0

0
0

文字

分享

0
0
0

旋轉、跳躍、紗線發電~~~拉拉扯扯就能發電的神奇螺旋線!?

tinablahblah
・2017/10/06 ・1795字 ・閱讀時間約 3 分鐘 ・SR值 517 ・六年級

-----廣告,請繼續往下閱讀-----

螺斯龍放在衣服裡、只要呼吸就可以發電的特性,未來可望應用在充電方面。圖/StockSnap @pixabay

想像一下,以後外出時不用再帶著行動電源,因為你身上穿的衣服就能幫你充電!如果你未來看到這件神奇的衣服,別懷疑,這不是魔術,衣服裡面也沒有隱藏開關,只是內含由奈米碳管纏結而成的特殊紗線,名為「螺旋龍」(暫譯,原文為twistron),本身就有辦法發電!

實驗中的螺旋龍從本來繃緊的狀態到完全鬆開,其中產生的能量足以使一顆LED燈亮起。圖/Shi Hyeong Ki@ Science (上圖) &  Science Magazine@ Youtube (下圖)

這個紗線由德克薩斯州大學達拉斯分校與南韓漢陽大學共同研發,研究發表在今年8月號的《Science》。實驗過程中使用的是直徑比頭髮還要小一萬倍以上的奈米碳管,他們把奈米碳管薄片放置到轉動的馬達上,就像紡紗般,使薄片變為線,接著再強力扭轉線,把線捲得跟家用電話線很像,也就是螺旋龍。接著,研究人員將螺旋龍放在電解液(實驗中用鹽酸)裡,就成了「螺旋集電器」(暫譯,原文為 twistron harvesters)。當原本緊繃的螺旋龍鬆開時,內部的壓力與摩擦力使奈米碳管釋放電荷,並通過電解液抵達電極,就可以成功發電了!

那麼它實際的效果如何呢?實驗中使用了19毫克的紗線,一次的拉扯可以使LED燈瞬間「登!」的亮一下。以每一公斤的紗線來說,放掉的那瞬間繩子旋轉的速度最高可達每秒三十圈(是指速度,不是真的轉三十圈喔xD),可產生250瓦特(也就是250焦耳/秒),而這一公斤紗線從放開、開始旋轉、放慢到完全停下來,平均產生40焦耳的能量。

研究人員已成功將螺旋集電器放入衣服。圖/Science Magazine@ Youtube

以目前來說,可行的應用是可攜式裝置與穿戴式裝置。研究人員已嘗試將螺旋集電器放入衣服裡了,他們將電解質放入凝膠中,另外以導電的奈米碳管作為電極,再加上螺旋龍,全部合在一起做成柔軟有彈性的材料,放入布料中。每當我們活動、甚至只是單純呼吸時,衣服就能隨之起伏而發電!除此之外,也可以應用到襪子、手套等等。(如果放在保險套就可以用愛發電了)(喂)

-----廣告,請繼續往下閱讀-----
未來只要奈米碳管價格下降,可望將螺旋龍應用在海洋發電上。圖/Hans@ Pixabay

但研究人員可不只滿足於人體的起伏所發的電,那麼有沒有什麼能起伏更大、又有更多電解液的地方?來來來,讓我們靜心打坐冥想⋯⋯叮!沒錯,此時你應該已經聽到大自然——波浪——的呼喚了。海水本身就是天然的電解質溶液,且浪潮不停地翻滾,正好適合需要拉扯的螺旋集電器(以後可以當神奇海螺的好朋友,叫神奇海螺旋),因此,研究人員希望可以將此應用在海洋能發電,為我們開啟能源的新可能。

這次的研究所使用的技術,使我們對於如何將力學能轉為電能的了解又跨進一步。雖然奈米碳管的價格並不便宜,但是隨著未來價格下降,加上奈米碳管很輕的優點,研究人員相信螺旋集電器的應用範圍很廣。(不過價格到底什麼時候下降到夠低呢⋯我也不知道)(啊不就在講廢話(逃))

參考資料

-----廣告,請繼續往下閱讀-----
文章難易度
tinablahblah
3 篇文章 ・ 1 位粉絲
喲荷~我是小小的實習編輯,對科學是最一竅不通的那種,所以,嗯,科普文章的存在真的太重要了!(點頭點頭)

0

1
0

文字

分享

0
1
0
「護國神山」越高 電力壓力越大:臺灣海洋能是解方?
PanSci_96
・2024/11/07 ・3548字 ・閱讀時間約 7 分鐘

-----廣告,請繼續往下閱讀-----

半導體廠和資料中心的耗電量巨大,隨著護國神山的持續壯大,台灣的電力供應是否還能承受這種壓力?

或許,大海能夠給予我們答案。

在我們的周遭,有一個龐大且源源不絕的能源,但卻長期被我們所忽視——大海。太平洋上的鄰居夏威夷,已經部署了一座 1.25 百萬瓦特(1.25MW)的波浪能發電示範裝置,並即將併入夏威夷的電網。雖然這個發電量看似不大,但一台裝置只需要 38 公尺長、18 公尺寬的空間。想要放置更多的裝置,需要更大的空間嗎?大海有的是空間。

看來從海洋中擷取能源,或許就是台灣能源的終極解答。但為什麼還沒有人大力投入這個領域呢?

-----廣告,請繼續往下閱讀-----
歡迎訂閱 Pansci Youtube 頻道 獲取更多深入淺出的科學知識!

從海洋擷取能源

事實上,從海洋中獲取能量的想法並不新鮮。利用海洋的物理或化學特性所開發的能源,稱為海洋能。海洋能可以大致分為多種不同的形式,每種原理各有不同。

首先是波浪能。夏威夷建設的波浪能示範電廠,就是利用波浪的上下運動所產生的位能變化,或者是利用波浪中海水運動所帶有的動能,來產生電力。值得一提的是,無風不起浪。波浪的產生及其動能的來源,來自於風吹過海面時所產生的摩擦力。而風的出現,可能來自地球自轉,或者是太陽加熱地表和空氣所產生的氣壓差,空氣從高壓區流向低壓區,進而產生風。因此,波浪能的源頭其實是地球和源源不絕的太陽能,被視為永續能源。

其次是潮汐能。月球的引力是潮汐漲退的主要原因。潮汐造成海洋水位的變化,產生位能;同時,漲潮和落潮的水流也帶有動能,這兩種能量都可以用來發電。

另一種是海流能。這是利用海洋中洋流流動的能量。例如,台灣附近的黑潮,水流方向不論冬夏,都是由南向北,而且流速相當快,約每秒 1 至 2 公尺。只要在海流中放置水輪機,就能驅動發電機發電。

-----廣告,請繼續往下閱讀-----

接下來是較為特殊的兩種方式。溫差能(OTEC,Ocean Thermal Energy Conversion)利用海水表面和深海之間的溫度差來發電。我們知道,海水表面因為受到太陽照射,溫度較高;越往深海,溫度越低,一般溫差可達 14 至 25 攝氏度。我們可以利用這個溫差來發電,原理類似地熱發電。OTEC 系統除了發電外,還可以結合海水淡化、海洋養殖和空調冷卻系統等多種用途,可謂一舉多得。

最後是鹽差能。這是利用鹹水和淡水之間的鹽度差異所產生的化學電位差來發電。發電廠通常建設在河水和海水的交界處,將海水和淡水當作一個巨大的化學電池的兩極。

台灣適合發展海洋能嗎?

海洋每年蘊藏的能源遠超全球發電需求,潛力無窮。 圖/envato

地球表面約有 70% 是海洋,蘊藏著無窮的潛力。國際能源總署(IEA)在 2007 年發布的報告預估,海洋每年蘊藏了 21,100 到 93,100 太瓦小時的發電量。作為對比,根據統計公司 Statista 的資料,2022 年全球總發電量為 29,165 太瓦小時。也就是說,海洋蘊藏的能源,足以供給全球所需,甚至可能多出數倍。

海洋能除了蘊藏量龐大之外,發電不需要佔用陸地,又屬於不會造成環境污染的可再生能源,具備多重優勢。既然如此,為什麼我們不大力發展海洋能呢?畢竟台灣四面環海,感覺應該非常有利於開發海洋能。但事實上,不是每一種發電方式都適合台灣。

-----廣告,請繼續往下閱讀-----

根據工研院於 2018 年整理的資料,台灣的地理環境較有潛力發展的是波浪能、溫差能和海流能。在詳細介紹這些能夠發多少電之前,我們先有個概念作為對照。2023 年,台電系統(不包括民營電廠)發電總裝置容量約為 55 吉瓦(GW),而目前封存的核四,兩部機組的總裝置容量為2.7 GW。

首先,波浪能發電適合的區域包括東北角外海、富貴角一帶,以及澎湖和雲林、彰化外海,發電功率有望達到 2.4 GW。溫差能發電適合的範圍則在花蓮、台東外海,具有 2.8 GW 的發電潛力。至於海流能發電,適合的地區在富貴角、澎湖水道(台澎海峽),以及東部外海的黑潮,共有 4.2 GW 的發電潛力。此外,在金門和馬祖,也有一些潮汐能發電的潛力。

總計而言,台灣的海洋能蘊藏量至少有 9.4 GW 的潛力,相當於七部核能機組的發電量。這樣的發電潛力也意味著巨大的經濟價值,估計海洋能市場的產值可達數兆台幣。

發展海洋能的困難之處

既然海洋能蘊藏量龐大,為什麼我們至今未見台灣有大規模的海洋能開發計畫呢?

-----廣告,請繼續往下閱讀-----

首先,海洋能的技術發展仍存在許多挑戰。在各種海洋能中,潮汐發電目前最接近成熟的商業化階段,且已有正在運作的商業發電廠。例如,全球有十多座潮汐發電廠在運作中,其中韓國的始華湖潮汐發電廠是全球最大的,發電容量達 254 MW。此外,還有一些潮汐發電廠處於規劃或建造階段。

然而,潮汐發電的效益取決於潮差(滿潮和乾潮之間的水位差)的大小。一般而言,需要潮差達到 5 公尺以上才有經濟效益。台灣除了金門、馬祖等外島之外,潮差均不足5公尺,因此潮汐發電的潛力較低,並非首選。

至於台灣適合發展的波浪能、溫差能和海流能,目前全球的發展進度都較為遲緩。以波浪能發電為例,雖然蘇格蘭曾有過小規模的商業化案例,但已經退役。不過,最近也有新的波浪能計畫正在進行,包括本文開頭提到的夏威夷案場,這是愛爾蘭公司 OceanEnergy 在夏威夷設置的波浪能轉換器 OE-35,裝置容量為 1.25 MW。另外,瑞典公司 CorPower Ocean 在葡萄牙設置了 C4,裝置容量為 600 kW。雖然規模不大,但已達到商業化的程度,有望在不久的將來成為新的商業化發電方式。

至於溫差能、海流能和鹽差能,都還處於技術發展或小規模實驗測試階段,距離成功商業化發電還有一段路要走。

-----廣告,請繼續往下閱讀-----

那麼,海洋能發展緩慢的原因是什麼呢?技術層面是一大挑戰。首先,海水對電器設備具有腐蝕性。同時,海上的強風大浪可能造成設備損壞。海洋生物也會附著在設備上,影響其運作效能。因此,打造耐用且抗生物附著的海洋能發電設備,本身就是一個巨大挑戰。

海洋能發展緩慢因設備易腐蝕、受強風大浪及生物附著影響。圖/envato

此外,即使我們能夠製造出能夠承受各種海洋環境的發電裝置,是否能長期高效地發電也是一個問題。如果無法建立耐用且具有一定規模的海洋能發電設施,成本將無法下降,進而阻礙海洋能的開發。

台灣在海洋能開發的進展

波浪能方面,工研院開發了「懸浮點吸收式波浪發電」系統,包含具有運動模組和浮筒模組的上浮體,以及具有穩定作用的下浮體。當波浪經過時,上、下浮體會產生相對運動,能量擷取系統藉此吸收波浪的能量。

國家海洋研究院則與台灣海洋大學合作,進行「振盪水柱式波浪發電系統」的研究。該系統利用波浪的上下擺動,擠壓空氣艙內的空氣,將空氣擠出至口徑較小的排氣口,造成空氣流速加快,進而驅動排氣孔中的扇葉發電。成大也有實驗室透過數值分析軟體,進行發電裝置最佳化設計的研究。

-----廣告,請繼續往下閱讀-----

海流能方面,國家海洋研究院、台灣大學、中山大學和台灣海洋大學均參與了「浮游式洋流發電機組」的研發。發電機艙採流線型設計,類似一台風箏。機艙後方的葉片在受到洋流衝擊後轉動,驅動發電機產生電力。目前,20 kW 級的發電機組「錨碇」已在90公尺深的海中初步測試成功。中研院也正在研發 100 kW 等級的渦輪機,預計今年在台東外海下水測試。

在進度較慢的溫差能發電方面,台泥預計在和平火力發電廠打造台灣第一個溫差能發電系統。

未來展望與政策目標

不知不覺中,台灣在海洋能的開發上已經投入了不少資源,雖然還需接受海洋環境的考驗,但前景可期。根據目前的政策目標,台灣將從技術較為成熟的海洋能開始,分階段推進。目標是在 2030 年完成 10 萬瓦特到 100 萬瓦特等級的示範發電機組,並於 2035 年設置 100 萬瓦特到 1000 萬瓦特的商業發電機組。根據屆時的技術發展狀況,期望在 2050 年達成裝置容量 1.3 至 7.5 GW 的目標。

在政策執行方面,海洋能開發涉及多個部會的管轄,如環境部、農業部漁業署、內政部國土管理署等。為簡化申請流程並促進開發,設立單一窗口相當重要。值得一提的是,根據最近的消息,台灣已有民間公司提交了 100 kW 的波浪能示範電廠申請,預計最快在 2025 年完成台灣首個海洋能示範場。

-----廣告,請繼續往下閱讀-----

台灣作為四面環海的島國,有機會在這個領域取得突破,為未來的能源供應找到新的解決方案。

-----廣告,請繼續往下閱讀-----

討論功能關閉中。

PanSci_96
1261 篇文章 ・ 2388 位粉絲
PanSci的編輯部帳號,會發自產內容跟各種消息喔。

1

2
2

文字

分享

1
2
2
最安全的核電廠?小型核電廠 SMR 用發電量換安全性,遇到停電也不怕?
PanSci_96
・2023/06/03 ・2582字 ・閱讀時間約 5 分鐘

-----廣告,請繼續往下閱讀-----

隨著核電廠陸續退役,台灣也逐漸邁向零核家園,郭台銘突然提出的「一縣市一核電」把核能議題的熱度重新炒到高峰。

雖然看似激進,但有人認為如果是郭董提到的「小型核電廠 SMR」的話,或許就有可能。這個 SMR 到底是什麼?它安全嗎?再者,它真的是核電的未來嗎?

實際上已經有人成功運行小型核電廠,並且已經併網發電了,他們是怎麼做到的?

小型核電廠是什麼?

台灣現在僅存,還在運作的核電廠就是核三廠,核三有兩部機組,每個機組的發電量大約為 950MW。

-----廣告,請繼續往下閱讀-----

小型核電廠正式的名稱是「小型模組化反應爐」SMR(Small Modular Reactor),發電量通常在 20~300 MW,比一般核電廠小上許多。還有甚至更小,發電量 1~20 MW 的 MMR(Micro Modular Reactor)的反應爐。

奇怪,發電量怎麼越發展越小了呢?這樣不就得要蓋更多核電廠?

小型核電廠的特點就是小發電量,因為這能創造三個優點:安全、造價便宜、易組裝。

核能那麼危險,為什麼還要用?

這三個優點實際上就是現在核電發展的最大瓶頸。核能發電也已經有 60 年歷史了,但至今全世界的發電量中,核電也只佔大約 10%。最大的問題不外乎就是安全性、造價昂貴和建造時間久。

-----廣告,請繼續往下閱讀-----

就算撇除安全性,漫長的建設時間與昂貴的發電成本,是讓許多電力公司卻步的原因之一。根據能源研究公司 BNEF(彭博新能源財經)的調查,從 2009 年到 2021 年,12 年間核能的建設成本增加了 36%;加上核電廠動輒 5~10 年的建設時間,就算核能是屬於低碳排的發電方式,大家也都更傾向選擇發展成熟的再生能源。

核能有一個最大的優點,那就是穩定持續發電。太陽能與風力這些再生能源容易隨天氣與時間影響發電量,反之核能屬於基載電力,本來就與風力、太陽能定位不同。

太陽能與風力等再生能源易隨天氣與時間影響發電。圖/Envato Elements

小型核電廠如何克服安全性?

要好要快也要便宜,除了穩定與低碳,還想要兼顧安全跟造價低的核電,小型核電廠真的是那個完美的選擇嗎?

小型核電廠 SMR 主打的特點就是一個字,小!只要夠小、功率降低,反應爐就不會一口氣釋放太多的熱,甚至能免除外部冷卻設備,靠自然循環降溫。

-----廣告,請繼續往下閱讀-----

福島核電廠發生意外的主因就是海嘯破壞了核電廠中做為緊急電源設備的發電機與電池,導致冷卻系統失效,最後反應爐內的溫度無法抑制、不斷竄高,將水分解成了易燃的氫氣,產生爆炸。

如果 SMR 的反應爐可以撇除對外部冷卻系統的依賴,靠自己就能降溫,就能最大程度避免發生爆炸以及爐心熔毀的事故。

我們以目前 SMR 發展最成熟的美國公司 NuScale 為例,在他們發展的 60MW 反應爐中,含有 37 個燃料束,整個反應爐高約 17.8 公尺,直徑約 3 公尺。這個大小甚至可以在工廠製造,透過貨車或火車運送至預定地再快速組裝起來,大幅減少建造的時間與成本。

NuScale 把水循環系統都包在了反應爐,一次冷卻劑藉由熱對流上下循環,完全不需要幫浦,減少停電時產生的風險,一次冷卻劑的熱則會傳給二次冷卻劑,讓二次冷卻劑變為蒸氣推動渦輪發電。

-----廣告,請繼續往下閱讀-----

如果真的遇上斷電事故,反應爐也有緊急冷卻系統,直接將整個反應爐泡在大水槽中;根據計算,水會在 30 天後完全蒸發,而此時的反應爐功率已經降低為原本的 4% 以下,只要靠空氣循環就能穩定溫度。

福島第一核電廠事故主因是由於海嘯破壞了做為緊急電源設備的發電機與電池。圖/維基百科

中國的小型核電廠是怎麼做到的?

而現在,在中國已經有第一座陸上 SMR 併到電網了!2021 年年底,中國山東省「石島灣高溫氣冷堆核電站示範工程」正式併網發電,發電功率 200MW,雖然發電廠的總體積不小,但以它的發電功率及主打安全的設計,是實實在在的一座 SMR。

所謂的「高溫氣冷堆」,指的是流經燃料棒,充當冷卻劑與熱交換的材料,所使用氣體如:氦氣。與壓水式反應爐用水作為冷卻劑的最大差別在於不僅熱轉換效率更好,也不用擔心水因高溫氣化而有爆炸風險,故可承受更高的反應溫度。

比起傳統反應爐,高溫氣冷堆可以用更少的鈾 -235 進行反應,也就是能在燃料棒中有更多的鈾 -238 可以在溫度飆高時吸收掉多餘中子,加上高溫氣冷堆本身就能承受高溫的特性,如果真的遇到失去電力的情況,整個反應堆的溫度,也會穩定在 1600℃ 上下。

-----廣告,請繼續往下閱讀-----

除此之外,石島灣核電廠的設計十分有趣,是球狀反應爐。在如同沙漏般的大反應爐中,燃料棒被做成了一顆顆直徑約 6.7 公分的燃料球,兩萬七千顆燃料球像沙漏中的沙子一般填充在反應爐內。

鈾燃料會被包裹在球狀構造的中心,外頭則是作為中子減速劑的石磨;作為冷卻劑的高溫氦氣會從球的中間通過帶走熱量,燃料球可從下方取出,並從上方填充。

不過,高溫氣冷堆能否成功,還需要許多時間觀察,例如石磨包裹的燃料球是否容易摩擦造成破裂,都是需要進一步注意的。

燃料棒被做成直徑約 6.7 公分的燃料球。圖/PanSci YouTube

小型核電廠的未來?

除了中國外,各國也都在發展不同形式的 SMR,甚至有人在發展功率 20MW 以下的微型核子反應爐 MMR。例如美國愛達荷國家實驗室正在建造的 MARVEL 反應爐,以及核能公司 Radiant,它們正在打造貨櫃大小、可以隨拉隨走的 MMR,希望能取代社區停電時使用的高污染柴油緊急發電機。

-----廣告,請繼續往下閱讀-----

不論是小型還是微型核電廠,除了技術還有待發展,成本是否能壓低,也是個重要指標。當然,還有另一個大魔王,就是核廢料問題,還等著被解決。

根據研究推算,NuClear 各種機型每單位能量產生的核廢料可能會是傳統核電廠的 5.5~30 倍不等,球狀反應堆的體積因為球狀包裹物的設計,核廢料的體積也是明顯可見的變大,而這些核廢料的處置問題也是全球都在面對的問題。

歡迎訂閱 Pansci Youtube 頻道 獲取更多深入淺出的科學知識!

-----廣告,請繼續往下閱讀-----
所有討論 1

1

4
1

文字

分享

1
4
1
臺灣發展地熱發電到底可不可行?(下)
PanSci_96
・2023/02/04 ・4004字 ・閱讀時間約 8 分鐘

-----廣告,請繼續往下閱讀-----

比爾蓋茲(Bill Gates)創立的「突破能源風險投資基金」(BEV)所投資的其中一家,是瑞典新能源開發公司「倍速羅得(Baseload Capital)」,這家公司在 2019 年選了台灣花蓮的紅葉村,作為亞洲地熱開發地點之一,顯示台灣在地熱發電的潛力。

不過你知道嗎?其實早在 1981 年台灣地熱發電就曾經領先國際,當時在宜蘭清水設置的地熱發電廠,是全世界第 14 個進行地熱發電的國家,但後來到 1993 年就關廠不用了,到 2021 年才重新再次運轉,為什麼呢? 這次我們來聊聊臺灣在地熱發電上已經做了哪些開發?又有哪些實際的困難和需要突破的地方。

發展地熱發電的成本和考量

地熱開發就像談戀愛,不能在 App 上聊得愉快就直接把身家都交給陌生的他,還是得面對面深入交往才知道這人到底存不存在,值不值得真心託付,能不能長長久久。地熱能開發本身,也是件高度不確定的事,以探勘地熱來說好了,即使有科學研究資料輔助,最終還是要認真挖探勘井到一定深度,才有辦法判斷到底能否作為發電之用,無法保證一定有成果。

再說,就算確定有好的熱源,若要開發臺灣地底深處的熱能,就必須挖掘深的地熱井,也就意味著要付出高昂的成本。一般而言,鑽井成本少說占了整個地熱發電計畫的 30% 到 50%,甚至是更高。根據美國康乃爾大學(Cornell University)的研究團隊於 2013 年發表的估計,地熱井深度和鑽井成本的關係,大致可以用這張圖來表示。隨著深度增加,鑽井費用亦大幅上升。

-----廣告,請繼續往下閱讀-----
地熱井深度和鑽井成本的關係。 圖/參考資料 1

而且,每個計畫會開發的地熱井,絕對不只一口,以宜蘭的利澤地熱電廠來說,就預計會有 11 口 6 公里深的井,所需費用的龐大可想而知。

同時,鑽井會遇到許多不同的困難。看過電影世界末日都知道,如果岩盤堅硬又粗糙,那麼不但鑽井的進度會變得緩慢,鑽頭也會磨損得特別快。另外像是卡鑽、穩定鑽頭的泥漿流失等等,都是必須面對的挑戰。

另一方面,在開發地熱時,依地區而異,可能會遇到腐蝕性流體,如含氯離子或硫酸根的地下水,因此必須選用耐腐蝕的機具和管材,或是用化學方法中和;而當熱液從地底冒出到地表時,也可能伴隨硫化氫等有害氣體,要是聞到臭雞蛋的味道還可以跑,要是濃度高到讓人嗅覺疲乏可能小命就要難保。

此外,地下水中的雜質和礦物質,可能會隨時間經過附著在管壁上,導致發電效率下降,定時清理也是個麻煩的差事。

-----廣告,請繼續往下閱讀-----

隨著科技的進步,雖然這些麻煩在原則上都能夠處理,卻也是無法免除的成本,在規劃時就必須仔細考量因應措施。

說了這麼多,到底用地熱發出來的電貴不貴呢?發電成本會因地區、時間和技術的提升而異,不同單位做出來的評估也會不同。若我們比較近年來幾個不同組織評估的全球均化發電成本(Levelized cost of electricity),也就是電廠生命週期總成本除以生命週期總產生能源,大致可以看到這樣的結果,不同顏色代表著不同單位的評估。

全球均化發電成本(Levelized cost of electricity) 圖/wikipedia

以全球總體來說,目前地熱發電每發出百萬瓦小時電力的成本,跟太陽能和陸域風電相比稍微偏高,但跟其他能源相比倒也不至於比較貴。必須留意的是,這只代表近年的能源價格狀況,也跟電力公司發布的發電費用是完全不同概念,而且隨著未來地熱往深處探勘、或技術的成熟,成本還有可能提高或降低。

臺灣的地熱發電發展

事實上,臺灣在地熱發電曾經領先國際,1981 年就在宜蘭清水設置了地熱發電廠,是全球第 14 個進行地熱發電的國家。

-----廣告,請繼續往下閱讀-----

只不過,臺灣的地熱發電量從一開始的 828 萬度一路下滑,到 1995 年完全歸零,從 2017 年之後才又往上提升。這中間到底發生了什麼事呢?

一來,清水地熱電廠早期進行發電時,利用完的熱水並沒有回注地底,而是直接排掉,造成地下水耗損;二來,像我們前面說過的,地下水中的礦物質於地熱井管壁結垢;這兩大因素使得清水電廠的出水量銳減,僅過一年發電能力就大幅下降,最終導致 1993 年的關廠。

從此,臺灣的地熱發電沉寂好一段時日,直到 2013 年清水地熱電廠重新建置示範機組,進行運轉測試,2018 年開始發電,並於 2021 年底正式重新啟用,才宣告復活,目前也有擴大發電規模的計畫進行中。當然,這一次,在地下水回注跟結垢問題的處理上,都比之前更好。

除了清水地熱這個示範點,從 2018 年開始,也有台東知本溫泉業者利用既有溫泉資源進行發電,且併入台電電網,成為臺灣小規模地熱發電首例。

-----廣告,請繼續往下閱讀-----
宜蘭清水地熱河床。圖/地熱發電單一服務窗口

那麼,臺灣的地熱發電就此熱熱鬧鬧熱到家了嗎?倒也不是。我們可以從兩個面向,行政流程和開發誘因分別討論。

臺灣的地熱發電關卡:繁複的行政流程

長久以來,臺灣在地熱資源的開發一直缺乏適當的法規和配套流程。若要進行開發,必須依照《溫泉法》和《水利法》申請,但卻沒有任何一項是跟發電直接相關,法規細節也不符合地熱發電的特性。

此外,土地使用根據涉及的區域,仍須依《都市計畫法》、《區域計畫法》、《森林法》、《國家公園法》、《地質法》、《災害防救法》、《水土保持法》等規定辦理,不但要面對中央和地方政府許多不同單位,行政程序亦曠日廢時,相當不容易。

就像兩人交往之前,得先經過她爸、她媽、二舅、大嬸婆、還有指導教授跟前男友同意才行。以才剛重新啟用的清水地熱電廠來說,雖然施工只要一年多,跑行政流程卻花了四年。這樣冗長繁複的申設程序,無疑拖累了臺灣的地熱發電發展。

-----廣告,請繼續往下閱讀-----

有鑑於此,最近的「再生能源發展條例」修正草案,簡化了地熱發電申請的行政程序,也新增相關規範,並於 2022 年 12 月初在行政院通過,後續將送往立法院審議,值得我們關注後續的發展。

臺灣的地熱發電關卡:開發誘因不足

地熱發電要付諸實行,除了技術和法規必須到位之外,還必須有經濟效益,才可能成真。

我們可分別從計畫的探勘期、開發期、和營運期三個階段來說明。

首先,地熱發電計畫在探勘期風險極大,很有可能挖了探勘井,卻沒有好的熱源,回不了本。

-----廣告,請繼續往下閱讀-----

舉例來說,從 2017 年底開始,台電在綠島進行了兩口地熱試驗井的鑽探工程,最終卻發現溫度並不理想,而暫時將計畫擱置。

而在開發期,臺灣目前沒有保障地熱探勘者優先開發的權利,就算找到熱源,卻可能被其他業者搭便車,捷足先登開發,得不償失。相關法規後續要怎麼訂定,是值得討論的議題。

2018 年仁澤三號井。 圖/環境資訊中心

最後,營運期的收入,若無法彌補成本並獲利,就也不可能吸引廠商投入。為此,躉購費率,也就是再生能源保證收購制度的訂定就非常重要。

縱上所述,因為地熱計畫存在諸多風險,初期又需要龐大的經費,如果沒有政府支持,民間廠商非常不容易投入。

-----廣告,請繼續往下閱讀-----

目前來說,臺灣政府設有「地熱能發電系統示範獎勵辦法」,針對探勘給予補助;既有的地熱探勘初步資料在「地熱發電單一服務窗口」網站也都可查詢,並由經濟部中央地質調查所邀請國內 12 個與地科、地質相關校系,籌組「地熱探勘學研合作平台」,投入前期的地質調查,讓廠商有開發的參考依據。同時,地熱發電做為再生能源的一環,每年也會重新修訂躉購費率。

至於這些措施合不合宜、是否真能發揮效用,增加廠商投資意願,就有待我們觀察。

隨著再生能源越來越受到重視,全球的地熱發電於這十幾年內增加了許多。

雖然在總容量上,與其他主流能源還有不小差距,但因為技術的進步,地熱發電逐漸能夠擺脫地域的限制,更廣泛地被運用。

全球地熱熱點分布。圖/Energy Education

而台灣位處環太平洋火山帶,深具地熱發展潛力。可惜的是,即使是臺灣最容易開發、深度較淺的地熱能源,其潛能亦尚未完全發揮。經濟部原本設定 2025 年地熱發電目標要達 200MW,卻因為行政流程繁瑣和開發誘因不足等各種原因,導致開發進度緩慢,只能下修目標。

現在,台灣地熱累積的併網裝置容量約 5MW,雖然還有二十多個地熱計畫正在進行中,也有民間公司積極投入,宣布最快要在 2030 年累積建置達 200MW。但上述問題一日不解決,臺灣的地熱就難以真正施展拳腳。

如果我們希望臺灣的地熱發電能夠更蓬勃發展,那麼,相關法規的訂定和行政流程的簡化是一定要做的,接著要完善獎勵措施和補助機制,並設定合理的電價制度。在整個過程中,一些地熱發展良好的鄰近島嶼國家,如日本、菲律賓、印尼、紐西蘭的相關政策,也值得我們借鏡。另一方面,在土地的使用上,如何和在地民眾溝通與協商,也是重要的工作。

可以說,不需要燃料,極低碳排放,但是前期建置成本佔比高,營運費用相對低廉,是地熱發電的特色。儘管潛力巨大且有著諸多好處,但技術上的挑戰,和地理條件的限制也擺在那邊。

參考資料

-----廣告,請繼續往下閱讀-----
所有討論 1

0

0
0

文字

分享

0
0
0
旋轉、跳躍、紗線發電~~~拉拉扯扯就能發電的神奇螺旋線!?
tinablahblah
・2017/10/06 ・1795字 ・閱讀時間約 3 分鐘 ・SR值 517 ・六年級

-----廣告,請繼續往下閱讀-----

螺斯龍放在衣服裡、只要呼吸就可以發電的特性,未來可望應用在充電方面。圖/StockSnap @pixabay

想像一下,以後外出時不用再帶著行動電源,因為你身上穿的衣服就能幫你充電!如果你未來看到這件神奇的衣服,別懷疑,這不是魔術,衣服裡面也沒有隱藏開關,只是內含由奈米碳管纏結而成的特殊紗線,名為「螺旋龍」(暫譯,原文為twistron),本身就有辦法發電!

實驗中的螺旋龍從本來繃緊的狀態到完全鬆開,其中產生的能量足以使一顆LED燈亮起。圖/Shi Hyeong Ki@ Science (上圖) &  Science Magazine@ Youtube (下圖)

這個紗線由德克薩斯州大學達拉斯分校與南韓漢陽大學共同研發,研究發表在今年8月號的《Science》。實驗過程中使用的是直徑比頭髮還要小一萬倍以上的奈米碳管,他們把奈米碳管薄片放置到轉動的馬達上,就像紡紗般,使薄片變為線,接著再強力扭轉線,把線捲得跟家用電話線很像,也就是螺旋龍。接著,研究人員將螺旋龍放在電解液(實驗中用鹽酸)裡,就成了「螺旋集電器」(暫譯,原文為 twistron harvesters)。當原本緊繃的螺旋龍鬆開時,內部的壓力與摩擦力使奈米碳管釋放電荷,並通過電解液抵達電極,就可以成功發電了!

-----廣告,請繼續往下閱讀-----

那麼它實際的效果如何呢?實驗中使用了19毫克的紗線,一次的拉扯可以使LED燈瞬間「登!」的亮一下。以每一公斤的紗線來說,放掉的那瞬間繩子旋轉的速度最高可達每秒三十圈(是指速度,不是真的轉三十圈喔xD),可產生250瓦特(也就是250焦耳/秒),而這一公斤紗線從放開、開始旋轉、放慢到完全停下來,平均產生40焦耳的能量。

研究人員已成功將螺旋集電器放入衣服。圖/Science Magazine@ Youtube

以目前來說,可行的應用是可攜式裝置與穿戴式裝置。研究人員已嘗試將螺旋集電器放入衣服裡了,他們將電解質放入凝膠中,另外以導電的奈米碳管作為電極,再加上螺旋龍,全部合在一起做成柔軟有彈性的材料,放入布料中。每當我們活動、甚至只是單純呼吸時,衣服就能隨之起伏而發電!除此之外,也可以應用到襪子、手套等等。(如果放在保險套就可以用愛發電了)(喂)

未來只要奈米碳管價格下降,可望將螺旋龍應用在海洋發電上。圖/Hans@ Pixabay

-----廣告,請繼續往下閱讀-----

但研究人員可不只滿足於人體的起伏所發的電,那麼有沒有什麼能起伏更大、又有更多電解液的地方?來來來,讓我們靜心打坐冥想⋯⋯叮!沒錯,此時你應該已經聽到大自然——波浪——的呼喚了。海水本身就是天然的電解質溶液,且浪潮不停地翻滾,正好適合需要拉扯的螺旋集電器(以後可以當神奇海螺的好朋友,叫神奇海螺旋),因此,研究人員希望可以將此應用在海洋能發電,為我們開啟能源的新可能。

這次的研究所使用的技術,使我們對於如何將力學能轉為電能的了解又跨進一步。雖然奈米碳管的價格並不便宜,但是隨著未來價格下降,加上奈米碳管很輕的優點,研究人員相信螺旋集電器的應用範圍很廣。(不過價格到底什麼時候下降到夠低呢⋯我也不知道)(啊不就在講廢話(逃))

參考資料

-----廣告,請繼續往下閱讀-----
文章難易度
tinablahblah
3 篇文章 ・ 1 位粉絲
喲荷~我是小小的實習編輯,對科學是最一竅不通的那種,所以,嗯,科普文章的存在真的太重要了!(點頭點頭)