 assimilation in leaves of C 3 species. Planta, 149(1), 78-90.
  5. Ball JT., Woodrow IE., Berry JA. (1987). A model predicting stomatal conductance and its contribution to the control of photosynthesis under different environmental conditions. In: Progress in photosynthesis research. Springer, 221–224.
  6. Sellers PJ., Dickinson RE., Randall DA., Betts AK., Hall FG., Berry JA., Collatz GJ., Denning AS., Mooney HA., Nobre CA., Sato N., Field CB., Henderson-Sellers A. (1997). Modeling the Exchanges of Energy, Water, and Carbon Between Continents and the Atmosphere. Science 275:502–509
  7. Dai Y., Zeng X., Dickinson RE., Baker I., Bonan GB., Bosilovich MG., Denning AS., Dirmeyer PA., Houser PR., Niu G. (2003). The common land model. Bull. Am. Meteorol. Soc. 84.
  8. Best MJ., Pryor M., Clark DB., Rooney GG., Essery RLH., Ménard CB., Edwards JM., Hendry MA., Porson A., Gedney N., Mercado LM., Sitch S., Blyth E., Boucher O., Cox PM., Grimmond CSB., Harding RJ. (2011). The Joint UK Land Environment Simulator (JULES), model description – Part 1: Energy and water fluxes. Geosci Model Dev 4:677–699
  9. Pitman AJ. (2003). The evolution of, and revolution in, land surface schemes designed for climate models. Int J Clim. 23:479–510.
  10. Kollet SJ., Maxwell RM. (2006). Integrated surface-groundwater flow modeling: A free-surface overland flow boundary condition in a parallel groundwater flow model. 29:945–958.
  11. Boone A., Habets F., Noilhan J., Clark D., Dirmeyer P., Fox S., Gusev Y., Haddeland I., Koster R., Lohmann D. 2004. The Rhone-Aggregation land surface scheme intercomparison project: An overview. J. Clim. 17:187–208.
  12. Manabe, S., & Wetherald, R. T. (1975). The effects of doubling the CO2 concentration on the climate of a general circulation model. Journal of Atmospheric Sciences, 32(1), 3-15.


所有討論 2
Y.-S. Lu
4 篇文章 ・ 5 位粉絲
自從來到學界後,便展開了一段從土木人到氣象人的水文之旅。主要專業是地球系統數值模擬,地下水與地表模式的耦合系統,以及大氣氣象模擬。目前是于利希研究中心(Forschungszentrum Jülich GmbH)超級電腦中心的博士後研究員。

6

12
3

文字

分享

6
12
3
【2021諾貝爾物理學獎】如何觀測地球暖化?有「氣候模型」及「複雜物理系統」就搞定!
PanSci_96
・2021/10/05 ・2286字 ・閱讀時間約 4 分鐘

2021 年諾貝爾物理獎於5日下午揭曉!本次獎項由美籍日裔學者真鍋淑郎(Syukuro Manabe)、德國學者哈斯曼(Klaus Hasselmann)及義大利學者帕里西(Giorgio Parisi)等 3 位學者共同獲獎。

真鍋淑郎與哈斯曼,因為地球暖化的研究建立了可預測的物理模型,幫助人類「了解地球氣候」及「地球氣候如何被人類影響」而獲獎;帕里西則是成功用物理系統,描述從原子到行星尺度下的各種無序的(disorder)「相互作用」和「波動」(fluctuations)而獲獎。

人類活動讓二氧化碳劇增,就是地球暖化元兇!

氣候,是一個對人類至關重要的複雜系統,而真鍋淑郎的研究為當前氣候模型的發展奠定了基礎。在 1960 年代, 真鍋淑郎領導了地球氣候物理模型的開發,他也是第一個探討輻射平衡和氣團垂直運運輸之間交互作用的科學家,在那個電腦運算能力比現在慢上幾十萬倍的年代,他建立的模型證實了全球溫度的升高,與大氣中二氧化碳的含量有關。

真鍋淑郎建立的模型證實了全球溫度的升高,與大氣中二氧化碳的含量有關。圖/The Nobel Prize

大約十年後,哈斯曼創建了一個將天氣和氣候聯繫在一起的模型,證實了雖氣候多變且混亂,但氣候模型仍然可靠。自然現象和人類活動都會在氣候中留下痕跡,他開發的模型可以辨識這些活動的特定信號和指紋圖譜,因此可以進一步地觀測人類對於氣候系統的影響。

哈斯曼創建的模型證實了人類活動加劇了溫室效應;自 19 世紀中葉以來,大氣中的二氧化碳含量增加了 40%。在這數十萬年來,地球的大氣層從未包含如此多的二氧化碳,溫度測量也顯示,在過去的 150 年中,全球溫度升高了 1°C。這證明了大氣溫度的升高,是由於人類活動產生的二氧化碳所導致的。

這兩位得獎者的研究,讓我們清楚的知道,地球溫度的確在上升,原因是因為大氣中的溫室氣體含量增加,而造成這個現象的原因,並不是因為自然因素,很明顯的,人類就是始作俑者。

哈斯曼創建的模型證實了人類活動加劇了溫室效應。圖/The Nobel Prize

複雜系統背後隱藏的規律

1980 年左右,帕里西在無序的複雜材料中,發現了隱藏的規律。 這個發現不只是能成功解釋複雜材料,更是對複雜系統理論中最重要的貢獻之一。帕里西提出的規律,讓理解或描述各式不同的複雜材料和現象成為可能,不僅在物理學中,也在其他如數學、生物學、神經科學和機器學習等領域中被運用。

A 編按:已努力修復,如果有錯或需要補充隨時在線。(20211007)

從物理來談複雜系統,就必須先從統計力學說起。

微觀下的粒子運動具有隨機性,導致無法精確算出每個粒子確切的運動,為了解決這個問題,統計力學不再看「一個粒子」,而是「一整群粒子」的運動,用統計的方式算出每個粒子的平均效果,這樣算出來的結果也能解釋巨觀現象。最接近生活的例子就是「溫度」,在微觀尺度下,溫度被描述為系統內粒子的平均動能,而在巨觀現象上,溫度這個指標也能解釋固液氣三態變化的原因。

但還有一些狀況是過去統計力學較難解釋的,以下圖為例,下圖的藍色球體是一種微小的氣體粒子,當你不斷對這群氣體粒子降溫或加壓,會讓氣體變成液體,最後結晶成固體。

降溫或加壓後形成的固體結晶,一般情況下會有固定的晶體結構,但如果溫度或壓力快速改變,就會擠壓出不規則的晶體結構,且就算用同樣的方式改變溫度或壓力,也不會出現相同的結構(下圖 a 與 b 所示)。

同樣的氣體分子被相同的方法快速壓縮後,會出現不同的結構。圖/The Nobel Prize

說這是隨機造成的也沒錯,但這結晶問題的背後,難道真的沒有規律可言嗎?

帕里西最初是研究稱為「自旋玻璃(Spin glass)」的材料,自旋玻璃並不是玻璃,是在非磁性金屬中摻入少量磁性金屬的合金,例如在銅裡面摻入少量的鐵,這時,摻入的少量鐵原子會隨機進入銅的結構中,而這些鐵原子的排列方式,卻令物理學家頭疼。

我們可以把一顆鐵原子當作一塊小磁鐵,而一般常見的磁鐵,是裡頭的鐵原子都往同一個方向排列(自旋方向相同)。但自旋玻璃中的鐵原子,有些會跟旁邊的鐵原子指向同一個方向,有些則相反,這時若有第三顆鐵原子在系統中,第三顆鐵原子就會面臨兩難的局面,不知道要往哪個方向才對,形成所謂「受挫(frustration,如下圖所示)」的狀態。

「受挫」狀態示意圖。圖/The Nobel Prize

針對自旋玻璃的「受挫」狀態,帕里西的書中提到:「就像你想同時跟兩人交朋友,但這兩人卻互相討厭對方。」

1970 年代,許多物理學家都研究過自旋玻璃問題,他們想用統計力學中的「副本方法(Replica method)」來解釋,但最初計算的結果是失敗的,直到 1979 年,帕里西巧妙地運用副本方法解決了自旋玻璃問題,並花了多年時間證明這套方法在數學上的正確性。之後,這套巧妙的副本方法被用於許多無序系統,成為複雜系統的基石。

諾貝爾物理學委員會主席Thors Hans Hansson表示,今年獲獎的研究發現表明,我們對地球氣候變遷的理解建立在堅實的科學基礎上。3位獲獎者基於嚴謹的觀測分析,為我們更深入地了解「複雜物理系統」(complex physical systems)的特性和演化做出了貢獻。

所有討論 6
PanSci_96
1006 篇文章 ・ 973 位粉絲
PanSci的編輯部帳號,會發自產內容跟各種消息喔。

2

16
5

文字

分享

2
16
5
水的性質國中不是學完了嗎?竟然還跟「量子效應」有關?
linjunJR_96
・2021/10/03 ・2111字 ・閱讀時間約 4 分鐘

國小高年級科普文,素養閱讀就從今天就開始!!

圖/Pixabay

水這種物質看起來再平凡不過。人們每天洗澡、澆花、游泳、沖咖啡,無時無刻不跟水相處在一起。人體中還有地球表面上大部分都是水,事實上,它可是宇宙中第三多的分子。

不過,時至今日還是有許多頂尖的科學家在進行水的前沿研究。你以為他們領了政府與學校的研究經費,是為了探索未知的星系或癌症的解藥,但他們其實在研究無聊的水。這可不是因為他們是薪水小偷,而是水分子雖然十分常見,但它的許多獨特性質在科學上還未有定論。

三態間的未解之謎

你可能會覺得:「水的性質不是國中就都教過了嗎?」。不過就跟所有其他東西一樣,事情並沒有課本寫得這麼簡單。從固態的冰講起,就有十幾二十種結晶型態。就像石墨加壓會變成鑽石,普通冰塊在高壓下也會轉變成其他的結構。另外,關於過冷(低於冰點卻不結冰)這種奇怪的現象,至今也還沒有完全清楚的實驗和理論圖像。

結冰的過程已經這麼捉摸不定,蒸發更是如此。雖然我們知道衣服晾在外面會乾,但對於水蒸發的速率,卻沒有一個精準的描述。水的蒸發是源自分子碰撞時,某些分子被撞出液態的水,因此蒸發速率可以寫成分子碰撞的多寡乘上某個實驗常數。要決定這個實驗常數聽起來像是個簡單的高中科展題目,但以往的許多結果卻時常出現分歧,差距高達三個數量級(也就是一千倍)!

我們經常以水作為物質三態變化的例子,但其中的細節其實還有待研究。圖/WIKIPEDIA

如果想用電腦進行理論模擬則會出現另一個問題,例如我們模擬 18 公克的水如何蒸發(喝水一口都比 18 克還要多),就必須同時計算 6 × 1023 個水分子的狀態,以目前的電腦運算力難以負擔。想要解決蒸發的難題,需要一些相當進階的實驗與理論方法,而這也是科學家目前正在努力的方向。

除了轉變至固態與汽態的過程之外,就連最普遍的液態水也有許多捉摸不定的型態。科學家在瞬間結冰的水中發現兩種結構,兩者密度高低不同。由於瞬間凝結的冰沒有時間排列成整齊的固態晶格,所以能夠保留原本液態時的分子排列模式。也就是說,原本的液態水也有分兩種結構。這種結構上的差異被認為與過冷機制密切相關,相關的實驗不久前也剛登上 Nature 期刊 [1]

水分子間的量子效應

要對水的這些奇特性質建立更好的理解,得先了解水分子微觀上的交互作用。水分子是由一顆氧跟兩顆氫組成一個米奇形狀,其中氧帶較多負電,氫帶較多正電,所以相鄰的水分子會感受到來自鄰居的吸引力,也就是所謂的「氫鍵」。靠著分子間的氫鍵,水才能夠組成上面提到的各式結構。

水分子間的氫鍵(標示 1 處)3D 模型。圖/WIKIPEDIA

不過,用來解釋氫鍵的質子與電子,都是量子力學適用的尺度,而氫原子的嬌小身材,讓其中牽涉到的量子效應變的特別顯著。有許多人認為,如果將量子效應納入水分子結構理論模型,或許就能解釋水展現出的諸多特性。近期,史丹佛直線加速器中心(SLAC)的實驗團隊首次對水分子氫鍵的振動進行直接觀測,從實驗上踏出了重要的一步。

發生在皮秒間的氫鍵震盪

這次實驗首先得射出一道比頭髮細一千倍的迷你水柱,作為探測的樣本。在這麼細的水柱中,每個截面可能只有幾萬個水分子。水柱中的分子間氫鍵被外加的雷射刺激並進行振動,實驗團隊接著便能用高能量的電子束作為「探測槍」,利用電子束散射的結果,分析水分子每個瞬間的分子結構。

圖/Pexels

這種觀測方法可以達到分子等級的解析度,而這次實驗直接聚焦在三顆水分子之間的拉動牽扯。受到雷射刺激時,氫原子會先將鄰近的氧原子拉近,再拉開距離,一切都在幾皮秒(10-12 秒)內發生。針對氫鍵長度的這種收縮震盪,研究團隊進行了一系列的探索。

透過電腦模擬,他們發現氫鍵拉扯的幅度比較符合加入量子力學的模型,為水分子結構的量子效應提供初步的證據。

拉開水分子量子性質的研究大門


以往研究分子結構需要仰賴光譜學的間接轉換,而以皮秒為單位在進行震盪的微小氫鍵,在實驗觀測上是一大挑戰。這次的裝置首次對液態水的氫鍵距離震盪做出直接的測量,也為科學家開啟更多的機會,去檢驗氫鍵的量子性質對於水的結晶和蒸發等過程有什麼影響。

關於水,我們還有許多不知道的事。也因為如此,網路上常常能看到「小分子團水」,「能量水」等等的健康廣告,讓大家看得不知是真是假。隨著目前研究持續進行,或許很快就要有「量子水」上市了。

參考資料:

  1. https://pansci.asia/archives/194118
  2. Yang, J., Dettori, R., Nunes, J.P.F. et al. Direct observation of ultrafast hydrogen bond strengthening in liquid water. Nature 596, 531–535 (2021).
  3. https://www.sciencedaily.com/releases/2021/08/210825113614.htm
  4. https://nautil.us/issue/25/water/five-things-we-still-dont-know-about-water
所有討論 2
linjunJR_96
31 篇文章 ・ 481 位粉絲
清大理工男。不喜歡算數學。喜歡電影、龐克、和翻譯小說。不知道該把科普當興趣還是專長,但總之先做再說。