1

1
0

文字

分享

1
1
0

萬事問 Google 對我們的記憶力有什麼影響?

valerie hung
・2018/02/02 ・2243字 ・閱讀時間約 4 分鐘 ・SR值 460 ・五年級

-----廣告,請繼續往下閱讀-----

不論是想知道某個國家的國旗顏色、地球上最大的哺乳類生物、親愛的旅蛙為什麼宅著不出門,各種過去可能要到翻上好幾本書、打電話問遍親友的問題,現在幾乎沒有 Google 一次不能解決的,如果有,就 Google 兩次(但別忘了換個關鍵字啊)。

但你有沒有注意到自己查完資料後心滿意足,卻轉個身就忘記了剛剛查到的內容?

最近 107 學年度學科能力測驗試題的國語文考題中,引用了一篇美國團隊針對搜尋引擎對記憶影響的研究當作命題。這是個十分有趣的研究,而且研究內容可以告訴我們的比學測考題所選的段落多多了(也更有啟發);不論你是剛經歷完水深火熱的學子,還是脫離學校很久的上班族,一起來認識有電腦跟搜尋引擎在身旁,對你的記憶力造成了什麼影響吧!

強大的 google 現在已經是我們不可或缺的好朋友,但它對我們的記憶有什麼影響呢?圖/422737@pixabay

既然知道去哪裡找,就把記憶外包吧!

根據貝琦.斯帕羅(Betsy Sparrow)、劉珍妮(Jenny Liu)與丹尼爾 M.韋格納(Daniel M. Wegner)三位心理學家在 2011 年 《科學》期刊(Science)發表的「Google 對記憶的影響:方便獲取資訊對認知的影響(Google Effects on Memory: Cognitive Consequences of Having Information at Our Fingertips)」:當搜尋引擎成為人們可靠的資訊獲取途徑時,他們會記住更少的事實與資訊,反之則會強化記住要去哪裡取得資訊。研究團隊認為,網際網路將成為人類外部記憶,或稱交換記憶(transactive memory)的一種主要形式。

-----廣告,請繼續往下閱讀-----

「交換記憶」的概念是在 1985 年由韋格納提出,簡單來說,就是把某些記憶「儲存」在我們大腦之外的地方,其實你可能早就熟悉這個技巧囉!例如,找不到換季衣物放哪就問媽媽,做 Excel 表單一出狀況就衝去問某個號稱 Office 小神童的同事、記不住球星的名字反正一起看比賽的朋友都記得……等,類似這樣的記憶網路,讓我們的大腦不用記住世界上的所有事情,只要記得「向誰問」就行了。到了科技發達的現代,手機幫我們記電話號碼、GPS 幫我們記路徑,而網際網路則幫忙記住了許許多多資訊。

路太多條記不住?都交給 GPS 導航吧!圖片來源:Pixbay

和電腦一起生活,你記得了什麼又忘記了什麼

研究團隊共規劃了四組實驗來檢測大腦記憶力與電腦的關聯。

其中一個實驗想了解人們能不能記住那些預期可以再取得的資訊(如同我們能網路上重複搜尋):研究團隊請受試者先閱讀類似「鴕鳥的眼睛比牠的腦大」、「哥倫比亞號太空梭在 2003 年 2 月重返大氣層時爆炸解體 」 等 40 則好記的陳述短句,再把這些句子輸入電腦裡。其中一半的受試者被告知資訊會被存檔,另一半的人則被告知資訊會被刪除。在存檔組與刪除組中,又各有一半的人被明確告知要記住這些資訊。最後,受試者要盡可能寫下他們記住了哪些陳述。

研究人員發現,「要求要記住」的指示對受試者而言比不上「知道資訊能不能再次取得」的影響:當受試者認為資訊會存入電腦且之後可以再查詢,他們就不會費太多努力記下這些訊息。這也難怪當我們習慣在網路上隨手搜尋資訊,也不覺得要特別記住,畢竟只要再搜一次就可以啦。

-----廣告,請繼續往下閱讀-----

另一個實驗則想了解比起資訊本身,人們是否更容易回想起該去哪裡找資訊。首先,每位受試者預期他們閱讀且輸入電腦的陳述,會被儲存在電腦中一些特定資料夾中。(這些資料夾以籠統的方式命名,如事實、數據、資訊等)。

接下來受試者要在十分鐘內努力寫出他們記得的陳述。最後,研究人員透過提示單字的方式,詢問受試者陳述存放的位置,如上述「鴕鳥眼睛比腦子大」的陳述的問法就會是「關於鴕鳥的陳述儲存在哪個資料夾?」,並在不提示資料夾名稱與數量的前提下,要求受試者正確輸入名稱。結果很有趣,比起有刻意閱讀且打字輸入的陳述本身,受試者反而更能夠回想起陳述被存放在哪一個資料夾裡

在其餘兩個實驗中,則大致上顯示如果人們預期未來無法再次獲取某樣資訊(如:認為資訊將被刪除),則會加強記住資訊本身的細節;如果預期資訊會被保存在外部的某處,則會強化記住「資訊可以再取用」一事實。以及,當受試者被問完一連串困難又瑣碎的問題,發現自己需要更多知識時,會更傾向於想到與電腦相關的字眼,如「Google」和「Yahoo」。

圖片來源:Pexels

面對與電腦工具共生的時代

透過這篇研究,可以發現到現代人的記憶,正在隨著電腦與網路科技的進步而調適。如同我們學會哪些問題要問哪些親友,我們也學會電腦「知道」什麼,以及我們該在何時、去何處取用。電腦成為了人類重要的資訊來源,失去網路連結可能跟失去一個真實朋友的感受越來越像。

-----廣告,請繼續往下閱讀-----

隨著網路與手機的普及,網路成癮或數位癡呆症也成為社會熱門話題,這是否代表 Google 對人腦也造成了負面影響呢?研究團隊對此沒有明確的答案。韋格納表示:「沒有人知道這些工具對邏輯思考的影響。」雖然記不住太多知識的學生可能也很難把這些知識用在批判思考上,但他相信整體的情況是有利的,如同過去學校曾經禁止學生在數學課上使用計算機,現在反而期待學生如何有效運用這些工具來發揮更大的成效。

「我們仍需要記住事情,只是記住事情的範圍變不同罷了。」

相關文獻:

參考資料:

-----廣告,請繼續往下閱讀-----
文章難易度
所有討論 1
valerie hung
39 篇文章 ・ 2 位粉絲
興趣多多,書籍雜食者,喜歡問為什麼,偶爾也愛動手嘗試。

0

3
1

文字

分享

0
3
1
為機器人換上「物理大腦」:一場終結AI數位囚禁的革命
鳥苷三磷酸 (PanSci Promo)_96
・2025/09/03 ・5732字 ・閱讀時間約 11 分鐘

-----廣告,請繼續往下閱讀-----

本文與 研華科技 合作,泛科學企劃執行

我們都看過那種影片,對吧?網路上從不缺乏讓人驚嘆的機器人表演:數十台人形機器人像軍隊一樣整齊劃一地耍雜技 ,或是波士頓動力的機器狗,用一種幾乎違反物理定律的姿態後空翻、玩跑酷 。每一次,社群媒體總會掀起一陣「未來已來」、「人類要被取代了」的驚呼 。

但當你關掉螢幕,看看四周,一個巨大的落差感就來了:說好的機器人呢?為什麼大街上沒有他們的身影,為什麼我家連一件衣服都還沒人幫我摺?

這份存在於數位螢幕與物理現實之間的巨大鴻溝,源於一個根本性的矛盾:當代AI在數位世界裡聰明絕頂,卻在物理世界中笨拙不堪。它可以寫詩、可以畫畫,但它沒辦法為你端一杯水。

-----廣告,請繼續往下閱讀-----

這個矛盾,在我們常見的兩種機器人展示中體現得淋漓盡致。第一種,是動作精準、甚至會跳舞的類型,這本質上是一場由工程師預先寫好劇本的「戲」,機器人對它所處的世界一無所知 。第二種,則是嘗試執行日常任務(如開冰箱、拿蘋果)的類型,但其動作緩慢不穩,彷彿正在復健的病人 。

這兩種極端的對比,恰恰點出了機器人技術的真正瓶頸:它們的「大腦」還不夠強大,無法即時處理與學習真實世界的突發狀況 。

這也引出了本文試圖探索的核心問題:新一代AI晶片NVIDIA® Jetson Thor™ ,這顆號稱能驅動「物理AI」的超級大腦,真的能終結機器人的「復健時代」,開啟一個它們能真正理解、並與我們共同生活的全新紀元嗎?

新一代AI晶片NVIDIA® Jetson Thor™ ,這顆號稱能驅動「物理AI」的超級大腦 / 圖片來源:研華科技

為何我們看到的機器人,總像在演戲或復健?

那我們怎麼理解這個看似矛盾的現象?為什麼有些機器人靈活得像舞者,有些卻笨拙得像病人?答案,就藏在它們的「大腦」運作方式裡。

-----廣告,請繼續往下閱讀-----

那些動作極其精準、甚至會後空翻的機器人,秀的其實是卓越的硬體性能——關節、馬達、減速器的完美配合。但它的本質,是一場由工程師預先寫好劇本的舞台劇 。每一個角度、每一分力道,都是事先算好的,機器人本身並不知道自己為何要這麼做,它只是在「執行」指令,而不是在「理解」環境。

而另一種,那個開冰箱慢吞吞的機器人,雖然看起來笨,卻是在做一件革命性的事:它正在試圖由 AI 驅動,真正開始「理解」這個世界 。它在學習什麼是冰箱、什麼是蘋果、以及如何控制自己的力量才能順利拿起它。這個過程之所以緩慢,正是因為過去驅動它的「大腦」,也就是 AI 晶片的算力還不夠強,無法即時處理與學習現實世界中無窮的變數 。

這就像教一個小孩走路,你可以抱著他,幫他擺動雙腿,看起來走得又快又穩,但那不是他自己在走。真正的學習,是他自己搖搖晃晃、不斷跌倒、然後慢慢找到平衡的過程。過去的機器人,大多是前者;而我們真正期待的,是後者。

所以,問題的核心浮現了:我們需要為機器人裝上一個強大的大腦!但這個大腦,為什麼不能像ChatGPT一樣,放在遙遠的雲端伺服器上就好?

-----廣告,請繼續往下閱讀-----
我們需要為機器人裝上一個強大的大腦!但這個大腦,為什麼不能像ChatGPT一樣,放在遙遠的雲端伺服器上就好? / 圖片來源:shutterstock

機器人的大腦,為什麼不能放在雲端?

聽起來好像很合理,對吧?把所有複雜的運算都交給雲端最強大的伺服器,機器人本身只要負責接收指令就好了。但……真的嗎?

想像一下,如果你的大腦在雲端,你看到一個球朝你飛過來,視覺訊號要先上傳到雲端,雲端分析完,再把「快閃開」的指令傳回你的身體。這中間只要有零點幾秒的網路延遲,你大概就已經鼻青臉腫了。

現實世界的互動,需要的是「即時反應」。任何網路延遲,在物理世界中都可能造成無法彌補的失誤 。因此,運算必須在機器人本體上完成,這就是「邊緣 AI」(Edge AI)的核心概念 。而 NVIDIA  Jetson 平台,正是為了解決這種在裝置端進行高運算、又要兼顧低功耗的需求,而誕生的關鍵解決方案 。

NVIDIA Jetson 就像一個緊湊、節能卻效能強大的微型電腦,專為在各種裝置上運行 AI 任務設計 。回顧它的演進,早期的 Jetson 系統主要用於視覺辨識搭配AI推論,像是車牌辨識、工廠瑕疵檢測,或者在相機裡分辨貓狗,扮演著「眼睛」的角色,看得懂眼前的事物 。但隨著算力提升,NVIDIA Jetson 的角色也逐漸從單純的「眼睛」,演化為能夠控制手腳的「大腦」,開始驅動更複雜的自主機器,無論是地上跑的、天上飛的,都將NVIDIA Jetson 視為核心運算中樞 。

-----廣告,請繼續往下閱讀-----

但再強大的晶片,如果沒有能適應現場環境的「容器」,也無法真正落地。這正是研華(Advantech)的角色,我們將 NVIDIA Jetson 平台整合進各式工業級主機與邊緣運算設備,確保它能在高熱、灰塵、潮濕或震動的現場穩定運行,滿足從工廠到農場到礦場、從公車到貨車到貨輪等各種使用環境。換句話說,NVIDIA 提供「大腦」,而研華則是讓這顆大腦能在真實世界中呼吸的「生命支持系統」。

這個平台聽起來很工業、很遙遠,但它其實早就以一種你意想不到的方式,進入了我們的生活。

從Switch到雞蛋分揀員,NVIDIA Jetson如何悄悄改變世界?

如果我告訴你,第一代的任天堂Switch遊戲機與Jetson有相同血緣,你會不會很驚訝?它的核心處理器X1晶片,與Jetson TX1模組共享相同架構。這款遊戲機對高效能運算和低功耗的嚴苛要求,正好與 Jetson 的設計理念不謀而合 。

而在更專業的領域,研華透過 NVIDIA Jetson 更是解決了許多真實世界的難題 。例如

-----廣告,請繼續往下閱讀-----
  • 在北美,有客戶利用 AI 進行雞蛋品質檢測,研華的工業電腦搭載NVIDIA Jetson 模組與相機介面,能精準辨識並挑出髒污、雙黃蛋到血蛋 
  • 在日本,為避免鏟雪車在移動時發生意外,導入了環繞視覺系統,當 AI 偵測到周圍有人時便會立刻停止 ;
  • 在水資源珍貴的以色列,研華的邊緣運算平台搭載NVIDIA Jetson模組置入無人機內,24 小時在果園巡航,一旦發現成熟的果實就直接凌空採摘,實現了「無落果」的終極目標 。

這些應用,代表著 NVIDIA Jetson Orin™ 世代的成功,它讓「自動化」設備變得更聰明 。然而,隨著大型語言模型(LLM)的浪潮來襲,人們的期待也從「自動化」轉向了「自主化」 。我們希望機器人不僅能執行命令,更能理解、推理。

Orin世代的算力在執行人形機器人AI推論時的效能約為每秒5到10次的推論頻率,若要機器人更快速完成動作,需要更強大的算力。業界迫切需要一個更強大的大腦。這也引出了一個革命性的問題:AI到底該如何學會「動手」,而不只是「動口」?

革命性的一步:AI如何學會「動手」而不只是「動口」?

面對 Orin 世代的瓶頸,NVIDIA 給出的答案,不是溫和升級,而是一次徹底的世代跨越— NVIDIA Jetson Thor 。這款基於最新 Blackwell 架構的新模組,峰值性能是前代的 7.5 倍,記憶體也翻倍 。如此巨大的效能提升,目標只有一個:將過去只能在雲端資料中心運行的、以 Transformer 為基礎的大型 AI 模型,成功部署到終端的機器上 。

NVIDIA Jetson Thor 的誕生,將驅動機器人控制典範的根本轉變。這要從 AI 模型的演進說起:

-----廣告,請繼續往下閱讀-----
  1. 第一階段是 LLM(Large Language Model,大型語言模型):
    我們最熟悉的 ChatGPT 就屬此類,它接收文字、輸出文字,實現了流暢的人機對話 。
  2. 第二階段是 VLM(Vision-Language Model,視覺語言模型):
    AI 學會了看,可以上傳圖片,它能用文字描述所見之物,但輸出結果仍然是給人類看的自然語言 。
  3. 第三階段則是 VLA(Vision-Language-Action Model,視覺語言行動模型):
    這是革命性的一步。VLA 模型的輸出不再是文字,而是「行動指令(Action Token)」 。它能將視覺與語言的理解,直接轉化為控制機器人關節力矩、速度等物理行為的具體參數 。

這就是關鍵! 過去以NVIDIA Jetson Orin™作為大腦的機器人,僅能以有限的速度運行VLA模型。而由 VLA 模型驅動,讓 AI 能夠感知、理解並直接與物理世界互動的全新形態,正是「物理 AI」(Physical AI)的開端 。NVIDIA Jetson Thor 的強大算力,就是為了滿足物理 AI 的嚴苛需求而生,要讓機器人擺脫「復健」,迎來真正自主、流暢的行動時代 。

NVIDIA Jetson Thor 的強大算力,就是為了滿足物理 AI 的嚴苛需求而生,要讓機器人擺脫「復健」,迎來真正自主、流暢的行動時代 / 圖片來源:研華科技

其中,物理 AI 強調的 vision to action,就需要研華設計對應的硬體來實現;譬如視覺可能來自於一般相機、深度相機、紅外線相機甚至光達,你的系統就要有對應的介面來整合視覺;你也會需要控制介面去控制馬達伸長手臂或控制夾具拿取物品;你也要有 WIFI、4G 或 5G 來傳輸資料或和別的 AI 溝通,這些都需要具體化到一個系統上,這個系統的集大成就是機器人。

好,我們有了史上最強的大腦。但一個再聰明的大腦,也需要一副強韌的身體。而這副身體,為什麼非得是「人形」?這不是一種很沒效率的執念嗎?

為什麼機器人非得是「人形」?這不是一種低效的執念嗎?

這是我一直在思考的問題。為什麼業界的主流目標,是充滿挑戰的「人形」機器人?為何不設計成效率更高的輪式,或是功能更多元的章魚型態?

-----廣告,請繼續往下閱讀-----

答案,簡單到令人無法反駁:因為我們所處的世界,是徹底為人形生物所打造的。

從樓梯的階高、門把的設計,到桌椅的高度,無一不是為了適應人類的雙足、雙手與身高而存在 。對 AI 而言,採用人形的軀體,意味著它能用與我們最相似的視角與方式去感知和學習這個世界,進而最快地理解並融入人類環境 。這背後的邏輯是,與其讓 AI 去適應千奇百怪的非人形設計,不如讓它直接採用這個已經被數千年人類文明「驗證」過的最優解 。

這也區分了「通用型 AI 人形機器人」與「專用型 AI 工業自動化設備」的本質不同 。後者像高度特化的工具,產線上的機械手臂能高效重複鎖螺絲,但它無法處理安裝柔軟水管這種預設外的任務 。而通用型人形機器人的目標,是成為一個「多面手」,它能在廣泛學習後,理解物理世界的運作規律 。理論上,今天它在產線上組裝伺服器,明天就能在廚房裡學會煮菜 。

人形機器人的手、腳、眼睛、甚至背部,都需要大量感測器去理解環境就像神經末梢一樣,隨時傳回方位、力量與外界狀態 / 圖片來源:shutterstock

但要讓一個「多面手」真正活起來,光有骨架還不夠。它必須同時擁有強大的大腦平台與遍布全身的感知神經,才能理解並回應外在環境。人形機器人的手、腳、眼睛、甚至背部,都需要大量感測器去理解環境就像神經末梢一樣,隨時傳回方位、力量與外界狀態。但這些訊號若沒有通過一個穩定的「大腦平台」,就無法匯聚成有意義的行動。

這正是研華的角色:我們不僅把 NVIDIA Jetson Thor 這顆核心晶片包載在工業級電腦中,讓它成為能真正思考與反應的「完整大腦」,同時也提供神經系統的骨幹,將感測器、I/O 介面與通訊模組可靠地連結起來,把訊號傳導進大腦。你或許看不見研華的存在,但它實際上遍布在機器人全身,像隱藏在皮膚之下的神經網絡,讓整個身體真正活過來。

但有了大腦、有了身體,接下來的挑戰是「教育」。你要怎麼教一個物理 AI?總不能讓它在現實世界裡一直摔跤,把一台幾百萬的機器人摔壞吧?

打造一個「精神時光屋」,AI的學習速度能有多快?

這個問題非常關鍵。大型語言模型可以閱讀網際網路上浩瀚的文本資料,但物理世界中用於訓練的互動資料卻極其稀缺,而且在現實中反覆試錯的成本與風險實在太高 。

答案,就在虛擬世界之中。

NVIDIA Isaac Sim™等模擬平台,為這個問題提供了完美的解決方案 。它能創造出一個物理規則高度擬真的數位孿生(Digital Twin)世界,讓 AI 在其中進行訓練 。

這就像是為機器人打造了一個「精神時光屋」 。它可以在一天之內,經歷相當於現實世界千百日的學習與演練,從而在絕對安全的環境中,窮盡各種可能性,深刻領悟物理世界的定律 。透過這種「模擬-訓練-推論」的 3 Computers 閉環,Physical AI (物理AI) 的學習曲線得以指數級加速 。

我原本以為模擬只是為了節省成本,但後來發現,它的意義遠不止於此。它是在為 AI 建立一種關於物理世界的「直覺」。這種直覺,是在現實世界中難以透過有限次的試錯來建立的。

所以你看,這趟從 Switch 到人形機器人的旅程,一幅清晰的未來藍圖已經浮現了。實現物理 AI 的三大支柱已然齊備:一個劃時代的「AI 大腦」(NVIDIA Jetson Thor)、讓核心延展為「完整大腦與神經系統」的工業級骨幹(由研華 Advantech 提供),以及一個不可或缺的「教育環境」(NVIDIA Isaac Sim 模擬平台) 。

結語

我們拆解了那些酷炫機器人影片背後的真相,看見了從「自動化」走向「自主化」的巨大技術鴻溝,也見證了「物理 AI」時代的三大支柱——大腦、身軀、與教育——如何逐一到位 。

專家預測,未來 3 到 5 年內,人形機器人領域將迎來一場顯著的革命 。過去我們只能在科幻電影中想像的場景,如今正以前所未有的速度成為現實 。

這不再只是一個關於效率和生產力的問題。當一台機器,能夠觀察我們的世界,理解我們的語言,並開始以物理實體的方式與我們互動,這將從根本上改變我們與科技的關係。

所以,最後我想留給你的思想實驗是:當一個「物理 AI」真的走進你的生活,它不只是個工具,而是一個能學習、能適應、能與你共同存在於同一個空間的「非人智慧體」,你最先感受到的,會是興奮、是便利,還是……一絲不安?

這個問題,不再是「我們能否做到」,而是「當它發生時,我們準備好了嗎?」

研華已經整裝待發,現在,我們與您一起推動下一代物理 AI 與智慧設備的誕生。
https://bit.ly/4n78dR4

-----廣告,請繼續往下閱讀-----
文章難易度

討論功能關閉中。

0

0
0

文字

分享

0
0
0
腦中那首歌停不下來?可能是「耳蟲」找上你!
雅文兒童聽語文教基金會_96
・2025/08/20 ・3373字 ・閱讀時間約 7 分鐘

  • 文 / 雅文基金會聽語科學研究中心 林旻萱 助理研究員

在你的日常生活中,是否也有過這樣的經驗呢?四周一片寂靜,你坐在書桌前,試圖專心準備即將到來的考試,卻發現怎麼樣都無法靜下心來,因為腦袋裡正不受控制地播放同一首歌,甚至有時候還會不自覺的哼唱起旋律。那也許是你在商店裡無意間聽到的廣告歌曲,也或許是喜歡的歌手發的新歌,無論你有沒有刻意去回想,它都會佔據你的腦海,像是腦中的背景音樂,不斷重播。

像這樣被一首歌「洗腦」的狀況,到底為什麼會發生呢?

為什麼我們會被歌曲洗腦?原來是耳蟲搞的鬼

事實上,上述的這種現象稱為不自主音樂意象(Involuntary Musical Imagery, INMI),也稱為卡歌症候群(Stuck Song Syndrome, SSS),在口語上常被稱為耳蟲(earworm),是指一段旋律在大腦中自發浮現,並不斷重播的現象 [1][2]。耳蟲這個詞是從德文的詞彙 “ohrwurm” 而來 [3],”ohr” 是指耳朵,而 “wurm” 則是小蟲子的意思,用以形容像小蟲子爬進耳朵一般,在腦中揮之不去的音樂。根據研究,耳蟲最早的文學來源,或許可以追溯到 19 世紀 [3]。在 1845 年美國出版的一部短篇小說《悖理的惡魔》中,故事的角色就遭遇了「腦中自發響起旋律而無法擺脫」的困擾,這與現代常被提起的耳蟲現象極為相似。這顯示出,即使當時尚未明確定義耳蟲現象,人們也早已在日常生活中有過這種音樂入侵大腦的經驗,甚至為此感到困擾。

心理學教授 Philip Beaman 指出,2008 年就曾有研究針對芬蘭約 12000 名網路使用者進行大規模的問卷調查,結果顯示,有 33% 的受試者表示耳蟲會每天出現,且有超過 90% 的受試者表示至少每週會發生一次耳蟲現象 [2][4],由此可見,耳蟲現象其實相當普遍。那麼,究竟是什麼原因導致耳蟲現象呢?

-----廣告,請繼續往下閱讀-----
旋律在腦袋裡重播,讓人也忍不住地哼唱起來。 圖 / AI創建

常見的耳蟲現象,與大腦構造息息相關

為了探討大腦結構與耳蟲現象之間的關聯,Farrugia 等人於 2015 年進行了一項研究 [1],他們調查了 44 名受試者接觸音樂的經驗,並透過問卷了解受試者對耳蟲現象的看法,包括耳蟲的出現頻率及其對生活的影響等等。結果顯示,曾學習音樂或經常接觸音樂的人,更容易出現耳蟲現象,而且這些音樂片段可能對他們產生更強烈的情緒與心理影響。

另一方面,研究也透過磁振造影(Magnetic Resonance Imaging, MRI)對受試者進行腦部掃描,分析大腦的灰質體積與皮質厚度。結果發現,耳蟲現象的頻率可能與某些特定腦區的結構有關。大腦右側的額下回(Inferior Frontal Gyrus, IFG)不僅與音高記憶有關 [1][5-7],也負責抑制機制,當右側 IFG 的皮質厚度降低,抑制能力便會減弱 [1]。研究者發現,耳蟲現象發生時,IFG 的活動或許能夠抑制耳蟲出現 [1][8-9]。此外,耳蟲出現的頻率與大腦的前扣帶迴皮質(Anterior Cingulate Cortex, ACC) 厚度也有顯著的關聯,當耳蟲出現得越頻繁,ACC 的皮質厚度越薄 [1]。ACC 位置所在的大腦網絡區域,即使是大腦處於「非任務狀態」時,仍在進行各種思維活動 [1][10]。也就是說,在人們處於放空、發呆,甚至沉浸在白日夢中的時候,ACC 並不會休息停滯,反而呈現高度活躍的狀態。一項研究顯示,ACC 的皮質厚度與非任務狀態的思維活動比例有關 [11]。若將耳蟲視為一種非刻意但可感受到的意識活動,則 ACC 在耳蟲現象的神經機制中,可能扮演重要的角色。

有些人會對耳蟲感到困擾,而有些人則會擁有正向的情緒。 圖 / AI創建

對某些人而言,耳蟲能喚起愉快回憶,帶來正面影響;但對另一些人來說,強烈情緒反而可能使耳蟲成為困擾。先前已有研究指出,聆聽音樂時較容易產生正向情緒的人,其海馬旁迴(Parahippocampal Cortex, PHC)體積通常較大 [1][12], Farrugia 等人也進一步發現,認為耳蟲對自己有幫助的人,其 PHC 的灰質體積也相對較大。他們推測,PHC 灰質體積較大可能喚起與耳蟲相關的記憶,激發情緒,讓耳蟲產生較正向的作用。此外,右側顳極(Temporal Pole, TP)則被認為與情感處理相關 [1][13],若 TP 灰質體積較大,個體對情緒的刺激反應可能更為敏感,而這一類的人也較難抑制耳蟲經驗所連結到的負向情緒反應。這些結果顯示,大腦結構與功能互相影響,使每個人對於耳蟲的感受都有所不同。

那些「洗腦神曲」是怎麼來的?這些特徵是關鍵!

除了大腦結構與自身情感機制會使得耳蟲現象發生之外,歌曲本身的特徵也扮演了重要角色。根據研究,歌曲若具備某些特徵,會更容易引發耳蟲現象 [14],如下所示:

-----廣告,請繼續往下閱讀-----
  1. 節奏較快:INMI 歌曲的節奏通常比非 INMI 歌曲快,輕快的節奏更容易吸引注意力並留下記憶。
  2. 旋律輪廓常見:若旋律的起伏模式符合人們熟悉的音樂結構,更容易在腦中重播。
  3. 特殊旋律轉折:即使旋律不常見,只要具有獨特且引人注意的起伏變化,也可能成為耳蟲。
  4. 近期曝光與流行程度:最近聽過或正在流行的歌曲,更容易成為耳蟲。
經常聽的流行音樂,更容易引起耳蟲現象。圖 / freepik 

重複的旋律,能夠促進兒童語言發展嗎?

根據研究,使用兒歌作為教學素材,能有效提升 4 至 5 歲兒童的詞彙量,且兒童在理解與運用新詞彙方面皆有明顯進步 [15]。兒歌是兒童日常生活中最常接觸的音樂形式之一,而且具備了引來耳蟲的特性:旋律輕快、有節奏感,常見且具記憶點。若兒歌能透過耳蟲現象在兒童腦中自發性地重現,利用這種「非刻意但頻繁回想」的特性,或許能在自然語境中提供兒童額外的語言練習機會,使語言學習不僅僅是限於教學情境中,甚至能夠延伸至日常生活的潛意識層面。

研究也指出,透過兒歌進行學習,不僅能提升幼兒的詞彙量,亦能增強其語言學習的自信心,自我表達也會更為積極 [15]。因此,若能善用兒歌作為語言學習的媒介,並考量耳蟲現象可能帶來的記憶強化效果,也許有助於促進兒童在語言學習上的發展。

耳蟲現象,其實有跡可循

總而言之,當你腦中突然浮現一段旋律,反覆播放、揮之不去時,其實不必感到意外。這正是大腦運作與音樂特性交互作用的結果,是一種相當普遍且自然的現象。即使你沒有刻意記住某首歌,它仍可能在潛意識中悄悄留下痕跡。

所以下次當某首歌又悄悄佔據你的思緒時,不妨放鬆心情,靜靜欣賞它的旋律與節奏。你之所以忍不住想哼唱,並不是因為分心,而是因為這段旋律剛好觸發了大腦中的某個開關,也許還會勾起某些情緒或回憶呢!

-----廣告,請繼續往下閱讀-----

耳蟲,是音樂在我們腦海中留下的溫柔印記,時刻提醒著我們:大腦與音樂之間,總有著令人著迷的互動。

參考資料:

  1. Farrugia, N., Jakubowski, K., Cusack, R., & Stewart, L. (2015). Tunes stuck in your brain: The frequency and affective evaluation of involuntary musical imagery correlate with cortical structure. Consciousness and cognition35, 66-77.
  2. Liikkanen, L. A. (2008). Music in everymind: commonality of involuntary musical imagery. In 10th International Conference of Music Perception and Cognition. Sapporo, Japan, August 2008 (pp. 1-5).
  3. Beaman, C. P. (2018). The literary and recent scientific history of the earworm: A review and theoretical framework. Auditory Perception & Cognition1(1-2), 42-65.
  4. Beaman, C. P., & Williams, T. I. (2010). Earworms (stuck song syndrome): Towards a natural history of intrusive thoughts. British Journal of Psychology101(4), 637-653.
  5. Albouy, P., Mattout, J., Bouet, R., Maby, E., Sanchez, G., Aguera, P. E., … & Tillmann, B. (2013). Impaired pitch perception and memory in congenital amusia: the deficit starts in the auditory cortex. Brain136(5), 1639-1661.
  6. Hyde, K. L., & Peretz, I. (2004). Brains that are out of tune but in time. Psychological science15(5), 356-360.
  7. Hyde, K. L., Lerch, J. P., Zatorre, R. J., Griffiths, T. D., Evans, A. C., & Peretz, I. (2007). Cortical thickness in congenital amusia: when less is better than more. Journal of Neuroscience27(47), 13028-13032.
  8. Aron, A. R., Robbins, T. W., & Poldrack, R. A. (2004). Inhibition and the right inferior frontal cortex. Trends in cognitive sciences8(4), 170-177.
  9. Aron, A. R., Robbins, T. W., & Poldrack, R. A. (2014). Inhibition and the right inferior frontal cortex: one decade on. Trends in cognitive sciences18(4), 177-185.
  10. 廖泊喬。(2024/3/13)。DMN腦神經科學研究:好好躺平有助潛能發展。觀點同不同。取自:https://issues.ptsplus.tv/articles/7927/
  11. Bernhardt, B. C., Smallwood, J., Tusche, A., Ruby, F. J., Engen, H. G., Steinbeis, N., & Singer, T. (2014). Medial prefrontal and anterior cingulate cortical thickness predicts shared individual differences in self-generated thought and temporal discounting. Neuroimage, 90, 290-297.
  12. Koelsch, S., Skouras, S., & Jentschke, S. (2013). Neural correlates of emotional personality: A structural and functional magnetic resonance imaging study. PLoS One8(11), e77196.
  13. Royet, J. P., Zald, D., Versace, R., Costes, N., Lavenne, F., Koenig, O., & Gervais, R. (2000). Emotional responses to pleasant and unpleasant olfactory, visual, and auditory stimuli: a positron emission tomography study. Journal of Neuroscience20(20), 7752-7759.
  14. Jakubowski, K., Finkel, S., Stewart, L., & Müllensiefen, D. (2017). Dissecting an earworm: Melodic features and song popularity predict involuntary musical imagery. Psychology of Aesthetics, Creativity, and the Arts11(2), 122.
  15. Christina, Y., & Pujiarto, P. (2023). The Effectiveness of Nursery Rhymes Media to Improve English Vocabulary and Confidence of Children (4-5 Years) in Tutor Time Kindergarten. Journal of Education Research, 4(3), 1326-1333.
-----廣告,請繼續往下閱讀-----

討論功能關閉中。

雅文兒童聽語文教基金會_96
63 篇文章 ・ 223 位粉絲
雅文基金會提供聽損兒早期療育服務,近年來更致力分享親子教養資訊、推動聽損兒童融合教育,並普及聽力保健知識,期盼在家庭、學校和社會埋下良善的種子,替聽損者營造更加友善的環境。

0

4
3

文字

分享

0
4
3
前額葉皮質的奇蹟:如何保養你的記憶引擎!——《記憶決定你是誰》
天下文化_96
・2024/08/04 ・2641字 ・閱讀時間約 5 分鐘

-----廣告,請繼續往下閱讀-----

憂鬱症或阿茲海默症?前額葉皮質的雙面效應

額葉損傷病患遇到的記憶問題,跟我們在日常生活中所面對的記憶挑戰有著直接的關聯,而這個關聯成為我對前額葉皮質深感興趣的原因之一。即使在沒有具體損傷的情況下,前額葉皮質的功能仍會受到許多因素影響,進一步導致顯著的記憶問題,例如我在埃文斯頓醫院神經心理學診間測試的許多病患,轉介過來是為了評估阿茲海默症的可能性,但在進一步測驗後,卻發現是臨床上的憂鬱症。

在年紀較長的成人身上,憂鬱症有可能看起來很像早期的阿茲海默症,好比我曾經測驗過一名剛退休不久的學校老師,他一向以頭腦清晰自豪,現在卻難以專注,一直忘東忘西。儘管從磁振造影看不出明顯的腦部損傷,但他的認知卻不比前額葉皮質受損的人好上多少。他和醫生都沒想到,這些認知問題可能與他剛經歷一場離婚,以及幾十年來第一次獨居的情況有關。

前額葉皮質是腦部最晚成熟的區域之一,在整個青春期會持續調整與其他腦區的聯繫。兒童雖然學習很快,卻不擅長專注在應該專注的事物上,因為容易分心。這對於有 ADHD(注意力缺失/過動障礙症)的兒童更是嚴重,他們在學校表現不佳並不是因為缺乏理解力,而是因為在教室裡難以集中注意力、培養有效的學習習慣,以及利用可以應付考試的策略。有大量證據顯示,ADHD與前額葉皮質的異常活動有關。

前額葉皮質也是我們進入老年時,首先開始衰退的區域之一,我們因此覺得自己變得比較健忘。幸好,對多數年長的人來說,形成記憶的能力不會有問題,倒是專注力的改變會影響我們記憶事件的方式。舉例來說,你可能記不住你在表妹婚禮上遇到的某個人叫什麼名字,卻可以記得你們會面時各式各樣的其他資訊,諸如他臉上有雀斑,戴著鮮黃色的領結,或不停說著他最近到田納西州那許維爾(Nashville)的事。

-----廣告,請繼續往下閱讀-----

隨著年齡變長,我們想起瑣事卻想不起重要事情的傾向也會提高。已經有無數研究顯示,在必須專心、忽視干擾的情況下記憶時,年長者表現得比年輕人要差,然而他們記得干擾訊息的能力卻與年輕人一樣好,有時甚至更好。隨著年歲漸長,我們依然能夠學習,卻較難專注於想要記住的細節,反倒常常記住無關緊要的事情。

多工殺手:為什麼一心多用讓你大腦退化

除了年齡之外,讓你覺得自己的前額葉皮質有問題的因素多得不得了。在現代世界裡,一心多用恐怕是最常見的罪魁禍首。我們的對話、活動和會議不斷受到簡訊、電話的干擾,而我們本身又常把注意力分散在好幾個目標上,使得問題更加嚴重。就算是神經科學家也無法免於多工作業--在今天,幾乎每一場學術演講中,都能發現臺下的科學家(包括我自己)拿出筆記型電腦,時而聽講、時而回電子郵件。

很多人甚至對一心多用的能力很自豪,但同時做兩件事很難不用付出代價。為了達成目標,前額葉皮質能幫助我們專注在所需的事情上,但如果我們在不同目標間迅速換來換去,這項美妙的能力就會消失。

加州大學舊金山分校神經科學家安卡佛(Melina Uncapher)的團隊便指出,「媒體多工」(media multitasking)對記憶不利,意思是在不同媒體的訊息間切換會妨礙記憶,例如一下子看簡訊、一下子看電子郵件。更嚴重的是,習慣重度媒體多工的人,平均而言前額葉皮質的某些區域會變得較薄。

-----廣告,請繼續往下閱讀-----

至於額葉的功能失常究竟是媒體多工的原因或是結果,還需要更多研究才能了解,但不管如何,這裡傳達出來的訊息相當一致。我的樂團夥伴米勒爾(Earl Miller)是世界頂尖的前額葉皮質專家及麻省理工學院的教授,他經常這樣說:

「沒有所謂一心多用;你只是輪流把不同的事情做得很糟。」

前額葉的功能也會遭到一些健康問題的破壞。例如高血壓和糖尿病會傷害大腦各區域間相互溝通的神經纖維通路,也就是白質。我和同事發現,與年齡相關的白質損傷,似乎會讓前額葉皮質失去跟大腦其他部分的聯繫--試想這名執行長被單獨鎖在房間裡,無法使用電話和網路。

感染疾病後如果造成腦部的發炎,也可能導致相似的結果,例如在新冠肺炎流行早期受到感染的人,注意力和記憶力等執行功能出現衰退,而且前額葉皮質部分區域的結構發生改變。

一旦前額葉的運作發生改變,就可能導致「腦霧」(又稱為「長新冠」)--當感染的時間很長,或罹患慢性疲勞症候群(chronic fatigue syndrome)等與感染相關的病症時,有機率出現腦霧的症狀。

-----廣告,請繼續往下閱讀-----
感染或罹患慢性疲勞症候群,都可能影響到前額葉皮質。圖/envato

養成健康生活:強化前額葉皮質的簡單步驟

如果我們生活時忽視自己的身心健康,也可能使前額葉皮質暫時失能。例如睡眠剝奪可能對前額葉皮質和記憶造成毀滅性的打擊。酒精也對前額葉皮質帶來負面影響,有些研究顯示這些影響在大量喝酒後還會持續好幾天。我們在後面的章節將探討,壓力會破壞前額葉的運作。如果你在充滿壓力的一週工作之後,熬夜喝酒又不停滑手機看網路新聞,然後整個週末都在跟腦霧奮戰,不用太驚訝。

幸運的是,我們確實可以做一些事來增進前額葉皮質的運作,雖然那些事可能跟你想的不一樣。你的腦是身體的一部分,所以任何對身體有幫助的事情,對你的腦都有幫助,進一步也對記憶有幫助。例如充足的睡眠、適度的運動、健康的飲食,這些事物都有益於你的生理和心理健康,也有益於你的前額葉皮質。

有氧運動如跑步,能促進腦部化學物質釋放,進而提升神經可塑性,改善為腦運送氧氣和能量的血管系統,降低發炎並減少罹患腦血管疾病和糖尿病的可能性。運動也會改善睡眠、降低壓力,而睡眠不足和壓力過高正是耗盡前額葉資源的兩大元凶。

這些因素會一同作用,影響記憶功能在我們年齡增長時的維持狀況。有一項令人敬佩的研究,追蹤了多達兩萬九千人的記憶表現,發現那些在生活方式裡包含上述某些有益因素的人,在十年期間記憶能力的維持狀況也較佳。

-----廣告,請繼續往下閱讀-----

——本文摘自《記憶決定你是誰:探索心智基礎,學習如何記憶》,2024 年 7 月,天下文化,未經同意請勿轉載

-----廣告,請繼續往下閱讀-----

討論功能關閉中。

天下文化_96
142 篇文章 ・ 624 位粉絲
天下文化成立於1982年。一直堅持「傳播進步觀念,豐富閱讀世界」,已出版超過2,500種書籍,涵括財經企管、心理勵志、社會人文、科學文化、文學人生、健康生活、親子教養等領域。每一本書都帶給讀者知識、啟發、創意、以及實用的多重收穫,也持續引領台灣社會與國際重要管理潮流同步接軌。