0

0
0

文字

分享

0
0
0

學會少而美的藝術和科學──《閒散的藝術與科學》推薦序

Gene Ng_96
・2018/12/08 ・3267字 ・閱讀時間約 6 分鐘 ・SR值 544 ・八年級

台灣工時之高,世界有名。根據勞動部和經濟合作暨發展組織(OECD)公布的資料,去年全球四十個主要國家中,全年工時最長的榜首為新加坡 2,392 小時,其次為墨西哥 2,228 小時、哥斯大黎加 2,216 小時,台灣以 2,134.8 小時居第四、南韓 2,124 小時排第五,過勞死的發源地日本則以 1,729 小時排名第 23。

從這些數字來看,台灣人真的很拚,比經濟實力更強的日韓還要拚,果然很崇尚「愛拚才會贏」的精神。可是,在知識經濟主導的時代,創意比蠻幹更重要,這種拚命三郎的精神,真的有利可圖嗎?再拚,拚得過電腦嗎?現在連圍棋高手都不是電腦的對手了,在很多工作可以自動化的情況下,我們難道要加長工時、減少薪資來跟電腦或機器人對著幹嗎?

從小,台灣人的時間就被塞滿了

台灣的高工時,可能是農村文化留下來的遺產。探討東亞經濟發展的好書《成與敗:亞洲國家的經濟運作之道》How Asia Works: Success and Failure in the World’s Most Dynamic Region)指出,過去農村時代,台灣的自耕農,把家庭的勞力發揮到極致,居然創造出比大莊園的規模經濟更高產值的詭異現象,而小農辛勤耕種收獲後的豐碩成果,後來投資在工業之上,這是造就台灣的經濟奇蹟的主因之一(請參見〈東亞的成與敗〉)。

我來自馬來西亞悠閒的小鎮。來台灣念大學時,最感到驚訝的是,台灣的高中生為了升學,甘願付出的時間和代價異常的高,幾乎把所有的下課時間全用在寫作業和補習上面了,這麼做完全搾乾了學生的精力,讓他們成為讀書和考試的機器。很多學生在整個求學過程中,被嚴格禁止與異性接觸、戀愛,可是一出社會,家長就會一直逼問什麼時候要結婚。

-----廣告,請繼續往下閱讀-----

台灣高中生的平均素質肯定在歐美之上,可是台灣大學生學習動機之薄弱,卻和程度完全不成正比,這令很多外國教師感到驚訝不已。很多人出社會後,就對知識不感興趣了,幾乎完全沒有閱讀的習慣,讓出版業哀鴻遍野。可見台灣在中小學,不太重視學生自主學習的能力,很多考試成績極為優異的學生,並非因為興趣而讀書。這個時代講求的是創意和創新,而這些都不是靠長時間當乖寶寶寫作業上補習班就能培養出來的。

台灣人能夠忍受高工時,除了是農村辛勤文化影響,可能還有因為從小學、中學開始,就已經習慣被作業和補習班塞滿了時間,所以出了社會,也任由資方隨意控制。反正下了課不是寫作業就是去補習,這和自動加班有什麼差別呢?因為已經習慣到麻木了吧?每個上班族都忙死了,怎麼還有時間、精力去關心國家大事,只會拚命完成老闆指派下來的工作。

台灣近年來雖然高工時、高生產力,可是卻深陷入窮忙的危機之中,因為絕大多數人在上班時,僅能應付眼前的狀況,沒有時間、精力和心力放眼未來。不僅錯過產業轉型的契機,被過去落後的韓國快速超越;大量適婚人口不是沒有對象,就是結了婚卻不生小孩,這已經嚴重動搖了國本。雖然如此,台灣許多政策卻還僅是頭痛醫頭、腳痛醫腳,甚少做出長遠的規劃。

面對產業轉型的契機,台灣需要的可能不再是血汗的環境。我自己不知道算不算得上是工作狂,可是,有時假日出去透透氣,心裡的罪惡感讓玩樂的行程淪為走馬看花,也不是什麼罕見的事情。我更是有個工作狂朋友,只要一天沒去工作,而是休閒逛街,居然會因為罪惡感而嘔吐!

-----廣告,請繼續往下閱讀-----

無所事事是創意更上層樓的必需品

難道稍作休閒就等於糟蹋生產力嗎?這本好書《閒散的藝術與科學:從腦神經科學的角度看放空為什麼會讓我們更有創意?》Autopilot: The Art & Science of Doing Nothing)就是要告訴我們,事實上正好相反,如果我們想要更有創意和投入工作,我們其實不該只學會如何高效地工作,也該學會如何適度地放空。無所事事並非奢侈品,而是更上層樓的必需品。放空不僅有益身心健康,還可以是提高生產力的關鍵,所以請放心的放空吧。

《閒散的藝術與科學》作者安德魯‧斯馬特(Andrew Smart)表示,他的論述不是自以為是的管理學理論,而是有科學根據的。他提出腦神經科學的研究證據,說明無所事事的放空其實會提高腦活動。神經科學家用核磁共振造影術來研究腦中血液的流量和血氧濃度,發現當我們進行特定工作時,一些腦區如:海馬回、內側前額葉皮質、前扣帶皮質和楔前葉的活動其實是被抑制的。反之,當人沒有在處理特定工作時,這些區域反而是活躍的,神經科學上稱之為「靜息狀態網絡」(RSN;resting-state network)或稱「預設模式網絡」(DMN;default mode network)。這時腦可能是處在更快樂、更健康和更有創意的狀態。

這項發現也意味著,當我們放空時,腦中並非無所事事,有些腦區反而是更努力地幹活。為何會如此呢?作者打了個比方,他說:我們的腦和飛機一樣,有自動駕駛系統,當我們休息時,就等於從手動模式切換過去。許多藝術和科學上的靈感,並非產生在拚命工作時,而是在偷閒之時。我們的腦從來不曾真的偷閒,我們在休息時,腦搞不好消耗了更多能量。我們的意識沒在幹活時,並不代表我們的下意識也在打混摸魚。

安德魯‧斯馬特大力抨擊許多一味要我們成為高效人士的管理學書籍,他也唾棄六標準差的管理法則。他表示,六標準差降低組織流程中的變異,這跟癲癇對神經元做的事很類似,癲癇發作時,神經元間的變異全都會下降,造成大腦的嚴重破壞。

-----廣告,請繼續往下閱讀-----

不僅企業緊盯著生產力,社會上也如此。無所事事就像是文化罪行,打從工業革命以來,遊手好閒就被污名化了。我們害怕被晾在一邊無所事事,生怕被貼上懶惰的標籤,忙碌成了身分象徵,彷彿愈忙對世界就愈有用。雖然我們演化來是為了能混水摸魚,因為勞碌命太耗能,不利於生存;可是現代社會卻逆其道而行,所以安德魯‧斯馬特要我們相信科學,不需為健康的閒散感到內疚。

放空品質和睡眠品質一樣重要

忙碌不僅對大腦不利,也會造成嚴重的健康問題。短期而言,忙碌會導致壓力,會破壞創造力、自我認知、情感幸福、社交能力,也會造成心血管疾病和增加癌症風險,他認為那些教人工作和時間管理的書籍作者,事實上沒搞懂人類實際上該如何幹活的。要恢復精力的辦法不是做更多工作和時間管理,而是抽離去偷閒放空。

過勞會造成決策失誤。如果無法集中精神,大腦就得要休息了,疲累就像饑餓一樣,是身體給我們的明確訊息,我們難道不該聽從嗎?把身體操到極限,預設模式網絡就會出現赤字。忙裡偷閒反而會增加效率和創造力,我們對預設模式網絡的重視,該像想要睡個好覺一樣。

我念博士班時,老闆就曾跟我強調,一個優異的遺傳學家,其實是個想盡方法能夠減少工作量的科學家。為了達成打混的目標,就得想辦法用實驗方法抄捷徑。他在課堂上給的作業,是要我們利用各種遺傳學工具,把要做的實驗時間和精力減少,誰能減到最低,誰就做出了最佳的解答。他更是身體力行閒散的藝術,常趁遊客較少的週間去滑雪、爬山。

-----廣告,請繼續往下閱讀-----

無獨有偶,有本行為經濟學的好書《匱乏經濟學:為什麼老是在趕deadline?為什麼老是覺得時間和金錢不夠用?》Scarcity: Why Having Too Little Means So Much)也明確地指出,把班排得滿滿而缺乏餘裕,是非常有害的。該書指出,匱乏的感受會窄化眼界、扭曲判斷,所以只是管理時間還不夠,我們應當有效管理我們的認知頻寬。別把時間表排得太滿,允許一定的彈性和寬鬆是有益的(請參見〈多多才益善的匱乏經濟學〉)。

不管是不是勞碌命,在現代生活中,我們不斷被 LINE 和臉書等訊息轟炸、淹沒,剝奪了我們放空的片刻,占滿了認知頻寬,影響了我們工作的決策、效率和創意,我們更該學會少而美的藝術和科學。別再為無所事事而感到罪惡了,科學證據證明我們真的需要閒散,放空品質就和睡眠品質一樣重要,適當的放空在某種程度上,可謂有病治病、無病強身的良藥!

本文為《閒散的藝術與科學:從腦神經科學的角度看放空為什麼會讓我們更有創意?》Autopilot: The Art & Science of Doing Nothing)推薦序。

-----廣告,請繼續往下閱讀-----
文章難易度
Gene Ng_96
295 篇文章 ・ 32 位粉絲
來自馬來西亞,畢業於台灣國立清華大學生命科學系學士暨碩士班,以及美國加州大學戴維斯分校(University of California at Davis)遺傳學博士班,從事果蠅演化遺傳學研究。曾於台灣中央研究院生物多樣性研究中心擔任博士後研究員,現任教於國立清華大學分子與細胞生物學研究所,從事鳥類的演化遺傳學、基因體學及演化發育生物學研究。過去曾長期擔任中文科學新聞網站「科景」(Sciscape.org)總編輯,現任台大科教中心CASE特約寫手Readmoo部落格【GENE思書軒】關鍵評論網專欄作家;個人部落格:The Sky of Gene;臉書粉絲頁:GENE思書齋

0

1
0

文字

分享

0
1
0
拆解邊緣AI熱潮:伺服器如何提供穩固的運算基石?
鳥苷三磷酸 (PanSci Promo)_96
・2025/05/21 ・5071字 ・閱讀時間約 10 分鐘

本文與 研華科技 合作,泛科學企劃執行。

每次 NVIDIA 執行長黃仁勳公開發言,總能牽動整個 AI 產業的神經。然而,我們不妨設想一個更深層的問題——如今的 AI 幾乎都倚賴網路連線,那如果哪天「網路斷了」,會發生什麼事?

想像你正在自駕車打個盹,系統突然警示:「網路連線中斷」,車輛開始偏離路線,而前方竟是萬丈深谷。又或者家庭機器人被駭,開始暴走跳舞,甚至舉起刀具向你走來。

這會是黃仁勳期待的未來嗎?當然不是!也因為如此,「邊緣 AI」成為業界關注重點。不靠雲端,AI 就能在現場即時反應,不只更安全、低延遲,還能讓數據當場變現,不再淪為沉沒成本。

什麼是邊緣 AI ?

邊緣 AI,乍聽之下,好像是「孤單站在角落的人工智慧」,但事實上,它正是我們身邊最可靠、最即時的親密數位夥伴呀。

當前,像是企業、醫院、學校內部的伺服器,個人電腦,甚至手機等裝置,都可以成為「邊緣節點」。當數據在這些邊緣節點進行運算,稱為邊緣運算;而在邊緣節點上運行 AI ,就被稱為邊緣 AI。簡單來說,就是將原本集中在遠端資料中心的運算能力,「搬家」到更靠近數據源頭的地方。

-----廣告,請繼續往下閱讀-----

那麼,為什麼需要這樣做?資料放在雲端,集中管理不是更方便嗎?對,就是不好。

當數據在這些邊緣節點進行運算,稱為邊緣運算;而在邊緣節點上運行 AI ,就被稱為邊緣 AI。/ 圖片來源:MotionArray

第一個不好是物理限制:「延遲」。
即使光速已經非常快,數據從你家旁邊的路口傳到幾千公里外的雲端機房,再把分析結果傳回來,中間還要經過各種網路節點轉來轉去…這樣一來一回,就算只是幾十毫秒的延遲,對於需要「即刻反應」的 AI 應用,比如說工廠裡要精密控制的機械手臂、或者自駕車要判斷路況時,每一毫秒都攸關安全與精度,這點延遲都是無法接受的!這是物理距離與網路架構先天上的限制,無法繞過去。

第二個挑戰,是資訊科學跟工程上的考量:「頻寬」與「成本」。
你可以想像網路頻寬就像水管的粗細。隨著高解析影像與感測器數據不斷來回傳送,湧入的資料數據量就像超級大的水流,一下子就把水管塞爆!要避免流量爆炸,你就要一直擴充水管,也就是擴增頻寬,然而這樣的基礎建設成本是很驚人的。如果能在邊緣就先處理,把重要資訊「濃縮」過後再傳回雲端,是不是就能減輕頻寬負擔,也能節省大量費用呢?

第三個挑戰:系統「可靠性」與「韌性」。
如果所有運算都仰賴遠端的雲端時,一旦網路不穩、甚至斷線,那怎麼辦?很多關鍵應用,像是公共安全監控或是重要設備的預警系統,可不能這樣「看天吃飯」啊!邊緣處理讓系統更獨立,就算暫時斷線,本地的 AI 還是能繼續運作與即時反應,這在工程上是非常重要的考量。

所以你看,邊緣運算不是科學家們沒事找事做,它是順應數據特性和實際應用需求,一個非常合理的科學與工程上的最佳化選擇,是我們想要抓住即時數據價值,非走不可的一條路!

邊緣 AI 的實戰魅力:從工廠到倉儲,再到你的工作桌

知道要把 AI 算力搬到邊緣了,接下來的問題就是─邊緣 AI 究竟強在哪裡呢?它強就強在能夠做到「深度感知(Deep Perception)」!

-----廣告,請繼續往下閱讀-----

所謂深度感知,並非僅僅是對數據進行簡單的加加減減,而是透過如深度神經網路這類複雜的 AI 模型,從原始數據裡面,去「理解」出更高層次、更具意義的資訊。

研華科技為例,旗下已有多項邊緣 AI 的實戰應用。以工業瑕疵檢測為例,利用物件偵測模型,快速將工業產品中的瑕疵挑出來,而且由於 AI 模型可以使用同一套參數去檢測,因此品管上能達到一致性,減少人為疏漏。尤其在高產能工廠中,檢測速度必須快、狠、準。研華這套 AI 系統每分鐘最高可處理 8,000 件產品,替工廠節省大量人力,同時確保品質穩定。這樣的效能來自於一台僅有膠囊咖啡機大小的邊緣設備—IPC-240。

這樣的效能來自於一台僅有膠囊咖啡機大小的邊緣設備—IPC-240。/ 圖片提供:研華科技

此外,在智慧倉儲場域,研華與威剛合作,研華與威剛聯手合作,在 MIC-732AO 伺服器上搭載輝達的 Nova Orin 開發平台,打造倉儲系統的 AMR(Autonomous Mobile Robot) 自走車。這跟過去在倉儲系統中使用的自動導引車 AGV 技術不一樣,AMR 不需要事先規劃好路線,靠著感測器偵測,就能輕鬆避開障礙物,識別路線,並且將貨物載到指定地點存放。

當然,還有語言模型的應用。例如結合檢索增強生成 ( RAG ) 跟上下文學習 ( in-context learning ),除了可以做備忘錄跟排程規劃以外,還能將實務上碰到的問題記錄下來,等到之後碰到類似的問題時,就能詢問 AI 並得到解答。

你或許會問,那為什麼不直接使用 ChatGPT 就好了?其實,對許多企業來說,內部資料往往具有高度機密性與商業價值,有些場域甚至連手機都禁止員工帶入,自然無法將資料上傳雲端。對於重視資安,又希望運用 AI 提升效率的企業與工廠而言,自行部署大型語言模型(self-hosted LLM)才是理想選擇。而這樣的應用,並不需要龐大的設備。研華的 SKY-602E3 塔式 GPU 伺服器,體積僅如後背包大小,卻能輕鬆支援語言模型的運作,實現高效又安全的 AI 解決方案。

但問題也接著浮現:要在這麼小的設備上跑大型 AI 模型,會不會太吃資源?這正是目前 AI 領域最前沿、最火熱的研究方向之一:如何幫 AI 模型進行「科學瘦身」,又不減智慧。接下來,我們就來看看科學家是怎麼幫 AI 減重的。

-----廣告,請繼續往下閱讀-----

語言模型瘦身術之一:量化(Quantization)—用更精簡的數位方式來表示知識

當硬體資源有限,大模型卻越來越龐大,「幫模型減肥」就成了邊緣 AI 的重要課題。這其實跟圖片壓縮有點像:有些畫面細節我們肉眼根本看不出來,刪掉也不影響整體感覺,卻能大幅減少檔案大小。

模型量化的原理也是如此,只不過對象是模型裡面的參數。這些參數原先通常都是以「浮點數」表示,什麼是浮點數?其實就是你我都熟知的小數。舉例來說,圓周率是個無窮不循環小數,唸下去就會是3.141592653…但實際運算時,我們常常用 3.14 或甚至直接用 3,也能得到夠用的結果。降低模型參數中浮點數的精度就是這個意思! 

然而,量化並不是那麼容易的事情。而且實際上,降低精度多少還是會影響到模型表現的。因此在設計時,工程師會精密調整,確保效能在可接受範圍內,達成「瘦身不減智」的目標。

當硬體資源有限,大模型卻越來越龐大,「幫模型減肥」就成了邊緣 AI 的重要課題。/ 圖片來源:MotionArray

模型剪枝(Model Pruning)—基於重要性的結構精簡

建立一個 AI 模型,其實就是在搭建一整套類神經網路系統,並訓練類神經元中彼此關聯的參數。然而,在這麼多參數中,總會有一些參數明明佔了一個位置,卻對整體模型沒有貢獻。既然如此,不如果斷將這些「冗餘」移除。

這就像種植作物的時候,總會雜草叢生,但這些雜草並不是我們想要的作物,這時候我們就會動手清理雜草。在語言模型中也會有這樣的雜草存在,而動手去清理這些不需要的連結參數或神經元的技術,就稱為 AI 模型的模型剪枝(Model Pruning)。

-----廣告,請繼續往下閱讀-----

模型剪枝的效果,大概能把100變成70這樣的程度,說多也不是太多。雖然這樣的縮減對於提升效率已具幫助,但若我們要的是一個更小幾個數量級的模型,僅靠剪枝仍不足以應對。最後還是需要從源頭著手,採取更治本的方法:一開始就打造一個很小的模型,並讓它去學習大模型的知識。這項技術被稱為「知識蒸餾」,是目前 AI 模型壓縮領域中最具潛力的方法之一。

知識蒸餾(Knowledge Distillation)—讓小模型學習大師的「精髓」

想像一下,一位經驗豐富、見多識廣的老師傅,就是那個龐大而強悍的 AI 模型。現在,他要培養一位年輕學徒—小型 AI 模型。與其只是告訴小型模型正確答案,老師傅 (大模型) 會更直接傳授他做判斷時的「思考過程」跟「眉角」,例如「為什麼我會這樣想?」、「其他選項的可能性有多少?」。這樣一來,小小的學徒模型,用它有限的「腦容量」,也能學到老師傅的「智慧精髓」,表現就能大幅提升!這是一種很高級的訓練技巧,跟遷移學習有關。

舉個例子,當大型語言模型在收到「晚餐:鳳梨」這組輸入時,它下一個會接的詞語跟機率分別為「炒飯:50%,蝦球:30%,披薩:15%,汁:5%」。在知識蒸餾的過程中,它可以把這套機率表一起教給小語言模型,讓小語言模型不必透過自己訓練,也能輕鬆得到這個推理過程。如今,許多高效的小型語言模型正是透過這項技術訓練而成,讓我們得以在資源有限的邊緣設備上,也能部署愈來愈強大的小模型 AI。

但是!即使模型經過了這些科學方法的優化,變得比較「苗條」了,要真正在邊緣環境中處理如潮水般湧現的資料,並且高速、即時、穩定地運作,仍然需要一個夠強的「引擎」來驅動它們。也就是說,要把這些經過科學千錘百鍊、但依然需要大量計算的 AI 模型,真正放到邊緣的現場去發揮作用,就需要一個強大的「硬體平台」來承載。

-----廣告,請繼續往下閱讀-----

邊緣 AI 的強心臟:SKY-602E3 的三大關鍵

像研華的 SKY-602E3 塔式 GPU 伺服器,就是扮演「邊緣 AI 引擎」的關鍵角色!那麼,它到底厲害在哪?

一、核心算力
它最多可安裝 4 張雙寬度 GPU 顯示卡。為什麼 GPU 這麼重要?因為 GPU 的設計,天生就擅長做「平行計算」,這正好就是 AI 模型裡面那種海量數學運算最需要的!

你想想看,那麼多數據要同時處理,就像要請一大堆人同時算數學一樣,GPU 就是那個最有效率的工具人!而且,有多張 GPU,代表可以同時跑更多不同的 AI 任務,或者處理更大流量的數據。這是確保那些科學研究成果,在邊緣能真正「跑起來」、「跑得快」、而且「能同時做更多事」的物理基礎!

二、工程適應性——塔式設計。
邊緣環境通常不是那種恆溫恆濕的標準機房,有時是在工廠角落、辦公室一隅、或某個研究實驗室。這種塔式的機箱設計,體積相對緊湊,散熱空間也比較好(這對高功耗的 GPU 很重要!),部署起來比傳統機架式伺服器更有彈性。這就是把高性能計算,進行「工程化」,讓它能適應台灣多樣化的邊緣應用場景。

三、可靠性
SKY-602E3 用的是伺服器等級的主機板、ECC 糾錯記憶體、還有備援電源供應器等等。這些聽起來很硬的規格,背後代表的是嚴謹的工程可靠性設計。畢竟在邊緣現場,系統穩定壓倒一切!你總不希望 AI 分析跑到一半就掛掉吧?這些設計確保了部署在現場的 AI 系統,能夠長時間、穩定地運作,把實驗室裡的科學成果,可靠地轉化成實際的應用價值。

-----廣告,請繼續往下閱讀-----
研華的 SKY-602E3 塔式 GPU 伺服器,體積僅如後背包大小,卻能輕鬆支援語言模型的運作,實現高效又安全的 AI 解決方案。/ 圖片提供:研華科技

台灣製造 × 在地智慧:打造專屬的邊緣 AI 解決方案

研華科技攜手八維智能,能幫助企業或機構提供客製化的AI解決方案。他們的技術能力涵蓋了自然語言處理、電腦視覺、預測性大數據分析、全端軟體開發與部署,及AI軟硬體整合。

無論是大小型語言模型的微調、工業瑕疵檢測的模型訓練、大數據分析,還是其他 AI 相關的服務,都能交給研華與八維智能來協助完成。他們甚至提供 GPU 與伺服器的租借服務,讓企業在啟動 AI 專案前,大幅降低前期投入門檻,靈活又實用。

台灣有著獨特的產業結構,從精密製造、城市交通管理,到因應高齡化社會的智慧醫療與公共安全,都是邊緣 AI 的理想應用場域。更重要的是,這些情境中許多關鍵資訊都具有高度的「時效性」。像是產線上的一處異常、道路上的突發狀況、醫療設備的即刻警示,這些都需要分秒必爭的即時回應。

如果我們還需要將數據送上雲端分析、再等待回傳結果,往往已經錯失最佳反應時機。這也是為什麼邊緣 AI,不只是一項技術創新,更是一條把尖端 AI 科學落地、真正發揮產業生產力與社會價值的關鍵路徑。讓數據在生成的那一刻、在事件發生的現場,就能被有效的「理解」與「利用」,是將數據垃圾變成數據黃金的賢者之石!

👉 更多研華Edge AI解決方案
👉 立即申請Server租借

-----廣告,請繼續往下閱讀-----
-----廣告,請繼續往下閱讀-----
文章難易度

討論功能關閉中。

0

1
1

文字

分享

0
1
1
運動員的大腦跟一般人不一樣?從腦科學看體力之外的奪冠秘笈
F 編_96
・2024/12/17 ・2098字 ・閱讀時間約 4 分鐘

F 編按:本文編譯自 Live Science

是不是常聽人家講「運動天賦」?這種天賦到底是什麼?運動員哪裡跟我們不一樣?這個問題現在科學家或許可以給你一個答案。近年透過腦科學研究發現,運動員的大腦與普通人的大腦存在顯著差異,這些差異塑造了他們在比賽中的敏捷反應、精確動作及卓越判斷能力。

所以現在運動選手不只比體力,還要比腦力了嗎?這些差異具體差在哪裡?

快速反應:視覺處理能力

在團隊運動如足球或籃球中,快速處理視覺資訊並作出決策對勝負至關重要。一項 2013 年發表於《Scientific Reports》的研究發現,職業運動員比起業餘運動員或一般人更擅長處理動態視覺場景,例如追蹤快速移動的物體。這種能力能夠幫助運動員在瞬間解讀賽場上的複雜資訊,並迅速做出反應。

擁有快速的視覺處理能力,對團體運動來說至關重要。圖/envato

視覺處理能力的測試還可用於判斷運動員是否適合回歸賽場,例如在傷後復健階段,確保運動員在完全恢復判斷能力之前不會貿然上場。

-----廣告,請繼續往下閱讀-----

肌肉記憶:動作的自動化編程

對於體操選手或跳水運動員而言,肌肉記憶是完成複雜動作的關鍵。2023 年《Journal of Neuroscience》的一項研究表示,大腦如何通過訓練快速「壓縮」和「解壓縮」動作資訊,最終將動作序列整合成一個流暢的過程。這種訓練過程使運動員能夠無需刻意思考,便能完美執行複雜動作。

肌肉記憶的形成依賴於大腦皮層神經元的網絡活動,這種神經編程能力也同樣適用於訓練有素的音樂家或舞蹈家。

預測能力:球場上的決策利器

運動員擁有卓越的預測能力,例如棒球擊球手能根據投手的動作,快速判斷球的速度與方向。2022 年發表於《Cerebral Cortex》的研究發現,當擊球手預測投手的投球軌跡時,大腦左腹側顳葉皮質的神經元活動會根據預測結果而改變。

這種高效的預測能力源來於運動員在比賽中,學會透過關聯視覺線索與物體運動軌跡的技能。研究還發現,潛水選手等專業運動員的大腦中與動態運動解讀相關的區域,如上顳溝(STS),比普通人更厚,這也反映了運動訓練對大腦結構的塑造。

-----廣告,請繼續往下閱讀-----

平衡與空間感:身體控制的高峰

對體操選手來說,擁有非凡的平衡感與空間感知能力,兩者缺一不可,而這在科學上被稱為「本體感覺」(proprioception)。位於小腦的神經網絡讓運動員能迅速調整身體姿態,即使在空中失誤也能及時修正動作。

對體操選手來說,平衡感與空間感知能力非常重要。圖/envato

然而,當這套「安全網」失靈時,可能導致嚴重後果。如 2020 年東京奧運中,體操選手西蒙·拜爾斯(Simone Biles)因「扭轉失靈」而一度無法控制動作,凸顯了平衡能力在高風險運動中的重要性。

注意力與認知靈活性:多任務處理的關鍵

團隊運動要求運動員能快速在不同思維模式間切換,例如足球選手需在控球時預測對手動作並調整策略。2022 年《國際運動與運動心理學期刊》的一項研究顯示,運動員,特別是參與高強度間歇訓練的選手,擁有更強的認知靈活性和注意力分配能力。

研究也指出,這些能力的提升可能與長期訓練相關,但確切機制仍需進一步研究。

-----廣告,請繼續往下閱讀-----

抗衰老的秘密:運動對老年大腦的保護

這些運動訓練對大腦的影響,可不是只有相關區域的提升。運動對大腦健康的影響,可能會持續一生。一個典型例子是加拿大田徑選手奧爾加·科特爾科(Olga Kotelko),她在 95 歲時仍保持驚人的腦部健康,其白質結構完好程度甚至接近比她年輕三十多歲的普通人。科學家認為,持續的運動訓練可能是她保持記憶力與認知敏銳的原因之一。

運動不只是對身體的鍛鍊,對維持大腦健康也有影響。圖/envato

下一代的訓練策略:腦力與體力並重

隨著運動科學的不斷進步,科學家也開始呼籲教練更注重對年輕運動員的腦部訓練,例如提升記憶力與決策能力。西悉尼大學的運動科學家凱莉·斯蒂爾(Kylie Steel)指出,運動員的身體或許會訓練至極限,但在認知能力上仍擁有巨大的潛力提升。例如,足球訓練中可以鼓勵球員使用非慣用腳進行射門,以提升大腦靈活性,幫助他們在成年後更加出色地應對比賽挑戰。

近年研究讓我們重新認識了體育訓練對人體的深遠影響,運動改變的不僅是肌肉,還包括大腦。從視覺處理到肌肉記憶,再到抗衰老的腦部結構,透過運動與科學的結合,將為未來的運動員開啟全新可能性,也提醒我們,持續鍛煉不僅益於身體,也有助於大腦的健康。

-----廣告,請繼續往下閱讀-----

討論功能關閉中。

F 編_96
20 篇文章 ・ 1 位粉絲
一個不小心闖入霍格華茲(科普)的麻瓜(文組).原泛科學編輯.現任家庭小精靈,至今仍潛伏在魔法世界中💃

0

0
0

文字

分享

0
0
0
創意藏在夢裡?引導夢境助你突破創作瓶頸,解決生活難題——《我們為何會做夢》
PanSci_96
・2024/11/03 ・2262字 ・閱讀時間約 4 分鐘

-----廣告,請繼續往下閱讀-----

從惡夢到創意靈感的奇妙旅程

1987 年,美國塔夫茨大學醫學院(TuftsUniversitySchoolofMedicine)的恩尼斯特・哈特曼(ErnestHartmann)帶領了一項深入研究,比較了十二名終身受惡夢所擾的人、十二名夢境生動的人,和十二名既非惡夢受害者也不是夢境生動的人。每位受試者均接受了結構式訪談、心理測驗和其他措施,以評估他們的性格。研究人員發現,受惡夢困擾的人比起其他兩組受試者,具有更強烈的藝術和創作傾向。換言之,在夢中想像邪惡或危險力量的心智,清醒時也可用其豐富的想像力發揮創意。

惡夢曾為許多知名作家的作品提供靈感。聞名全球的恐怖小說作家史蒂芬・金(StephenKing)在飛機上睡著,夢見了一名瘋狂女子囚禁並殘害了她最喜愛的作家,結果成了《戰慄遊戲》(Misery)一書的靈感來源。

《鬼店》(TheShining)的構思也來自於一個夢。史蒂芬・金和妻子是一山中度假飯店僅有的兩位客人,當時飯店由於季節即將關閉。他在夜裡夢見自己三歲的兒子尖叫著跑過大廳,被消防水管追趕。他從惡夢中驚醒,滿頭大汗。史蒂芬・金回憶,當時他點了一支菸,望向窗外:「菸抽完時,這本書的架構已經在我的腦海裡成形。」

傑克·尼克遜(Jack Nicholson)名場面之一,即出自於《鬼店》(TheShining)。圖/wikimedia

我們如何看待法國和其他處的史前洞穴壁畫及其他古代文物?世界各地所描繪的許多生物,都是人獸混合的動物形象,使得考古學家不禁心想,這些奇特的圖像是否可能是受到了夢境的啟發?惡夢既是人最容易記住的夢境,這些會不會是最早對惡夢的藝術描繪?我同意此種看法。我們有理由認為,說故事本身也許源自於分享夢和惡夢的渴望。

-----廣告,請繼續往下閱讀-----

如何引導夢境來激發創意?

古埃及人建造了睡眠神廟,讓人可以在此處睡覺,希望能誘發夢境,幫助他們治癒疾病或做出重要決定。古希臘人也會去特殊的神殿祈禱,希望做一個能解決問題的夢。希臘人稱此作法為「孵夢」。現今研究顯示,孵夢不僅僅是建立在信仰上的古老方法,它背後有真正的科學依據。

研究人員發現,做夢的人可以透過暗示來影響夢境發展。雖說這不是萬無一失的過程,但他們發現,光是表達你想夢見某個人或特定主題的意圖,通常就能將夢境推向此方向。透過此種方式,我們也許能引導自己的夢境,來幫助激發創意、思考社交難題和考慮重大決定。哈佛大學夢境心理學家芭瑞特要求她的學生在睡前十五分鐘思考一個情感相關的問題。結果,半數學生表示,他們做了與此問題有關的夢。

由於夢境如此視覺化,所以,入睡時在腦海裡設想某個人、想法、地點或問題,將有助於你孵夢成功的機率。正如我們在關於惡夢的章節中所了解,我們可以運用意象預演療法改寫反覆出現的惡夢,重新編排夢境情節,使其變得無害,甚至給它更好的結局。這種方法聽來雖然簡單,但相信你也記得,研究也證明此法常常能成功幫助人們擺脫惡夢。孵夢也一樣,聽來雖像是一廂情願的想法,但嚴謹的研究已證實了此種方法引導夢境的效用。

入睡時設想特定情境有助於引導夢境,研究證實了這種方法的效用。 圖/unsplash

MIT 前沿科技助力夢境設計

麻省理工學院媒體實驗室(MediaLab)的研究人員,一直致力於開發睡眠和夢境設計技術,希望藉此大幅提升創造力。研究裝置會感知受試者進入睡眠的情況,並提供口頭提示,詢問受試對象在想什麼,然後記錄對方的反應。如我們將在第8章所見,現今還有其他方法可利用感官來設計夢境內容。

-----廣告,請繼續往下閱讀-----

正如我們探討如何減輕惡夢時的方法,你也可以在紙上寫下自己的意圖,放在床邊,或將希望夢見的事物相關圖片、物件放在床邊。這不僅僅是某種象徵儀式,而是人們見證能啟發他們夢境的有效方法,就好比我們將原料放進鍋裡,等待夢境以全新、意想不到的方式將它們混合。

當解決方案能在腦海以視覺呈現時,孵夢最容易成功,原因是視覺皮質在快速動眼睡眠期間十分活躍。睡前請回顧一下你想夢見的問題或主題,想像自己夢見了這個問題後醒來,然後在床邊的紙上寫下夢境。

芭瑞特的學生選擇了學術、醫療和個人方面的問題,並記錄哪些夢境為他們的問題提供了潛在的解決辦法。其中一名學生搬到了一間較小的公寓,無法找到不顯雜亂的家具擺放方式,結果他夢見將五斗櫃搬到客廳,這名學生實際嘗試了一下,果真有效。另一名學生在選擇麻州或其他地方的學術課程時陷入兩難,他夢見自己乘坐的飛機需要緊急降落,夢裡飛行員說降落在麻州太過危險,做夢的學生一想到這個夢,便意識到了選擇其他地方課程的決定。

即便不記得自己的夢,它們也能影響你清醒時的想法。你也許會突然靈光一閃、腦海瞬間蹦出想法或沒來由地想到解決辦法,這些靈感很可能來自於我們的夢境。不論記不記得,我們每晚都會做夢,而我們的夢夜夜都在為我們從事創意工作。

-----廣告,請繼續往下閱讀-----

——本文摘自《我們為何會做夢:睡夢中的大腦如何激發創造力,以及更好地改善清醒時的生活》,2024 年 11 月,悅知文化出版,未經同意請勿轉載。

-----廣告,請繼續往下閱讀-----

討論功能關閉中。