1

3
2

文字

分享

1
3
2

40%的螞蟻天天裝忙?廢柴「懶惰蟻」為何存在?

Peggy Sha/沙珮琦
・2017/09/29 ・1825字 ・閱讀時間約 3 分鐘 ・SR值 521 ・七年級

螞蟻是最勤勞的昆蟲?誤會大啦!

每當我們翻開寓言故事,螞蟻永遠都是「勤勞」的最佳代表,不過,這個認知其實跟現實有段不小的差距呢!

不是所有螞蟻都很勤勞,我們都被騙了!圖/Youtube截圖

來自亞歷桑納大學的昆蟲學者 Daniel Charbonneau 在 2015 年的時候發現:即便螞蟻的社會看起來勤奮又繁忙,這些萬頭攢動的黑點中大約有 40% 其實是不活躍(inactive)的。而最近,他更進一步地確定了這些「懶惰蟻」(lazy ants)的存在原因。

「牠們就只是坐在那兒。」Charbonneau 說。「而當牠們沒在無所事事時,牠們就會做些巢裡的雜務,照顧個卵啊或其他工蟻什麼的。」

排除了螞蟻排休的可能,以及季節、晝夜影響牠們「工作道德」的各種假設後,研究者最後的結論是:有些螞蟻就是比較「擅長」當個懶鬼,不過,到底是什麼原因造成了這種明顯不公平的現象,科學家卻未有定論。

我沒什麼專長,就是擅長發懶啦!圖/By FlyerBine @Pixabay

想看清楚螞蟻,就為牠們點上色彩吧!

而在最近的實驗中,Charbonneau 終於找到了這些不作為的螞蟻們存在的意義,而之所以可以解開這個謎題,還得謝謝世上最小的「蟻體彩繪」。

-----廣告,請繼續往下閱讀-----

「我們在螞蟻身上點上顏料。」Charbonneau 說。「頭上一點、胸口一點、腹部兩點,這些彩色點點的組合讓我們得以分辨每個個體,方便我們在錄影中追蹤牠們。」

點上顏料除了讓螞蟻看起來更萌〈誤〉,還能讓科學家方便追蹤。圖/ScienceAlert

實驗團隊將這種標示系統運用在 20 個切胸蟻(Temnothorax rugatulus)的蟻巢中,這些螞蟻來自亞歷桑納的聖卡特琳娜山脈(Santa Catalina Mountains)。運用繽紛的色彩,研究團隊找到了蟻巢中最活躍/最不活躍的螞蟻。

優秀人才外流危機?別擔心,魯蛇蟻會變勤勞

在一連串的實驗中,研究者分別將最活躍/最不活躍的螞蟻移出蟻窩,而後他們發現了這些「懶惰蟻」的存在目的:他們是儲備勞動力,只有在最需要時才會上場發揮作用。

如果活躍螞蟻中最優秀的前 20% 被剔除勞動力,那些不活躍的螞蟻就會正式進入工作系統,接替牠們原本的位子,成功達到預期的 KPI。(你可能也猜到了,很多經理已經開始摩拳擦掌運用這套系統了……)

-----廣告,請繼續往下閱讀-----
好好偷懶,才能在關鍵時刻發揮作用!好了,讓我睡吧。圖/By YanceTAY @Pixabay

在這個研究團隊先前的研究中曾提出這個現象代表的功能:這種「人事重組」的功能是一種確保蟻窩中擁有一定比例積極工作者的機制。「認為『懶惰蟻』可以充當替代勞動力是我們長期以來的懷疑,」其中一位研究者 Anna Dornhaus 說,「但這只是一種假設,過去從未獲得證實。」

在其他的測驗中,若只將不活躍的螞蟻移出巢穴,螞蟻們並不會另外派人填補它們「儲備部門」的空缺,也就是說,雖然這些「懶惰蟻」永遠都準備好要 carry 其他隊友,但較積極的螞蟻們可不會在「懶惰蟻」不見時回過頭來「變懶」好為它們撐腰。

不想顧人怨,還是乖乖做事最實在!

然而,這並不代表其他螞蟻們就是忘恩負義。

團隊在論文中指出,這種策略其實「挺有道理的,因為如果沒人覓食跟照顧幼蟻,那工蟻和幼蟻就沒東西吃,蟻巢將很快地為此付出巨大代價。」研究表示:「蟻巢似乎並不打算維持巢內活動力的平衡,替代勞力的出現取決於任務的直接需求。」

-----廣告,請繼續往下閱讀-----

我猜你可能會想跟這些不活躍的螞蟻一樣過上那樣悠閒自在的田園生活,然而,這種生活還是有其代價:在其他「勤勞同事」的眼中,你不過就是一個沒沒無聞、用過即丟的勞力替代品。唉,所以我們還是好好打拚吧!

  • 如果你想看看那些所謂「懶惰蟻」有多廢,來看看這部影片吧:

參考資料:

原始論文:

  • Daniel Charbonneau, Takao Sasaki, Anna Dornhaus “Who needs ‘lazy’ workers? Inactive workers act as a ‘reserve’ labor force replacing active workers, but inactive workers are not replaced when they are removed” PLOS [September 6, 2017] https://doi.org/10.1371/journal.pone.0184074
-----廣告,請繼續往下閱讀-----
文章難易度
所有討論 1
Peggy Sha/沙珮琦
69 篇文章 ・ 390 位粉絲
曾經是泛科的 S 編,來自可愛的教育系,是一位正努力成為科青的女子,永遠都想要知道更多新的事情,好奇心怎樣都不嫌多。

0

3
1

文字

分享

0
3
1
為機器人換上「物理大腦」:一場終結AI數位囚禁的革命
鳥苷三磷酸 (PanSci Promo)_96
・2025/09/03 ・5732字 ・閱讀時間約 11 分鐘

本文與 研華科技 合作,泛科學企劃執行

我們都看過那種影片,對吧?網路上從不缺乏讓人驚嘆的機器人表演:數十台人形機器人像軍隊一樣整齊劃一地耍雜技 ,或是波士頓動力的機器狗,用一種幾乎違反物理定律的姿態後空翻、玩跑酷 。每一次,社群媒體總會掀起一陣「未來已來」、「人類要被取代了」的驚呼 。

但當你關掉螢幕,看看四周,一個巨大的落差感就來了:說好的機器人呢?為什麼大街上沒有他們的身影,為什麼我家連一件衣服都還沒人幫我摺?

這份存在於數位螢幕與物理現實之間的巨大鴻溝,源於一個根本性的矛盾:當代AI在數位世界裡聰明絕頂,卻在物理世界中笨拙不堪。它可以寫詩、可以畫畫,但它沒辦法為你端一杯水。

-----廣告,請繼續往下閱讀-----

這個矛盾,在我們常見的兩種機器人展示中體現得淋漓盡致。第一種,是動作精準、甚至會跳舞的類型,這本質上是一場由工程師預先寫好劇本的「戲」,機器人對它所處的世界一無所知 。第二種,則是嘗試執行日常任務(如開冰箱、拿蘋果)的類型,但其動作緩慢不穩,彷彿正在復健的病人 。

這兩種極端的對比,恰恰點出了機器人技術的真正瓶頸:它們的「大腦」還不夠強大,無法即時處理與學習真實世界的突發狀況 。

這也引出了本文試圖探索的核心問題:新一代AI晶片NVIDIA® Jetson Thor™ ,這顆號稱能驅動「物理AI」的超級大腦,真的能終結機器人的「復健時代」,開啟一個它們能真正理解、並與我們共同生活的全新紀元嗎?

新一代AI晶片NVIDIA® Jetson Thor™ ,這顆號稱能驅動「物理AI」的超級大腦 / 圖片來源:研華科技

為何我們看到的機器人,總像在演戲或復健?

那我們怎麼理解這個看似矛盾的現象?為什麼有些機器人靈活得像舞者,有些卻笨拙得像病人?答案,就藏在它們的「大腦」運作方式裡。

-----廣告,請繼續往下閱讀-----

那些動作極其精準、甚至會後空翻的機器人,秀的其實是卓越的硬體性能——關節、馬達、減速器的完美配合。但它的本質,是一場由工程師預先寫好劇本的舞台劇 。每一個角度、每一分力道,都是事先算好的,機器人本身並不知道自己為何要這麼做,它只是在「執行」指令,而不是在「理解」環境。

而另一種,那個開冰箱慢吞吞的機器人,雖然看起來笨,卻是在做一件革命性的事:它正在試圖由 AI 驅動,真正開始「理解」這個世界 。它在學習什麼是冰箱、什麼是蘋果、以及如何控制自己的力量才能順利拿起它。這個過程之所以緩慢,正是因為過去驅動它的「大腦」,也就是 AI 晶片的算力還不夠強,無法即時處理與學習現實世界中無窮的變數 。

這就像教一個小孩走路,你可以抱著他,幫他擺動雙腿,看起來走得又快又穩,但那不是他自己在走。真正的學習,是他自己搖搖晃晃、不斷跌倒、然後慢慢找到平衡的過程。過去的機器人,大多是前者;而我們真正期待的,是後者。

所以,問題的核心浮現了:我們需要為機器人裝上一個強大的大腦!但這個大腦,為什麼不能像ChatGPT一樣,放在遙遠的雲端伺服器上就好?

-----廣告,請繼續往下閱讀-----
我們需要為機器人裝上一個強大的大腦!但這個大腦,為什麼不能像ChatGPT一樣,放在遙遠的雲端伺服器上就好? / 圖片來源:shutterstock

機器人的大腦,為什麼不能放在雲端?

聽起來好像很合理,對吧?把所有複雜的運算都交給雲端最強大的伺服器,機器人本身只要負責接收指令就好了。但……真的嗎?

想像一下,如果你的大腦在雲端,你看到一個球朝你飛過來,視覺訊號要先上傳到雲端,雲端分析完,再把「快閃開」的指令傳回你的身體。這中間只要有零點幾秒的網路延遲,你大概就已經鼻青臉腫了。

現實世界的互動,需要的是「即時反應」。任何網路延遲,在物理世界中都可能造成無法彌補的失誤 。因此,運算必須在機器人本體上完成,這就是「邊緣 AI」(Edge AI)的核心概念 。而 NVIDIA  Jetson 平台,正是為了解決這種在裝置端進行高運算、又要兼顧低功耗的需求,而誕生的關鍵解決方案 。

NVIDIA Jetson 就像一個緊湊、節能卻效能強大的微型電腦,專為在各種裝置上運行 AI 任務設計 。回顧它的演進,早期的 Jetson 系統主要用於視覺辨識搭配AI推論,像是車牌辨識、工廠瑕疵檢測,或者在相機裡分辨貓狗,扮演著「眼睛」的角色,看得懂眼前的事物 。但隨著算力提升,NVIDIA Jetson 的角色也逐漸從單純的「眼睛」,演化為能夠控制手腳的「大腦」,開始驅動更複雜的自主機器,無論是地上跑的、天上飛的,都將NVIDIA Jetson 視為核心運算中樞 。

-----廣告,請繼續往下閱讀-----

但再強大的晶片,如果沒有能適應現場環境的「容器」,也無法真正落地。這正是研華(Advantech)的角色,我們將 NVIDIA Jetson 平台整合進各式工業級主機與邊緣運算設備,確保它能在高熱、灰塵、潮濕或震動的現場穩定運行,滿足從工廠到農場到礦場、從公車到貨車到貨輪等各種使用環境。換句話說,NVIDIA 提供「大腦」,而研華則是讓這顆大腦能在真實世界中呼吸的「生命支持系統」。

這個平台聽起來很工業、很遙遠,但它其實早就以一種你意想不到的方式,進入了我們的生活。

從Switch到雞蛋分揀員,NVIDIA Jetson如何悄悄改變世界?

如果我告訴你,第一代的任天堂Switch遊戲機與Jetson有相同血緣,你會不會很驚訝?它的核心處理器X1晶片,與Jetson TX1模組共享相同架構。這款遊戲機對高效能運算和低功耗的嚴苛要求,正好與 Jetson 的設計理念不謀而合 。

而在更專業的領域,研華透過 NVIDIA Jetson 更是解決了許多真實世界的難題 。例如

-----廣告,請繼續往下閱讀-----
  • 在北美,有客戶利用 AI 進行雞蛋品質檢測,研華的工業電腦搭載NVIDIA Jetson 模組與相機介面,能精準辨識並挑出髒污、雙黃蛋到血蛋 
  • 在日本,為避免鏟雪車在移動時發生意外,導入了環繞視覺系統,當 AI 偵測到周圍有人時便會立刻停止 ;
  • 在水資源珍貴的以色列,研華的邊緣運算平台搭載NVIDIA Jetson模組置入無人機內,24 小時在果園巡航,一旦發現成熟的果實就直接凌空採摘,實現了「無落果」的終極目標 。

這些應用,代表著 NVIDIA Jetson Orin™ 世代的成功,它讓「自動化」設備變得更聰明 。然而,隨著大型語言模型(LLM)的浪潮來襲,人們的期待也從「自動化」轉向了「自主化」 。我們希望機器人不僅能執行命令,更能理解、推理。

Orin世代的算力在執行人形機器人AI推論時的效能約為每秒5到10次的推論頻率,若要機器人更快速完成動作,需要更強大的算力。業界迫切需要一個更強大的大腦。這也引出了一個革命性的問題:AI到底該如何學會「動手」,而不只是「動口」?

革命性的一步:AI如何學會「動手」而不只是「動口」?

面對 Orin 世代的瓶頸,NVIDIA 給出的答案,不是溫和升級,而是一次徹底的世代跨越— NVIDIA Jetson Thor 。這款基於最新 Blackwell 架構的新模組,峰值性能是前代的 7.5 倍,記憶體也翻倍 。如此巨大的效能提升,目標只有一個:將過去只能在雲端資料中心運行的、以 Transformer 為基礎的大型 AI 模型,成功部署到終端的機器上 。

NVIDIA Jetson Thor 的誕生,將驅動機器人控制典範的根本轉變。這要從 AI 模型的演進說起:

-----廣告,請繼續往下閱讀-----
  1. 第一階段是 LLM(Large Language Model,大型語言模型):
    我們最熟悉的 ChatGPT 就屬此類,它接收文字、輸出文字,實現了流暢的人機對話 。
  2. 第二階段是 VLM(Vision-Language Model,視覺語言模型):
    AI 學會了看,可以上傳圖片,它能用文字描述所見之物,但輸出結果仍然是給人類看的自然語言 。
  3. 第三階段則是 VLA(Vision-Language-Action Model,視覺語言行動模型):
    這是革命性的一步。VLA 模型的輸出不再是文字,而是「行動指令(Action Token)」 。它能將視覺與語言的理解,直接轉化為控制機器人關節力矩、速度等物理行為的具體參數 。

這就是關鍵! 過去以NVIDIA Jetson Orin™作為大腦的機器人,僅能以有限的速度運行VLA模型。而由 VLA 模型驅動,讓 AI 能夠感知、理解並直接與物理世界互動的全新形態,正是「物理 AI」(Physical AI)的開端 。NVIDIA Jetson Thor 的強大算力,就是為了滿足物理 AI 的嚴苛需求而生,要讓機器人擺脫「復健」,迎來真正自主、流暢的行動時代 。

NVIDIA Jetson Thor 的強大算力,就是為了滿足物理 AI 的嚴苛需求而生,要讓機器人擺脫「復健」,迎來真正自主、流暢的行動時代 / 圖片來源:研華科技

其中,物理 AI 強調的 vision to action,就需要研華設計對應的硬體來實現;譬如視覺可能來自於一般相機、深度相機、紅外線相機甚至光達,你的系統就要有對應的介面來整合視覺;你也會需要控制介面去控制馬達伸長手臂或控制夾具拿取物品;你也要有 WIFI、4G 或 5G 來傳輸資料或和別的 AI 溝通,這些都需要具體化到一個系統上,這個系統的集大成就是機器人。

好,我們有了史上最強的大腦。但一個再聰明的大腦,也需要一副強韌的身體。而這副身體,為什麼非得是「人形」?這不是一種很沒效率的執念嗎?

為什麼機器人非得是「人形」?這不是一種低效的執念嗎?

這是我一直在思考的問題。為什麼業界的主流目標,是充滿挑戰的「人形」機器人?為何不設計成效率更高的輪式,或是功能更多元的章魚型態?

-----廣告,請繼續往下閱讀-----

答案,簡單到令人無法反駁:因為我們所處的世界,是徹底為人形生物所打造的。

從樓梯的階高、門把的設計,到桌椅的高度,無一不是為了適應人類的雙足、雙手與身高而存在 。對 AI 而言,採用人形的軀體,意味著它能用與我們最相似的視角與方式去感知和學習這個世界,進而最快地理解並融入人類環境 。這背後的邏輯是,與其讓 AI 去適應千奇百怪的非人形設計,不如讓它直接採用這個已經被數千年人類文明「驗證」過的最優解 。

這也區分了「通用型 AI 人形機器人」與「專用型 AI 工業自動化設備」的本質不同 。後者像高度特化的工具,產線上的機械手臂能高效重複鎖螺絲,但它無法處理安裝柔軟水管這種預設外的任務 。而通用型人形機器人的目標,是成為一個「多面手」,它能在廣泛學習後,理解物理世界的運作規律 。理論上,今天它在產線上組裝伺服器,明天就能在廚房裡學會煮菜 。

人形機器人的手、腳、眼睛、甚至背部,都需要大量感測器去理解環境就像神經末梢一樣,隨時傳回方位、力量與外界狀態 / 圖片來源:shutterstock

但要讓一個「多面手」真正活起來,光有骨架還不夠。它必須同時擁有強大的大腦平台與遍布全身的感知神經,才能理解並回應外在環境。人形機器人的手、腳、眼睛、甚至背部,都需要大量感測器去理解環境就像神經末梢一樣,隨時傳回方位、力量與外界狀態。但這些訊號若沒有通過一個穩定的「大腦平台」,就無法匯聚成有意義的行動。

這正是研華的角色:我們不僅把 NVIDIA Jetson Thor 這顆核心晶片包載在工業級電腦中,讓它成為能真正思考與反應的「完整大腦」,同時也提供神經系統的骨幹,將感測器、I/O 介面與通訊模組可靠地連結起來,把訊號傳導進大腦。你或許看不見研華的存在,但它實際上遍布在機器人全身,像隱藏在皮膚之下的神經網絡,讓整個身體真正活過來。

但有了大腦、有了身體,接下來的挑戰是「教育」。你要怎麼教一個物理 AI?總不能讓它在現實世界裡一直摔跤,把一台幾百萬的機器人摔壞吧?

打造一個「精神時光屋」,AI的學習速度能有多快?

這個問題非常關鍵。大型語言模型可以閱讀網際網路上浩瀚的文本資料,但物理世界中用於訓練的互動資料卻極其稀缺,而且在現實中反覆試錯的成本與風險實在太高 。

答案,就在虛擬世界之中。

NVIDIA Isaac Sim™等模擬平台,為這個問題提供了完美的解決方案 。它能創造出一個物理規則高度擬真的數位孿生(Digital Twin)世界,讓 AI 在其中進行訓練 。

這就像是為機器人打造了一個「精神時光屋」 。它可以在一天之內,經歷相當於現實世界千百日的學習與演練,從而在絕對安全的環境中,窮盡各種可能性,深刻領悟物理世界的定律 。透過這種「模擬-訓練-推論」的 3 Computers 閉環,Physical AI (物理AI) 的學習曲線得以指數級加速 。

我原本以為模擬只是為了節省成本,但後來發現,它的意義遠不止於此。它是在為 AI 建立一種關於物理世界的「直覺」。這種直覺,是在現實世界中難以透過有限次的試錯來建立的。

所以你看,這趟從 Switch 到人形機器人的旅程,一幅清晰的未來藍圖已經浮現了。實現物理 AI 的三大支柱已然齊備:一個劃時代的「AI 大腦」(NVIDIA Jetson Thor)、讓核心延展為「完整大腦與神經系統」的工業級骨幹(由研華 Advantech 提供),以及一個不可或缺的「教育環境」(NVIDIA Isaac Sim 模擬平台) 。

結語

我們拆解了那些酷炫機器人影片背後的真相,看見了從「自動化」走向「自主化」的巨大技術鴻溝,也見證了「物理 AI」時代的三大支柱——大腦、身軀、與教育——如何逐一到位 。

專家預測,未來 3 到 5 年內,人形機器人領域將迎來一場顯著的革命 。過去我們只能在科幻電影中想像的場景,如今正以前所未有的速度成為現實 。

這不再只是一個關於效率和生產力的問題。當一台機器,能夠觀察我們的世界,理解我們的語言,並開始以物理實體的方式與我們互動,這將從根本上改變我們與科技的關係。

所以,最後我想留給你的思想實驗是:當一個「物理 AI」真的走進你的生活,它不只是個工具,而是一個能學習、能適應、能與你共同存在於同一個空間的「非人智慧體」,你最先感受到的,會是興奮、是便利,還是……一絲不安?

這個問題,不再是「我們能否做到」,而是「當它發生時,我們準備好了嗎?」

研華已經整裝待發,現在,我們與您一起推動下一代物理 AI 與智慧設備的誕生。
https://bit.ly/4n78dR4

-----廣告,請繼續往下閱讀-----
文章難易度

討論功能關閉中。

0

1
1

文字

分享

0
1
1
《世紀帝國II:決定版》之蟻群爭霸?!
胡中行_96
・2023/10/12 ・3293字 ・閱讀時間約 6 分鐘

-----廣告,請繼續往下閱讀-----

風靡全球的電玩系列《世紀帝國》(Age of Empires),問世將近 26 年,歷經多次新作發表與改版。[1]終於,有生物學家發現它的附加價值,妥善利用於學術研究:2023 年 8 月澳洲聯邦科學暨工業研究院(CSIRO)跟西澳大學(University of Western Australia)隆重巨獻,於美國《國家科學院院刊》(PNAS)正式發表[2, 3]──《世紀帝國II:決定版》(Age of Empires II: Definitive Edition)之蟻群爭霸!

當然,微軟 Xbox 沒有業配贊助,論文標題也不長這樣,而且研究設計浪費了遊戲豐富的功能,玩法單調純樸。[1, 2]不過,成果依然獲得 YouTube 電玩頻道的專業評析,與網友的熱烈討論。[4]

CSIRO 釋出的《世紀帝國 II:決定版》戰爭畫面。圖/參考資料 3(© CSIRO;Fair Use

遊戲模擬

《世紀帝國II:決定版》的場景編輯器,允許玩家在地圖上,改變環境特徵,並配置人力與建物。遊戲裡軍民單位的行為,由32,000行的程式所控制:在「if… then…」的語法下,如果某單位滿足特定條件,便會引發對應的行為。與此研究有關的部份,規範敵軍進入反應半徑時,軍事單位必須向前移動並發動攻擊,但是對於友軍或中立者則一概忽略。其中精銳條頓騎士(Elite Teutonic Knight)的反應半徑為3個格子;而雙手劍兵(Two-Handed Swordsman)則是 4 個。[2]利用這樣的設計,便可以激發戰爭。

研究團隊選擇「標準」的遊戲難度,先讓精銳條頓騎士跟雙手劍兵單挑,直到一方陣亡,總共 10 次。如此確定前者的強悍名不虛傳,無往不利。接著每次出 1 名精銳條頓騎士,跟 2、3、4…8 名雙手劍兵對打,即至1:4 的時候,都還是精銳條頓騎士勝出。最後,研究團隊做了下列設定:[2]

-----廣告,請繼續往下閱讀-----
  • 藍軍:玩家控制;紅軍的敵人;擁有最高生命值和最強攻擊力的精銳條頓騎士,共 9 名。[2]
  • 紅軍:電腦控制;藍軍的敵人;以 20、30、40…100 名戰力薄弱的雙手劍兵,組成數個步兵團。[2]
  • 綠軍:電腦控制;藍、紅兩軍分別的友軍。[2]
  • 簡單競技場:以城牆圍出一塊不會遭藍軍或紅軍攻擊,形狀為長方形的綠軍地盤,讓藍、紅兩軍於其中捉對廝殺。[2]
  • 複雜競技場:先圈出一個簡單競技場,然後用步兵單位無法跨越的水域,在裏頭隔出3條巷道。每條都有3名藍軍的精銳條頓騎士駐守,與巷道外紅軍的雙手劍兵團對峙。[2]

在玩家完全不操作的狀況下,藍軍與不同人數的紅軍,於簡單和複雜競技場交戰。每種排列組合打 10 場,總共 180 場戰役。每場都要打到有一方被完全殲滅,才算結束。簡而言之,就是以不同的人數和場地,不斷重演一模一樣的情境。[2]「大概是遊戲最無聊的玩法」,論文的第一作者 Samuel Lymbery 博士抱怨。[5]整體來說,當紅軍人數增加到一個程度,藍軍的勝算便開始下降,而場地差異則會影響達到此變化的門檻。[2]

藍、紅兩軍在簡單競技場中對戰。影/參考資料 3(© CSIRO;Fair Use

螞蟻實戰

2021年 7 到 10 月間,研究團隊去西澳伯斯丘(Perth Hills)地區的小鎮Chidlow,找澳洲肉蟻(Australian meat ants;學名Iridomyrmex purpureus[註]),還有外來的阿根廷蟻(Argentine ants;Linepithema humile)。從兩者分別的 6 個聚落抓工蟻,數量恰為實驗所需,且不會危害蟻群續存。帶回實驗室後,將來自同個蟻窩的關在一起,用水、蜂蜜和死蟋蟀飼養。[2]

澳洲肉蟻與阿根廷蟻的工蟻,先一對一「釘孤枝」(tìng-koo-ki[6]),直到其中一方死亡為止。凡是有打起來的場次,一律由澳洲肉蟻獲勝。接下來,研究團隊以類似電玩版的模式,調整蟻群的大小與所處的環境,讓兩軍對戰。[2]

  • 澳洲肉蟻:每場戰役徵召20隻。[2]
  • 阿根廷蟻:每次發派 5、10、20、60、100、150 或 200 隻。[2]
  • 簡單競技場:10 公升裝的塑膠容器。[2]
  • 複雜競技場:在塑膠容器裡,用木板區隔出數條巷道。[2]

各種排列組合,照原計劃是要打 7 次,排除有技術性問題的幾次,最後總共進行了 93 場戰役。這裡與遊戲模擬的差別,在於限制時間長度為 24 個鐘頭,結束後統計雙方死傷,而非等到單方全軍覆沒。不意外地,澳洲肉蟻總是勝利,然而傷亡數量卻隨情況而異。[2]

-----廣告,請繼續往下閱讀-----
巨大的澳洲肉蟻;弱小的阿根廷蟻。圖/參考資料 3(© Bruce Webber CSIRO;Fair Use

人類與螞蟻

螞蟻之類的社會性昆蟲打起來,規模與人類的傳統戰爭雷同。[3, 5]澳洲肉蟻對上阿根廷蟻,就像精銳條頓騎士之於雙手劍兵。無論是實戰或電玩,少數強者跟眾多弱者戰鬥時,強者於複雜競技場的死亡率較低,而在簡單競技場則較高。所以戰爭的結果,「取決於戰場的特性」,Samuel Lymbery博士表示。[3]

侵略性的外來螞蟻,會攻擊本土動物,並破壞農作物。[5]阿根廷蟻雖然體型渺小,卻在人為環境或受人類影響的棲地大量繁殖,[2, 3]而且是最猖獗的外來種之一,每年造成全球 1 千 9 百萬美金的經濟損失[2]這是因為人類整頓地面時,移除了植物和自然碎屑,於是創造出簡單競技場般,空曠、開放的戰鬥場域。[3]對真實世界的螞蟻來說,簡單競技場就是人行道和公園;而複雜競技場為樹叢或木屑等。[5]總之,原本自然環境中,具有體型優勢、擅長單挑的澳洲肉蟻,在人為的干擾下,變得容易死於敵軍圍毆。[3]人類務必把複雜的結構加回去,才能減少外來者造成的物種失衡。[3, 5]

YouTube電玩頻道推薦

澳洲這篇論文在美國《國家科學院院刊》上線後,擁有 36.9 萬追蹤者的 YouTube 電玩頻道 Spirit of the Law,發表了一支 12 分鐘,深入淺出的影片,摘要研究重點,還提到其中運用的蘭徹斯特法則(Lanchester’s laws)。不到1個月,已有將近 30 萬人次觀賞。[4]影片下方留言區的科學家與資深玩家,不僅熱議這個描述第一次世界大戰前的戰爭型態中,戰力、人數與戰爭結果關係的數學模型,也執著於論文不影響結論的計算錯誤。[2, 4]發覺迴響熱烈的 CSIRO,感謝 Spirit of the Law 之餘,更將影片節錄到自己的頻道上推廣。[7]

CSIRO 節錄 YouTube 頻道 Spirit of the Law,對此研究的介紹。影/參考資料 7
YouTube 電玩頻道 Spirit of the Law 介紹用《世紀帝國》模擬螞蟻行為的研究。影/參考資料 4

備註

研究團隊把 Iridomyrmex purpureus,叫作澳洲肉蟻(Australian meat ant)。[2]這種螞蟻的學名,有多個中文翻譯。臺灣大學昆蟲系名譽教授吳文哲導讀,彰化師範大學生物學系教授林宗岐審訂的《螞蟻螞蟻:螞蟻大師威爾森與霍德伯勒的科學探索之旅》,稱其為紫虹琉璃蟻[8]

-----廣告,請繼續往下閱讀-----

  

參考資料

  1. Age of Empires. (26 OCT 2022) ‘Age of Empires – A Franchise History’. YouTube.
  2. Lymbery SJ, Webber BL, Didham RK. (2023) ‘Complex battlefields favor strong soldiers over large armies in social animal warfare’. Proceedings of the National Academy of Sciences of the United States of America, 12;120(37):e2217973120.
  3. Dewar I. (29 AUG 2023) ‘Ant wars: How native species can win the battle over invasive pests’. CSIRO, Australia.
  4. Spirit of the Law. (13 SEP 2023) ‘How AoE2 is helping scientists understand ants’. YouTube.
  5. Hughes M. (03 OCT 2023) ‘Scientists use Age of Empires computer game to simulate ant warfare’. ABC News, Australia.
  6. 釘孤枝」教育部臺灣閩南語常用詞辭典(Accessed on 06 OCT 2023)
  7. CSIRO. (24 SEP 2023) ‘Testing ant warefare models in Age of Empires II #ageofempires’. YouTube.
  8. Wilson EO, Hölldobler B.(05 SEP 2019)《螞蟻螞蟻:螞蟻大師威爾森與霍德伯勒的科學探索之旅》貓頭鷹出版社
-----廣告,請繼續往下閱讀-----

0

4
0

文字

分享

0
4
0
面對螞蟻的防疫政策,蟲生真菌該如何生存下來?
one minute biology
・2023/07/03 ・2366字 ・閱讀時間約 4 分鐘

社交梳理以及令螞蟻聞風喪膽的黑殭菌

這三年來人類對抗新冠肺炎的防疫戰絕對是科學史上的重大突破,防疫的科學知識和技術出現突破性的成長。然而,不只人類通過合作對抗病原體,許多社會性的生物也會合作對抗病原。

以最著名的社會性昆蟲——螞蟻為例,牠們會幫助同伴清除身上的病原體真菌孢子,這種互相幫忙清理身體的行為在許多社會性的生物上都可以發現(例如獼猴、蜜蜂等),稱為社交梳理(Allogrooming)社交梳理是這些社會性動物對抗病原體的重要防線,可說是群居動物的獨特「防疫政策」。

正所謂道高一尺魔高一丈,致病病原體也不是吃素的,就像新冠肺炎病毒不斷有新的病毒株出現,感染螞蟻的蟲生真菌同樣也有一套對付螞蟻社交梳理的招數。今年發表在《Nature ecology and evolution》的論文就做實驗以了解:螞蟻的社交梳理行為是否會對黑殭菌(Metarhizium sp.)造成生存壓力,以及黑殭菌的應變策略進行探討。

黑殭菌屬的真菌屬於蟲生真菌的一類,如著名補品冬蟲夏草,具有感染寄生昆蟲並使其死亡的能力;因此,對於螞蟻來說,黑殭菌絕對是致命的敵人,若看到同伴身上有黑殭菌孢子一定要幫忙清除。

-----廣告,請繼續往下閱讀-----

螞蟻的「防疫政策」對黑殭菌造成生存壓力

首先,科學家想要透過研究「社交梳理行為是否會改變真菌群集組成」,來確認「社交梳理是否會對黑殭菌造成生存壓力」,因此使用六種不同菌株感染螞蟻,並將實驗分成「獨自面對真菌」以及「有兩名同伴照護」的組別,前者的螞蟻個體只能透過自身免疫力來抵抗真菌感染,後者則是有同伴幫忙清除有害真菌孢子。在感染真菌後的八天內,如果有螞蟻死亡,就會將這些孢子拿去感染新的螞蟻個體,並同樣分成兩組進行上述實驗,如此重複十個循環(圖一)。

圖一。實驗方法示意圖。圖/Stock et al., 2023

實驗結果顯示,社交梳理行為確實對真菌群集造成天擇壓力。獨自面對真菌的組別,在經過十個循環後出現較低的真菌多樣性(只剩兩株菌株),然而同伴照護組卻出現較高的真菌多樣性(還剩四株菌株),說明社交梳理行為足以影響菌株間的競爭。(圖二)。

既然螞蟻的「防疫政策」會對真菌造成影響,那麼真菌在螞蟻「防疫政策」的洗禮下,是否也會產生改變呢?答案是:會!

圖二、實驗結果顯示經社交梳理篩選出來的群集多樣性較高,代表社交梳理是足以改變真菌間競爭情形的天擇壓力。圖/Stock et al., 2023

黑殭菌利用「隱身術」騙過螞蟻的防疫政策

科學家首先針對真菌的兩項特徵進行研究:毒性(致死率)子代數量(產孢數)。研究結果顯示,經過社交免疫的篩選後,真菌的毒性有顯著的下降(圖三 a),然而產生子代的數量卻有所提升(圖三b)。

-----廣告,請繼續往下閱讀-----
圖三、經過社交免疫的選擇(同伴組)後真菌的毒性有顯著的下降,然而產生子代的數量卻有所提升。此外,相較於獨自組,同伴組的真菌孢子對社交免疫產生抵抗力,圖 a 中的兩條粉紅色長條說明經社交免疫篩選出來的孢子感染有無同伴的螞蟻致死率是一樣的。圖/Stock et al., 2023

更有趣的是,這些經過社交免疫篩選的真菌孢子竟提升對社交免疫的抵抗力!相較於獨自對抗真菌篩選出來的菌株,社交免疫篩選出的菌株再次感染單獨的螞蟻和有同伴照顧的螞蟻時,致死率竟沒有差異(圖三 a),這代表社交免疫已經失效了!

科學家猜想,這種現象源於螞蟻們不再好好清除同伴身上的致命孢子,實驗結果也確實顯示同伴螞蟻們似乎對於經社交免疫篩選出來的真菌孢子沒有敵意,因此大大降低清除這些孢子的意願(圖四 a)。與此同時,科學家還發現,經社交免疫篩選出的真菌孢子中「麥角固醇(Ergosterol)」的含量大幅減少,麥角固醇是真菌孢子中的重要組成成分,科學家懷疑螞蟻可能就是因為麥角固醇的幾少而無法辨識孢子。

最終的行為實驗結果支持了這個論點,若把麥角固醇塗在螞蟻身上可以吸引同伴前來清潔,構造相似的膽固醇則沒有類似效果(圖四c、d),因此,麥角固醇很可能就是吸引螞蟻進行社交梳理的標的!

圖四、圖 a 說明經社交免疫(同伴組)「訓練」出來的孢子能夠減少螞蟻幫忙同伴清除孢子的頻率;圖 c、d 則說明在螞蟻身上塗上麥角固醇會讓吸引同伴來社交梳理,構造與麥角固醇相似的膽固醇則無此效果。圖/Stock et al., 2023

不僅是本實驗的阿根廷蟻(Linepithema humile)被麥角固醇吸引並進行社交梳理,前人的研究發現另外一種社會性昆蟲——白蟻也具備類似的行為,科學家推測麥角固醇可能就是真菌避免被同伴螞蟻清除的關鍵。值得留意的是,麥角固醇的實驗結果可能也解釋了毒性下降以及後代數量提升,由於麥角固醇是真菌孢子重要的組成成分,因此若麥角固醇的含量改變將會導致資源的分配有所調整,毒性下降和後代數量提昇可能就是資源調整分配的結果。

-----廣告,請繼續往下閱讀-----

昆蟲的行為背後往往牽涉複雜的因素,麥角固醇是否真為引起螞蟻社交梳理行為的因素或是唯一因素仍需更進一步的證據支持才能夠確認。可以肯定的是,在螞蟻「防疫政策」的伺候下,黑殭菌正透過某種「隱身術」來躲避螞蟻的清除,這不由得令人想起 Jurassic Park (侏儸紀公園)中那句經典的台詞:

Life will find its way out.

參考文獻

  • Stock, M., Milutinović, B., Hoenigsberger, M., Grasse, A. V., Wiesenhofer, F., Kampleitner, N., Narasimhan, M., Schmitt, T. & Cremer, S. (2023). Pathogen evasion of social immunity. Nature Ecology & Evolution7(3), 450-460. https://doi.org/10.1038/s41559-023-01981-6
-----廣告,請繼續往下閱讀-----