0

1
0

文字

分享

0
1
0

人工智慧讓學音樂變簡單!那音樂AI會取代音樂家嗎?

研之有物│中央研究院_96
・2017/08/05 ・4785字 ・閱讀時間約 9 分鐘 ・SR值 517 ・六年級

「自動音樂採譜研究」的重要性

相傳莫札特十四歲時聽到複雜的教堂樂曲,便能默記全曲並寫成樂譜。在這個充滿神秘色彩的故事中,除了隱含人們對音樂「天份」這道門檻的敬畏以外,自動採譜也成為 AI 人工智慧研究者所挑戰的重要夢想。
中研院資訊科學研究所的蘇黎,專攻音樂資訊檢索(Music Information Retrieval,MIR) ,以「多重音高偵測技術」為基礎,發展出自動採譜的人工智慧,以更輕鬆簡單的方式來協助我們學音樂、理解音樂和製作音樂。

自動採譜的功能與發展,讓人人都能開外掛擁有莫札特的絕對音感與解譜能力,可以馬上就編譯樂譜。圖/iStock

目前市場上已經有許多人工智慧在音樂上的應用,例如人們用 Soundhound 音樂識別軟體來搜尋當下聽到的歌,或試聽線上串流平台推薦的歌曲,或透過軟體快速找到自己想要聽的歌。這方面的發展已接近成熟,但主要都是針對「聆聽」的行為。

若想透過人工智慧進一步了解音樂的深層意涵,例如作曲家的創作思維,演奏家的詮釋技法,乃至於樂評家的觀點,那麼,一個擁有像莫札特般卓越音樂聽力,可以協助自動採譜,並將聽見的音樂變成容易親近演奏的完整樂譜的人工智慧,會是關鍵性的一步。

人類如何認識音樂?音高 94 關鍵!

試著哼唱莫札特的〈小星星〉,想起小學教室裡的風琴伴奏,而那架風琴的 Do 還老是走音。在這樣簡單的歌曲裡頭,事實上已經包含了許多複雜的資訊,如速度、節奏、音高、和弦、器樂及人聲的音色等多樣要素,別忘了還有走音的 Do 這個偏差因子。

因此,人工智慧對大編制樂曲如交響樂的自動採譜,必須面對大量且交疊的資訊,難度仍然很高。所以要把聽到的樂曲轉成可以看到的譜,還是要找出其中特徵最穩定,也能決定旋律的關鍵—「音高」。

「音高」為樂曲所有要素中最基本的特徵,樂譜上的資訊,大多與音高有關。

說起音樂訊號的本質,蘇黎認為音高是音樂訊號中的最基本的資訊之一,而音高偵測正是音樂訊號處理的基本技術。

舉個大家都有的生活經驗:當朋友打電話來,有時我們會覺得對方的聲音好像不太一樣。這是因為線路與裝置在訊號傳輸過程中改變了朋友說話的音色,讓我們的聽覺受到混淆。但對方聲音在電話裡的語調,也就是音高,不論是上揚還是下降,並不容易受影響。

因此,我們即使因為雜訊而不認得對方的聲音,但往往還能聽懂對方講話的內容。也因為音高擁有這樣的基本特性,所以如何辨識音高可以說是分析聲音資訊的一項基本技術。

從最常使用記載樂曲的五線譜來看,接起每一個音高才會組成一段旋律,若依照標準樂譜所演奏的樂曲中,音高該上揚,還是下降,是不會被演奏者影響及改變。 圖/iStock

此外,音高資訊並不僅包含絕對音高,還包含音與音相對的關係,甚至是那轉音之時,各種詮釋的可能。

就如同有人唱著〈小星星〉的曲調,即使沒一個音在音準上,我們仍然聽得出這是〈小星星〉的曲調。這是因為我們認得旋律軌跡(melody contour)的樣態,也就是「曲調的起伏」。只要曲調起伏的趨勢與原曲相似,我們就能如 Soundhound 音樂識別軟體一樣聽得出來。

用「多重音高偵測」,記錄人耳辨識困難的合音

音高資訊除了表現於旋律以外,更是伴奏、和聲與對位結構中的基本資訊,也就是「和弦辨識(chord recognition)」與「多重音高偵測(multi-pitch estimation, MPE)」技術。

近年來多重音高偵測技術的發展重點,大多仍集中於西方古典音樂,因為此類音樂的資料庫相對完整,每種樂器的聲響型態較容易標準化,在分析樂曲時就相當便利。但因為西方古典音樂大多有完整樂譜,往往是最不需要這項技術輔助研究的。相反的,大量在缺乏譜例記載的傳唱民謠,需大量人力從事轉譜工作以方便判讀分析,多重音高偵測技術在此時便派上用場,並且能給予譜例之外更多的資訊。

以布農族的祈禱小米豐收歌 Pasibutbut ,也就是著名的「八部合音」(註一)為例。為什麼稱之八部,據說是因為「泛音唱法」(註二),即一個人可以同時唱出兩個音高的聲音,除了唱出基音以外,還增強某一個高階泛音的能量。

但現今所看到音樂學家所整理的譜例,大多仍是記為四部,這是因為演唱的編制確實只有四個聲部:最高音、次高音、中音和低音。至於泛音唱法之下多出的聲部,有些人聽得出來,有些人則感知不到;且不同的錄音版本差很大,很難明確指出是哪八個聲部,各自音高為何。

布農族 Pasibutbut 八部合音的時頻圖:橫軸代表時間,縱軸代表聲音的頻率,發亮的能量條則是聲音。資料來源/蘇黎。聲音/臺灣音樂資訊交流平台

蘇黎透過訊號的時頻圖(spectrogram)資料佐證,可以清楚看見泛音唱法的特徵:每一個聲部都在偶數的倍頻上產生更多能量。經過多重音高偵測(即 CFP transcription result),去掉多倍頻的泛音,除了基音外,也很容易看見第一泛音(基音的二倍頻)的位置上有能量存在,顯示了新的音高成份,演算法呈現的結果證實了泛音唱法的存在。

藉由計算瞬時頻率的技術,也就是「多重音高偵測」,便能把每一個聲部的音高軌跡精準算出,將能協助民族音樂的採譜工作。

音樂視覺化!將視覺和聽覺同步表現

蘇黎團隊目前所研究的「多重音高偵測技術」,以適用於各種音樂訊號為目的,其能有效刻劃出每一種聲響結構,並且將聲響即時轉化成樂譜。

多重音高偵測技術不僅可以應用於民族音樂學等領域的採譜處理問題,它的即時處理以及視覺化能力,也能在教育、娛樂等應用領域中有龐大潛力,將複雜的演奏即時轉為視覺表現。

使用多重音高偵測技術,鋼琴每彈下一個音,電腦會自動定位音高,在螢幕上再度轉化成鋼琴鍵,圖中的橫軸則為時間軸,清楚地看出該時間點演奏者按下哪一個鋼琴鍵,演奏完畢便完成曲譜的轉譯。資料來源/《日新‧樂譯》跨界科技音樂會 DEMO 宣傳影片。製作/ 魏一傑、吳曉筑

在聆聽音樂的同時建立視覺與聽覺的關聯,以增強對音樂元素如音高、和弦的認知,是豐盛音樂表演 (enriched music performance)所努力的方向。

為了推廣這個概念,蘇黎與沛思文教基金會將於 2017 年 11 月合作推出《日新‧樂譯》跨界科技音樂會(註三),將現場演奏即時轉譯成樂譜動畫,用科技的語言,述說音樂的故事,透過多媒體動畫影像,讓大家聽得到也看得到音樂的演出。

除了紀錄樂譜,還能做什麼應用呢?

「多重音高偵測技術」對於輔助學習的應用,也不僅限於音樂元素的偵測與視覺化。

音樂人工智慧的研究範疇,除了理解音樂天才如何聽音樂以外,還有音樂演奏家如何「詮釋」音樂。圖/Clem Onojeghuo

精確的多重音高偵測技術為了滿足這個目標,往往需要更精確的頻率與能量偵測演算法,精確描述演奏者在演奏時的音量有多大、抖音怎麼使用、如何控制音長等等。

蘇黎與成大蘇文鈺老師、中研院楊奕軒老師合作的工作中,專注探討小提琴演奏者的詮釋,就像同樣的小星星會有很多不同的詮釋版本,可以彈得恬靜、彈得莊嚴、彈得詼諧、彈得有精神,種種不同的表情術語和詮釋方式,都可以從精確的音高偵測演算法中看出端倪。

更進一步地說,未來我們或許能建立一個檢定的標準:當彈奏者把自己的演奏記錄下來,並輸入音樂人工智慧時,就可以和標準演奏做出比對,看看自己演奏得好不好。或是藉由音樂人工智慧的示範演出,讓初學者可以不斷聆聽各種詮釋方式,再去揣摩自己喜歡的演奏表情。這一些都是未來可以從「多重音高偵測技術」中,延伸開發的音樂人工智慧。

此圖為小星星的第一個 Do 音在不同音樂情緒的表現。每一個彈奏風格的聲音變化,都可以被明確記錄下來,抓到彈奏要點。資料來源/Analysis of expressive musical terms in violin using score-informed and expression-based audio features 。圖/張凱鈞、張語辰

果可以辨識演奏的詮釋方式,則有機會透過音樂人工智慧,從仰慕的音樂高手的精湛演奏中,學習樂器的彈奏技巧。

精確的音高偵測技術不僅可以用來分析古典音樂中的表情術語,另一個有趣的應用是分析搖滾樂中,吉他 solo 複雜的演奏技巧。

帥氣熱血的吉他 solo 往往結合各式不同的演奏技巧,如推弦,滑音、悶音、捶勾弦等等,這是吉他新手在學習抓譜時最困擾的地方。「多重音高偵測技術」有助於辦識出吉他的演奏技巧,把這一些技巧轉變成可閱讀的技巧符號,並記載在樂譜上,讓我們可以更容易去理解彈奏方式,進而模仿演奏者的演奏變化,達成自己想要的音樂學習目標,也是種未來可能發展出的音樂學習系統。

吉他 solo 的時頻圖:可清楚看到推弦、勾弦等不同演奏技巧的音頻變化,並進一步將明星吉他手的「個人演奏風格」變成樂譜,供粉絲或學生「臨摹」學習。資料來源/Electric guitar playing technique detection in real-world recording based on F0 sequence pattern recognition.

音樂人工智慧會取代音樂家嗎?

當 AlphaGo 問世改寫了圍棋的新面貌,一一擊敗了世界頂尖的圍棋好手,有人感到恐懼、有人感到興奮,無非都是因為人工智慧科技所帶來的改變,但換一個角度想,這不正是把漫畫「棋靈王」的故事搬到現實世界嗎?

當 AlphaGo 變成每個人的藤原佐為,我們就可以像進藤光一樣,即使沒有從小就接觸圍棋,也可以學習到好的圍棋思維。根據類似的道理,我們可以說, 音樂人工智慧科技的進步,其目的並不在於取代音樂家的工作。相反的,我們能看到在不久的將來,這些科技將會被用來增進人類學習音樂的效率,而擴大音樂的學習與消費市場。

正如工業革命讓古鋼琴現代化並大量製造,而孕育浪漫樂派蕭邦、舒曼等作曲家不朽的鋼琴獨奏作品;當代音樂人工智慧的成熟發展將開展另一場革命,不僅讓學習音樂變得更輕鬆有趣,也提供音樂家前所未有的音樂創作思維。

蘇黎不僅是個資訊科學家,也是一個音樂愛好者。深度研究「多重音高偵測技術」,逐步發展出可以正確轉譯樂譜的音樂人工智慧,一方面希望讓專業的音樂創作人擁有更好的創作環境,不用在記載與解析樂譜上耗費太多心力,創作者可以運用更充足的時間來創作嶄新的音樂風格。

另一方面則期望,讓每個想學習音樂的人,可以搭載猶如莫札特的音樂耳。每個人都好像擁有一個虛擬音樂老師,以更輕鬆、簡單的方式,認識音樂的組成結構,降低學習成本,加快學習音樂的速度。讓想學音樂的心,不會隨著年齡增長而有所阻礙,讓全年齡層的人們都有興趣把音樂成為生活的一部分。

如何打破「會音樂」與「不會音樂」的高牆,利用科技創造更好的音樂學習介面,讓音樂欣賞與彈奏更好上手,便是蘇黎致力研究的目標。圖/張語辰

延伸閱讀

  • 採訪編輯|張凱鈞
  • 美術編輯|張語辰

CC 4.0

本著作由研之有物製作,以創用CC 姓名標示–非商業性–禁止改作 4.0 國際 授權條款釋出。

本文轉載自中央研究院研之有物,泛科學為宣傳推廣執行單位

文章難易度
研之有物│中央研究院_96
290 篇文章 ・ 3086 位粉絲
研之有物,取諧音自「言之有物」,出處為《周易·家人》:「君子以言有物而行有恆」。探索具體研究案例、直擊研究員生活,成為串聯您與中研院的橋梁,通往博大精深的知識世界。 網頁:研之有物 臉書:研之有物@Facebook

0

1
0

文字

分享

0
1
0
跨物種溝通即將成真!若有動物的「翻譯蒟蒻」你想擁有嗎?
鳥苷三磷酸 (PanSci Promo)_96
・2023/11/13 ・4484字 ・閱讀時間約 9 分鐘

人與動物之間的溝通一直是科學界和哲學界十分引人關注的一個議題。傳統觀點認為,人類和其他動物之間的溝通受到生物學和語言能力的限制,因此很難實現真正的互相理解。然而,近年來,科學家們對這個問題的看法已經開始轉變,並且有一些跡象表明跨物種溝通有望成為現實。

為什麼科學家認為跨物種溝通即將成真?從海豚到水豚、從蜘蛛到山豬,人工智慧能成為所有生物的萬能「翻譯蒟蒻」嗎?當人類真的破解了另一物種的溝通方式,未來會發生什麼事呢?

跨物種溝通即將成真?圖/giphy

為什麼動物溝通,備「獸」關注?

從古代神話、經典傳說,到熱門動漫影視,都有不少能說人話、化為人形的動物,像是美猴王孫悟空、馴鹿喬巴、還有火箭浣熊,這些擬人化的角色雖然外表參雜獸的特質,卻往往更有人性,故事也著重呈現人與獸人如何從誤解到包容,讓我們為之動容。

在當代台灣的漫畫作品中,許多優秀的新一代漫畫家探討了擬人化動物和人類之間的隔閡、衝突以及理解,呈現了多元化的故事情節。其中,有一些引人入勝的作品,例如《瀕臨絕種團》,故事描述了被路殺後轉生成人類的石虎、黑熊和水獺,當上 YouTuber 還成為高中女生的故事。這個作品提供了獨特的視角,探討了不同物種之間的互動和冒險。

另一部作品是《海巫事務所》,它將魔法元素融入生物學,講述了一個迷茫的廢業青年與擬人化海洋動物相遇並相互療癒的故事。還有一個短篇漫畫《IVE》,通過科幻的方式,描述了某種深海雌鮟鱇的繁殖和誘導機制,卻將目標對象設定為人類男性的謎般生物,及她和科學家之間的異色關係。

短篇漫畫《IVE》描述了有著雌鮟鱇的繁殖和誘導機制,卻將目標對象設定為人類男性的謎般生物,及她和科學家之間的異色關係。圖/CCC 追漫台

這些作品在畫風和故事情節方面都各有特色,無論你是一位一般漫畫愛好者還是偏愛條漫,你都可以在 CCC 追漫台找到它們,享受不同的視覺和情感體驗。

而這幾部作品的共通核心問題就是:如果動物能用人類的語言跟我們溝通,會怎樣?即使牠們能跟我們說話了,我們就能理解彼此嗎?要取得那唯一的真相,除了請出《不可知論偵探》海麟子(也是 CCC 追漫台 上的熱門作品),科學家還有一個辦法:就讓動物自己說話吧!今年 7 月 Science 期刊上發表了一篇觀點文章,標題為《用機器學習解碼動物溝通》表示新方法有望帶來全新的洞見,也有助於保育。不過在打電話給露洽露洽之前,我們得先了解什麼是動物溝通?

什麼是動物溝通?

首先要有一個清楚的認知,那就是人類跟所有其他的動物,都各自受限於自己的感官,活在不同的「環境界」(Umwelt),這個德文的意思是說每一種生物都活在獨有的感官泡泡裡,所見、所聞、所聽、所嚐、所觸都跟其他生物截然不同。你想想,連人與人之間都會因為家庭背景、生活環境、媒體教育而對同一件事物有天差地遠的詮釋了,對跨物種來說,不同的感官體驗讓彼此如同身處完全不同的世界。

例如,海龜和許多鳥類能感知地球的磁場,藉此進行長距離遷徙;而響尾蛇具有紅外線感覺器官,能夠在黑暗中感知幾公尺外的獵物體溫。蝙蝠則使用回音定位來捕捉飛蛾等獵物,每秒發射兩百次超音波脈衝,並根據百萬分之一秒的時間差距來精準定位目標。斑海豹則依賴其特殊的鬍鬚來察覺魚游過的流體動力,猶如水中留下的軌跡。角蟬使用震動通信,能夠透過植物表面傳遞信息給其他角蟬,即使對人類來說是聽不見的。至於我們的忠實夥伴狗,它們的世界主要由氣味構成,能夠分辨地下埋藏的松露、潛藏的地雷、古蹟、毒品甚至主人身體內的腫瘤等各種氣味。

狗狗的世界主要由氣味構成。圖/giphy

那麼,海龜要如何跟我們這些沒有磁場感應的人類解釋牠們的感覺呢?蜂鳥又要怎樣才能描述它看到的一億種顏色呢?這真的是雞同鴨講,甚至比牛頭更不對馬嘴!

但有越來越多科學家認為,隨著人工智慧(AI)的快速進步,破譯動物的溝通方式不再是不可能的事情。AI 能幫上什麼忙呢?首先,機器不具備人類的偏見,因此能幫助研究者更理解動物溝通系統的結構和功能,同時辨識我們和動物之間的差異。

其次,機器學習技術能夠辨識那些對於人類難以想像或無法感知的動物感官訊號,這些包括聲音、振動、光線、化學物質等。機器可以幫助分析這些訊號,並幫助我們理解動物想要傳遞的訊息。

最後,AI 還可以基於動物訊號,開發出預測動物行為的模型。例如預測動物的交配行為或遷徙模式,或何時可能需要尋找庇護避免捕食者。

此刻的我們對於深度學習能完美辨識圖像語音,以及 GPT-4 或 PaLM 2 等大型語言模型能生成語言,甚至跟我們交談,完全不覺得奇怪,但可能僅僅 10 年前,這都還像是天方夜譚。那麼將這份能力運用在動物身上,也將變得理所當然……嗎?

現在科學家已經做到什麼程度?破解了哪些動物語言呢?

科學家正在使用人工智慧來解讀各種物種的動物溝通方式。

例如烏鴉:英國聖安德魯斯大學的科學家 Christian Rutz 長期研究南太平洋的新喀里多尼亞烏鴉( New Caledonian Crow ),牠們是少數能夠製造工具的鳥類,會把樹枝的葉子拔掉,做成鉤子來釣蟲,不同群體的作法也有差異。他發現島上不同烏鴉群體有不同的叫聲,可能是文化得以傳播的關鍵。身為烏鴉專家的他加入了 ESP 地球物種計畫,研究二十年前已經野外滅絕,現在只剩圈養個體的夏威夷烏鴉,他們用機器學習來比較圈養跟野生烏鴉的錄音,了解圈養是否改變了烏鴉的詞彙,例如注意威脅、求偶等重要的叫聲,是否已經在圈養環境中失去了,如果我們破譯這些叫聲,可能可以幫助這些烏鴉重新野化。

或許我們可以預測鯨魚會說什麼,反過來和牠們對話?圖/giphy

哺乳類的另一個成員鯨魚更是重點研究對象,2020年成立的 CETI,由 40 多名科學家、跨15 個機構組成,是最受關注的鯨語破譯團隊。他們除了駕船出海用水下麥克風偷聽鯨魚對話,也使用無人機從上方監看,更計畫在加勒比海海底安裝三個監聽站,從遠處捕捉離海岸 12 英里處抹香鯨聊天的喀噠咔嗒聲。以前啊,抹香鯨的聲音被比擬為單純的二進位代碼,但其實更為複雜,而機器學習可以重新辨識這些聲音。圖靈獎得主,加州大學柏克萊分校西蒙斯計算理論研究所所長莎菲·戈德瓦塞爾( Shafi Goldwasser )受訪時就說, CETI 的目標就是要像 ChatGPT 一樣,能預測鯨魚會說什麼,甚至反過來和鯨魚對話。

這些只是 AI 解讀的眾多物種中的一部分,其他還有不少鳥類、靈長類、海豚、蜘蛛、螞蟻、蜂類,或與人親近的貓、狗、豬等,也都是目前被科學家認為有機會破譯其「語言」的生物。

如果我們成功解讀出了動物的語言,我們又該從什麼角度與動物溝通?我們所「理解的語言」真的一樣嗎?

就算解讀動物溝通,能避免擬人化的陷阱嗎?

儘管機器學習在許多情況下表現出令人印象深刻的準確性,但動物的聲音、姿態和其他訊號往往具有多義性,也就是同一個訊號可能有多個意思,很難正確解釋它們的含義。此外,機器學習再強,目前也存在限制,特別是我們尚未完全理解的感知機制,如電感、磁感和費洛蒙等。

在漫畫《瀕臨絕種團》跟《海巫事務所》中,動物跟人類除了偶爾吵架之外,基本上相處得極為融洽,這也是我們人類想像中希望的情境,就是能與動物友善地、無惡意地溝通。而在《 IVE 》這部異色科幻作品中,則提出更現實的問題。汪幼海博士認為 IVE 為了與人接觸,如鮟鱇魚一般的餌球竟然為了吸引人類而變成人形,甚至可以與人溝通。雖然令人驚喜,但這也意味 IVE 的目的就是要讓人類成為其血肉的一份子,獲取其基因,因此也使用類似費洛蒙的物質吸引人類男性。對鮟鱇魚或 IVE 來說,這是很自然、毫無惡意的,但對人類來說,就是一種恐懼的殺戮。大自然中本來就有許多「愛」是以殺為結局,包括蜘蛛、螳螂等。人類又要如何在對事物理解前提完全不同的情況下,與動物更深度溝通呢?

圖/pexels

在科學研究上,我們情不自禁地把動物擬人化更是個麻煩且不容易解決的問題,要是過於擬人化地認為動物跟人類共享一樣的情感,可能導致研究者在實驗設計和解釋結果時受到情感干擾,使研究不客觀。此外,擬人化也會使研究者更容易面臨到底是該保護動物權益,還是進行實驗研究之間的衝突,陷入倫理的困境。

但若反過來,要是有科學家認為動物跟人類完全不同,因此缺乏同情心,不尊重動物權益,倫理問題只會更嚴重。現在大家對動物福祉很關注,尤其是在涉及動物實驗和野生動物保護的時候,研究人員對動物無感情的態度反而可能導致研究受到質疑。更重要的是,這會讓科學家缺乏共鳴和洞察力,忘記我們也是動物。因此啊,如何拿捏分寸,在過分擬人跟缺乏同情的兩端之間找到適當的位置,也是動物溝通研究者的重要問題。

人類會將破譯動物溝通的能力拿來善用嗎?怎樣算是善用呢?

在石虎、黑熊跟水獺轉生變高中女生、IVE 開始對人類有興趣之前,機器學習的確可幫助我們監控和保護瀕臨絕種的野生物種,透過解讀其溝通方式,更了解牠們的需求和行為,制定更有效的保育策略。也能夠幫助我們理解圈養動物的情感和需求,從而改進在人類照顧下的生活品質。

然而,當播放動物聲音以吸引它們或干擾它們時,會不會對它們的行為產生不可預測的影響?甚至不可逆地改變群體的文化,從而威脅它們的生存和生態系統的平衡?假訊息在人類世界已經夠麻煩的了,想像一下,若連動物世界也都被假訊息入侵時,會發生什麼事呢?

CCC 追漫台是一個臺灣原創漫畫平台

致力於推廣臺灣漫畫,並將臺灣漫畫融入日常生活。這個平台由本土新銳圖文創作者們打造,並結合國家典藏資料素材,以探索臺灣的豐富歷史、民俗、社會和生態等多元議題。

CCC 追漫台的使命是透過原創漫畫作品,傳達臺灣在地精神,讓讀者深入了解這個多元文化的島嶼。通過精心創作的漫畫,平台不僅提供了具娛樂性的閱讀體驗,還擴展了讀者對臺灣文化和歷史的認識。

文章中提及之漫畫皆可在追漫台上閱讀唷。

鳥苷三磷酸 (PanSci Promo)_96
184 篇文章 ・ 295 位粉絲
充滿能量的泛科學品牌合作帳號!相關行銷合作請洽:contact@pansci.asia

0

4
1

文字

分享

0
4
1
ChatGPT 還是 AI 之王嗎?Google Bard AI 與微軟 Bing AI 的終極測試
泛科學院_96
・2023/08/12 ・537字 ・閱讀時間約 1 分鐘

今天這集影片我們準備拿 ChatGPT、Google Bard AI 跟微軟的 Bing AI 來作一個大亂鬥比賽,我們準備了幾個不同的挑戰看誰最厲害。

因為 Bard 跟 Bing 都是免費提供,為了公平性,我主要會使用免費的 GPT 3.5 來比較,不過我同時會放上 GPT-4 開啟網路瀏覽功能的結果來給各位作參考。

評比的成果我會給一顆星到五顆星來呈現,主要分為四個類別:易用性、實用性、創造性以及回應速度。

看完今天的影片,你會想要使用Bing、Bard還是Chatgpt呢?歡迎在影片下方留下你的看法

如果這支影片對你有幫助的話,請幫我在影片下方點個喜歡,並且把這支影片分享給需要的朋友,最後別忘了訂閱泛科學院的頻道,我們下支影片再見囉。

更多、更完整的內容,歡迎上泛科學院的 youtube 頻道觀看完整影片,並開啟訂閱獲得更多有趣的資訊!

泛科學院_96
9 篇文章 ・ 10 位粉絲
我是泛科學院的AJ,有15年的軟體測試與電腦教育經驗,善於協助偏鄉NPO提升資訊能力,以Maker角度用發明解決身邊大小問題。與你分享人工智慧相關應用,每週更新兩集,讓我們帶你進入科技與創新的奇妙世界,為未來開啟無限可能!

1

3
0

文字

分享

1
3
0
誰在傳送假訊息?提升全民媒體素養,讓謠言止於智者!
研之有物│中央研究院_96
・2023/06/09 ・4698字 ・閱讀時間約 9 分鐘

本文轉載自中央研究院「研之有物」,為「中研院廣告」

  • 採訪撰文|莊崇暉、田偲妤
  • 責任編輯|田偲妤
  • 美術設計|蔡宛潔

不要再轉傳假訊息了!


「我家親戚群組又在 LINE 傳假訊息了!」這是常在年輕族群中聽到的抱怨,彷彿隨意散播謠言是長輩特有的行為,當你願意了解長輩的數位社交生活,將發現事實並非如此。中央研究院「研之有物」專訪院內民族學研究所李梅君助研究員,在研究 Cofacts 事實查核協作計畫時發現,臺灣民眾對公共議題的關注存在世代衝突,該衝突延伸至日常相處上,卻在事實查核的協作過程中看到正向溝通的曙光。究竟臺灣長輩發展出什麼樣的數位社交生活?如何應用第三方資訊與長輩溝通,甚至邀請長輩加入闢謠打怪行列?

圖/研之有物。

2018 年臺灣地方選舉和公民投票讓存在已久的世代衝突瞬間引爆,面對韓流現象、同性婚姻、性平教育等議題,厭世代年輕人(1990 年代左右出生)和戰後嬰兒潮世代長輩(約 1946-1964 年出生)因經濟與社會生長背景的不同,常發生意見分歧而爭吵不休的情形。

在臺灣最多人使用的 LINE 即時通訊軟體中,出現不實謠言滿天飛的亂象,年輕人紛紛將矛頭指向長輩,批評長輩不先查核資訊真假就亂發文。

中研院民族所李梅君助研究員在研究 Cofacts 事實查核協作計畫時,發覺臺灣世代衝突問題的嚴重性。年輕人認定長輩就是假訊息的傳遞者,但事實上,許多年輕人也常在無意間互傳不實謠言。

「大眾常急著為長輩貼標籤,卻從來不去了解他們怎麼使用數位工具。這樣並無助於解決問題,只會加深彼此的誤會。」研究過程中逐一浮現的問題為李梅君指引出一條研究道路,從事實查核協作行動出發,逐步深入長輩的數位社交生活,探索緩解世代衝突、提升全民媒體素養的可能途徑。

「早安圖」的背後:長輩獨特的數位社交

圖/研之有物(圖片來源/Unsplash

從了解長輩的數位社交生活做起,應有助於促進不同世代的相互理解,李梅君選擇由長輩們發展出的「早安圖」文化來切入研究。

科技與生活的緊密結合讓人手一機成為常態,再加上疫情造成的人群接觸減少,讓人們日漸習慣將社交重心從實體轉往線上。越來越多長輩靠 LINE 群組維繫親友感情、接收外界資訊,每天一早發布的「早安圖」經常是長輩社交生活的起頭。

然而,早安圖一直有被汙名化的傾向,溫馨圖片配上吉祥文字的簡單排版被貼上具有長輩風格的標籤,甚至還被戲稱為「長輩圖」。李梅君與長輩相處後發現,早安圖的存在對於長輩的社交生活具有深刻意義。

首先,早安圖是長輩證明自己跟的上年輕人腳步的重要象徵!身為晚近才接觸手機、電腦的「數位移民」,長輩常因不會操作數位工具、又害怕晚輩覺得自己笨拙,而感到焦躁不安。因此,當自己好不容易學會用手機拍照、修圖、發早安圖,對長輩來說是自信心的累積,代表自己沒被時代淘汰

此外,早安圖也是長輩與人互動的敲門磚。李梅君察覺,有些長輩在傳訊息時相當在意社交分寸,不像年輕人想到什麼就 LINE 一下朋友,反而擔心隨意發文會被當成不懂規矩的「老人」。因此,當與新朋友開啟話題時,他們會先禮貌性地試探,這時無害的早安圖就是最好的敲門磚,可以從對方回傳的字句、貼圖或已讀不回,判斷能否進一步交談。

如果我們願意深入體會早安圖對長輩的意義,你將發現早安圖是長輩表達「關懷」的重要媒介。

例如在不方便見面的疫情期間,許多長輩會互相分享充滿溫馨祝福的早安圖、早安短影片,當中包含一些身體保健資訊,即時表達對遠方親友的關心,也讓對方知道自己過的很好。

但是,伴隨著早安圖的問候,群組裡轉傳的文字與圖像影片卻可能含有具爭議性的農場內容,例如每天喝檸檬水可以防疫、常喝地瓜葉牛奶可以防癌等,讓以關懷為出發點的長輩成為散播謠言的代罪羔羊。為此,有越來越多公民團體開始號召民眾一起打擊假訊息,李梅君研究的 Cofacts 就是其中一個針對 LINE 假訊息亂象所發展的計畫。

聽到外面的聲音:「事實查核協作社群」打開群組封閉的大門

LINE 聊天室裡所有的對話都經過加密,就算檢舉了某用戶的言論,LINE 官方也難以遏阻資訊傳播。
圖/Unsplash

LINE 假訊息亂象一直是假新聞議題中非常難處理的一塊,因為 LINE 不像 Facebook、Twitter 或 Instagram 有審查下架機制,LINE 聊天室裡所有的對話都經過加密,就算檢舉了某用戶的言論,LINE 官方也難以遏阻資訊傳播。

李梅君提到:「雖然 LINE 群組相當封閉,在臺灣卻已具有極大的公共性。」很多群組都涉及公共議題的討論,並累積千百人以上的成員,一旦有人惡意散播不實謠言,在缺乏查核機制的情況下,後果可能不堪設想。

因此,自 2016 年起,公民科技社群 g0v 臺灣零時政府的成員推出「Cofacts 真的假的 – 訊息回報機器人與查證協作社群」,邀請民眾主動回報在 LINE 上發現的可疑訊息,再由來自各領域的編輯志工進行事實查核,撰寫有助判斷訊息真假的回應。之後只要有民眾發出相似問題,機器人便會從資料庫中找出相關回應供民眾參考。收到回應的民眾如有不同看法,也可以補充新的回應。

在 Cofacts 群組回報 18 歲公民可以選市長的可疑訊息,獲得豐富的澄清回應與參考資料,使用者也可補充新的回應或分享給朋友。
圖/截圖自 Cofacts 群組

你可能會好奇,當今的「人工智慧」(AI)已可查核假訊息,為何 Cofacts 還在仰賴編輯志工這樣的「工人智慧」?李梅君指出,目前的 AI 僅可以偵查大規模的操弄訊息來源,或者評估影像有無修圖造假。當前要用 AI 來判讀文字內容的真偽還相當困難,因為一則文字訊息通常真假資訊參雜,當中還包括個人意見或情緒用詞,很難明確判定是真是假。

因此,Cofacts 的編輯志工除了指出訊息錯誤之處,也會提醒該則訊息是否含有個人意見,有助民眾從封閉的 LINE 群組接收外界聲音,進而創造一處可以參與討論的公共空間,共同思考謠言是什麼、怎麼跟謠言對話。

和時間賽跑 艱辛的闢謠之路

不過該計畫也有艱辛之處,由於需仰賴大量人力進行事實查核,Cofacts 經常面臨闢謠速度趕不上謠言散播的問題。根據統計,Cofacts 的 LINE 目前有 42 萬名好友,過去 10 週每週傳來約 650 則新謠言;目前登記的編輯志工大約有 2,600 多人,但每週會固定回應訊息者只有 20 人上下,平均澄清一則謠言要花 20 至 30 分鐘。

李梅君分享實際參與事實查核的心得:「一開始你可能很熱血地上線回應訊息,但回應了一、二天後,可能會逐漸失去參與感,畢竟你只是一個沒支薪的志工,而且很多謠言看了又很令人痛苦,還要耐著性子花 30 分鐘回應。」

因此,為了維持志工夥伴的參與熱情,Cofacts 每個月都會辦一次聚會,藉由分組競賽活動,讓志工們培養共同打怪的向心力,也可相互交流查核經驗、結交志同道合的朋友。

李梅君分享實際參與 Cofacts 事實查核的心得,編輯志工透過每月聚會維繫共同打怪的向心力。
圖/研之有物

至於使用 Cofacts 釐清謠言的民眾又有何回饋呢?李梅君聽過一些年輕志工分享參與事實查核的原因,主要是想透過 Cofacts 的第三方資訊與長輩對話。雖然不確定長輩能否接受,卻可盡量避免家人之間發生正面衝突。

根據李梅君的觀察,在政治議題上,純粹處理謠言無法真正化解世代衝突,因為謠言只是表現形式之一,背後牽涉每個人不同的價值觀與政治立場,需仰賴更多對話空間的產生。

不過,在疫情期間,與防疫相關的健康資訊則明顯受到不同世代的共同關注,Cofacts 的使用人數因此大幅成長,其中增加最多的就是 50 歲以上的使用者。因為健康資訊較不受政治立場影響,再加上全民必須共同面對疫情威脅,世代衝突的問題自然較少。

公民團體的辛勤奔走 努力提升全民媒體素養才是真正的關鍵

ChatGPT 等生成式 AI 問世後,未來可能會出現更多人為操作的假圖文,或是誤信 AI 偏差回覆等狀況。面對上述危機,李梅君認為:

應對關鍵在於,大眾是否具備足夠的「媒體素養」與「思辨能力」去判讀網路訊息。

可惜這在我們過去的教育裡並不受重視,直到近幾年教育部才開始在 108 課綱下推動「媒體素養教育」,要求在不同年級與學科中融入媒體素養課程。例如資訊課會介紹社群媒體用演算法投放廣告的邏輯;理化課會教學生分辨並思考「偽科學」的成因;國文課則透過閱讀不同文本培養思辨能力。

然而,社會上多數人沒有上過相關課程,很多還是不太熟悉數位工具的長輩,幸好現在有 Cofacts 以及多家臺灣公民團體在做媒體素養教育。他們主動走進長輩的生活圈,教長輩怎麼使用手機、如何確認訊息真假,甚至鼓勵長輩善用發早安圖的習慣,成為謠言破除推手。

李梅君目前的研究正在觀察這些公民團體怎麼採取行動。例如 NGO 組織「假新聞清潔劑」會前進廟口、菜市場或老人服務中心等長輩聚集地,舉辦街頭宣講活動。在宣講過程中,一開始不會直接跟長輩講假訊息,因為假訊息在臺灣的脈絡裡很容易被導向敏感的政治議題,誤以為要聊網軍。

因此,宣講的切入點通常會先問長輩是不是常收到詐騙訊息?接著,志工會分享一些受騙案例,例如有人買了網路一頁式廣告的保養品,結果臉爛掉;或是吃了來路不明的保健食品,最後弄壞身體。藉由生活化、無政治立場、令人感同身受的案例,讓長輩意識到學會辨別訊息真假很重要!

另一個事實查核的組織「MyGoPen|麥擱騙」會製作一則則精美的謠言澄清圖文,吸引長輩像發早安圖一樣,將這些闢謠圖文大量轉發到各個群組。如此一來,長輩本身既可釐清謠言,還可幫助更多長輩遠離詐騙,更證明自己擁有不輸給年輕人的知識與能力。

「MyGoPen/麥擱騙」製作的謠言澄清圖文,網站上也有詳細的澄清說明與參考資料
圖/截圖自 MyGoPen 群組

「我覺得這是很令人感動的事情,因為這個題目很難,可是有很多人願意用不同的角度去介入,而且大部分都是志工。」李梅君有感而發的說。

臺灣長期被國際視為境外假訊息泛濫的國度,如今一個提升全民媒體素養的生態圈正在形成,因假訊息而延伸出的世代衝突問題有待長時間相互理解溝通,但公民社群的力量讓人們看見改變的契機。

李梅君有感而發的談到,過去很多國際友人將臺灣視為一處被假訊息攻擊很嚴重的地方,現在我們已發展出一個應對的生態圈,國際上越來越多人來跟臺灣學習!圖/研之有物

延伸閱讀

所有討論 1
研之有物│中央研究院_96
290 篇文章 ・ 3086 位粉絲
研之有物,取諧音自「言之有物」,出處為《周易·家人》:「君子以言有物而行有恆」。探索具體研究案例、直擊研究員生活,成為串聯您與中研院的橋梁,通往博大精深的知識世界。 網頁:研之有物 臉書:研之有物@Facebook