0

0
1

文字

分享

0
0
1

當你凝視深淵,深淵也呼喚著你:在高處為何會想往下跳?

莊 霈淳
・2017/06/25 ・3961字 ・閱讀時間約 8 分鐘 ・SR值 572 ・九年級

「本篇文章部分內容仍在討論,經調整之後會在重整推出。」2017.09.26 P.M.12:36

編譯/莊霈淳|成功大學心理系學生,PanX 實習生

source:Gregg Scott

人的知覺現象真的非常奇妙,有時候甚至根本自相矛盾。就如懼高症總好發於走在斷崖時,面對腳下隔不到幾步路的無望深淵,想到自己粉身碎骨就暈眩,只希望這個可怕的路程趕快結束。只是當我們終於爬上山麓頂端,心中充滿成就感,前一秒還怕得要死,此刻竟然閃過一個念頭:

「好想跳下去啊,不知道會是什麼感覺呢?」

別偷笑,因為你八成也曾經這麼幻想過吧!這種「來自深淵的呼喚」原自於法文 L’Appel du Vide。關於平衡、恐懼和認知功能的科學研究指出,「深淵的聲音」既是真實又有影響的;研究指出,我們對高度的感知並不全然如你所想的那麼單純、只是懼高而已。

這樣的焦慮哪裡來?其實是來自於知覺的適應

研究極端恐懼症反應的理論包含對於看到高處、蛇、或血的恐慌、情緒問題、負面思考、焦慮狀態、過去的創傷。以突破性的懼高症研究著名的心理學家卡洛斯·柯爾荷(Carlos Coelho)教授對於恐懼症的解釋是:我們害怕是因為焦慮,或是我們沒有對應機制去處理

-----廣告,請繼續往下閱讀-----

身在高處的情況下,人的心理活動不只是會感到焦慮而已,還結合了知覺、身體動力學和我們的精神狀態。猶他大學認知神經科學中心(Cognition and Neural Science at the University of Utah)的珍妮·史蒂芬努西(Jeanine Stefanucci)教授研究情緒、年齡、物理狀況的改變會如何影響我們對空間,特別是垂直空間的感知。

她的研究駁斥了我們常見「眼見為憑」的觀念:恐懼可以解釋為什麼人類對於垂直的感知敏銳程度不如水平方向。想像一下,我們站在欄杆附近的陽台高處,然後開始後退直到欄杆離你遠去,試著去評估所在位置的垂直和水平距離是否相同;你會發現這其實很容易判斷錯誤。

在研究中受試者會高估垂直方向的距離,平均比實際高度多了三分之一到一倍之多(也高太多了吧囧),但人們對於判斷水平方向的距離基本上沒有問題。由於垂直方向的過度感知偏見,對某些人來說高處似乎更加令人害怕了。而越懼高的人越會認為垂直方向的高度比起真實來得高,如此他們的恐懼感疊加,形成一種回饋機制迴路。史蒂芬努西教授說:「許多人問我們為什麼高估高度是件好事,我說因為這是適應的現象。」

圖/Pixabay

而柯爾荷的假設則是,高處形成的峭壁也會讓我們的產生類似暈車的感受,也叫做動暈症(motion sickness)。因為視覺系統和與平衡感相關的前庭系統之間的感知有所牴觸。比方說暈船的時候,當我們的身體隨著船搖晃時,雖然前庭系統知道我們在移動,但是我們坐船當下看起來是靜止不動的,這樣的牴觸感知造成了暈眩噁心的狀態;所以當我們眼睛閉上時可以降低不適感。

-----廣告,請繼續往下閱讀-----

對倚賴視覺移動的人來說,在移動時保持平衡更困難,這讓他們在失去深度判斷視力的時候更加怕高;雖然有些人可能是因為天生比較不擅長姿勢控制的影響。柯爾荷教授在他的實驗室裡使用阮柏氏測試(Romberg test)測量姿勢控制,這需要肌肉骨骼的力量和敏捷性。這個測驗有點像測酒駕那樣,請你走一直線,不過更困難的實驗室版本是這樣的:赤腳把腳踮起來,左腳在右腳前方,雙手放在胸前,閉上眼睛,維持這個姿勢兩分鐘。聽起來很容易吧?但其實許多人只能維持幾秒鐘。 柯爾荷實驗室測出的平均數據約為 40 秒。有幾個特別厲害,能維持兩分鐘的幾個受試者,是最不怕高的。

倚賴視覺移動的人來說,在移動時保持平衡更困難,這讓他們在失去深度判斷視力的時候更加怕高。圖/flickr

這些影響所呈現的種種困難:錯誤的視覺感知、身體控制不良、前庭信號衰弱、過度估算高度等等症狀的綜合,讓懼高症成為世界上最常見的恐慌症之一,平均 20 人中的就有 1 人如此。但不像對蛇、蜘蛛的恐懼,懼高症卻會讓我們產生一種怪異的反直覺效果:屈服於恐懼的根源,以及想跳下去的衝動。

想跳下去不代表真的想死

我們對高度的恐懼比我們想像中更加複雜。聖母大學(University of Notre Dame)臨床心理學哈密斯(Jennifer Hames)教授專門進行自殺行為的研究,她把我們往下跳的衝動命名為「高處現象」(High Place Phenomenon)。

在她們研究團隊於 2012 年的論文中,431 位受試者當中,有一半沒想過自殺,不過他們確實曾經有過從高處電梯跳下的念頭;而想過自殺的受試者中,想往下跳的人則是佔百分之 75。哈密絲教授給出的理論是,這樣的衝動也許來自於身體防衛機制發送給意識大腦的訊號誤解。我們的恐懼迴路(fear circuitry)包含杏仁核和其他快速潛意識的腦區,可能會向前額葉皮層發出警報以進行判斷。你的意識處理比恐懼迴路的速度運行來得慢,它辨識得出報警訊號,但可能不知道為什麼發送。

-----廣告,請繼續往下閱讀-----
「高處現象」往下跳的衝動。圖/pxhere

簡單地說,當一個人站在高處時,是正在面臨會掉下去的潛在危險的。此時在他腦中的恐懼迴路會發送像是:「後退!你可能會掉下去!」之類的快速訊號。這種訊號是為了保護我們擺脫危險的先天生理機制,好讓人們可以快速遠離危險源。直到心情平復,且不處在危險的情況時,我們較慢的感知系統才會啟動,去理解剛才發生的事,接著我們可能會將這種訊號(「太靠近了,退後!」)引導到跟死亡的念頭有關,導致誤解。所以你可能事後會這樣想:「為什麼我要後退?我又不可能掉下去,而且那邊也有欄杆啊,我覺得想跳下去看看。」

另外,那些不考慮自殺的人事實上也會經歷更多的焦慮,包括更關注自己的身體反應。 這些感覺包括出汗、心悸、眩暈和搖搖欲墜的膝蓋,這些都是對高處的常見反應。那些從來沒有想過自殺的受試者,對高處現象焦慮的經驗反映了焦慮敏感度較高,對一般的感覺線索更為敏感,因此更可能將安全訊號誤導為「跳躍的衝動」。

恐懼迴路會發送像是:「後退!你可能會掉下去!」之類的快速訊號。圖/Flickr

當然也有一種可能是原本就愛好高處。而這樣的興奮狀態跟那種「我快要死了」之類的觸發恐慌情緒的區別是什麼呢? 柯爾荷教授說:「這些現象的解釋很主觀,特別是前庭系統的訊號。」在知覺的詮釋性來說,前庭系統比起視力來說,更加取決於你個人的主觀解釋,因為它在意識之外運作。那些最有可能感受到跳下去衝動的人也往往更加擔心其他生活問題,包括害怕自己變成瘋子。

不過,這種焦慮與哈密斯教授研究中的曾經有過自殺念頭的受試者感受的跳躍衝動無關,他們的興奮慾望是反映出實際想死的願望或只是一個曲解的安全信號還不清楚,這是值得進一步研究的方向。

-----廣告,請繼續往下閱讀-----

醒醒吧!其實你沒有危險了

康乃爾大學(Cornell University)認知神經科學家亞當·安德森(Adam Anderson)提供了另一種跳躍衝動的理論,他使用腦成像為行為和情緒成像。他認為「高處現象」源自人類面臨巨大風險的冒險傾向。 他說:「當自身情況不好時,人們傾向不去冒險。」

在高處的情況下,跳躍的舉動就像孤注一擲的賭注。安德森教授說:「對於自己在高處的躁動,我感覺地面有種拉力,就像那裏很安全一樣;當然跳下去會死,但我們內在偏見包括時間折價(temporal discounting,指潛在報酬讓人感受到的價值會隨時間而減少)和負增強(negative reinforcement,在過程中藉由減少或取消增強物以增強某種預期行為),告訴我們避免現在損失的發生,比未來收益更有價值。」安德森解釋。

另外,由德國奧斯納布魯克大學(Osnabrück University)的心理學家和馬克斯·普朗克生物控制論研究所(Max Planck Institute for Biological Cybernetics)共同執行的存在神經科學(Existential Neuroscience)大腦成像研究中,觀察人們對死亡可能性的間接和延遲處理。17 名男性大學生的功能性磁振造影(fMRI)掃描中,他們發現與預期死亡觸發的腦區跟預期焦慮的腦區有相關,而不是與實際上經歷焦慮的腦區相關。換句話說,我們的大腦在情感上擁有死亡的想法。

預期死亡觸發的腦區跟預期焦慮的腦區有相關。圖/flickr

這些理論相同之處在於他們對於活下去的意志。高處現象是非常多人的經歷;事實上,這種現象可能是一種以反直覺的角度去反向肯定一個人的求生意志,就如美國社會心理學家蘇利文(Harry Stack Sullivan)於1953年所說:「對自殺幻想是一種非直覺的目標,研究了危險、個人主觀對概率的認知。個體沒有意識到幻想自殺是在防止這種自我毀滅的行為。」所以說,深淵或高度本身在某種程度上對我們有吸引力,可以見得人的天性就是喜歡冒險又害怕危險吧。

-----廣告,請繼續往下閱讀-----
深淵或高度本身在某種程度上對我們有吸引力,可以見得人的天性就是喜歡冒險又害怕危險吧!圖/Army.mil
  • y編按:應該推薦《空之境界》看看這篇,多想三秒鐘啊Q
《空之境界–俯瞰風景》官方宣傳圖。

參考資料:

文章難易度
莊 霈淳
3 篇文章 ・ 0 位粉絲
PanX 實習編輯。 左手文、右手理,舉頭三尺想社會。不擅長二元對立,解決問題需要理性與感性並用。

0

3
3

文字

分享

0
3
3
圖形處理單元與人工智慧
賴昭正_96
・2024/06/24 ・6944字 ・閱讀時間約 14 分鐘

-----廣告,請繼續往下閱讀-----

  • 作者/賴昭正|前清大化學系教授、系主任、所長;合創科學月刊

我擔心人工智慧可能會完全取代人類。如果人們能設計電腦病毒,那麼就會有人設計出能夠自我改進和複製的人工智慧。 這將是一種超越人類的新生命形式。

——史蒂芬.霍金(Stephen Hawking) 英國理論物理學家

大約在八十年前,當第一台數位計算機出現時,一些電腦科學家便一直致力於讓機器具有像人類一樣的智慧;但七十年後,還是沒有機器能夠可靠地提供人類程度的語言或影像辨識功能。誰又想到「人工智慧」(Artificial Intelligent,簡稱 AI)的能力最近十年突然起飛,在許多(所有?)領域的測試中擊敗了人類,正在改變各個領域——包括假新聞的製造與散佈——的生態。

圖形處理單元(graphic process unit,簡稱 GPU)是這場「人工智慧」革命中的最大助手。它的興起使得九年前還是個小公司的 Nvidia(英偉達)股票從每股不到 $5,上升到今天(5 月 24 日)每股超過 $1000(註一)的全世界第三大公司,其創辦人(之一)兼首席執行官、出生於台南的黃仁勳(Jenson Huang)也一躍成為全世界排名 20 內的大富豪、台灣家喻戶曉的名人!可是多少人了解圖形處理單元是什麼嗎?到底是時勢造英雄,還是英雄造時勢?

黃仁勳出席2016年台北國際電腦展
Nvidia 的崛起究竟是時勢造英雄,還是英雄造時勢?圖/wikimedia

在回答這問題之前,筆者得先聲明筆者不是學電腦的,因此在這裡所能談的只是與電腦設計細節無關的基本原理。筆者認為將原理轉成實用工具是專家的事,不是我們外行人需要了解的;但作為一位現在的知識分子或公民,了解基本原理則是必備的條件:例如了解「能量不滅定律」就可以不用仔細分析,即可判斷永動機是騙人的;又如現在可攜帶型冷氣機充斥市面上,它們不用往室外排廢熱氣,就可以提供屋內冷氣,讀者買嗎?

CPU 與 GPU

不管是大型電腦或個人電腦都需具有「中央處理單元」(central process unit,簡稱 CPU)。CPU 是電腦的「腦」,其電子電路負責處理所有軟體正確運作所需的所有任務,如算術、邏輯、控制、輸入和輸出操作等等。雖然早期的設計即可以讓一個指令同時做兩、三件不同的工作;但為了簡單化,我們在這裡所談的工作將只是執行算術和邏輯運算的工作(arithmetic and logic unit,簡稱 ALU),如將兩個數加在一起。在這一簡化的定義下,CPU 在任何一個時刻均只能執行一件工作而已。

-----廣告,請繼續往下閱讀-----

在個人電腦剛出現只能用於一般事物的處理時,CPU 均能非常勝任地完成任務。但電腦圖形和動畫的出現帶來了第一批運算密集型工作負載後,CPU 開始顯示心有餘而力不足:例如電玩動畫需要應用程式處理數以萬計的像素(pixel),每個像素都有自己的顏色、光強度、和運動等, 使得 CPU 根本沒辦法在短時間內完成這些工作。於是出現了主機板上之「顯示插卡」來支援補助 CPU。

1999 年,英偉達將其一「具有集成變換、照明、三角形設定/裁剪、和透過應用程式從模型產生二維或三維影像的單晶片處理器」(註二)定位為「世界上第一款 GPU」,「GPU」這一名詞於焉誕生。不像 CPU,GPU 可以在同一個時刻執行許多算術和邏輯運算的工作,快速地完成圖形和動畫的變化。

依序計算和平行計算

一部電腦 CPU 如何計算 7×5+6/3 呢?因每一時刻只能做一件事,所以其步驟為:

  • 計算 7×5;
  • 計算 6/3;
  • 將結果相加。

總共需要 3 個運算時間。但如果我們有兩個 CPU 呢?很多工作便可以同時(平行)進行:

-----廣告,請繼續往下閱讀-----
  • 同時計算 7×5 及 6/3;
  • 將結果相加。

只需要 2 個運算時間,比單獨的 CPU 減少了一個。這看起來好像沒節省多少時間,但如果我們有 16 對 a×b 要相加呢?單獨的 CPU 需要 31 個運算的時間(16 個 × 的運算時間及 15 個 + 的運算時間),而有 16 個小 CPU 的 GPU 則只需要 5 個運算的時間(1 個 × 的運算時間及 4 個 + 的運算時間)!

現在就讓我們來看看為什麼稱 GPU 為「圖形」處理單元。圖一左圖《我愛科學》一書擺斜了,如何將它擺正成右圖呢? 一句話:「將整個圖逆時針方向旋轉 θ 即可」。但因為左圖是由上百萬個像素點(座標 x, y)組成的,所以這句簡單的話可讓 CPU 忙得不亦樂乎了:每一點的座標都必須做如下的轉換

x’ = x cosθ + y sinθ

y’ = -x sinθ+ y cosθ

-----廣告,請繼續往下閱讀-----

即每一點均需要做四個 × 及兩個 + 的運算!如果每一運算需要 10-6 秒,那麼讓《我愛科學》一書做個簡單的角度旋轉,便需要 6 秒,這豈是電動玩具畫面變化所能接受的?

圖形處理的例子

人類的許多發明都是基於需要的關係,因此電腦硬件設計家便開始思考:這些點轉換都是獨立的,為什麼我們不讓它們同時進行(平行運算,parallel processing)呢?於是專門用來處理「圖形」的處理單元出現了——就是我們現在所知的 GPU。如果一個 GPU 可以同時處理 106 運算,那上圖的轉換只需 10-6 秒鐘!

GPU 的興起

GPU 可分成兩種:

  • 整合式圖形「卡」(integrated graphics)是內建於 CPU 中的 GPU,所以不是插卡,它與 CPU 共享系統記憶體,沒有單獨的記憶體組來儲存圖形/視訊,主要用於大部分的個人電腦及筆記型電腦上;早期英特爾(Intel)因為不讓插卡 GPU 侵蝕主機的地盤,在這方面的研發佔領先的地位,約佔 68% 的市場。
  • 獨立顯示卡(discrete graphics)有不與 CPU 共享的自己專用內存;由於與處理器晶片分離,它會消耗更多電量並產生大量熱量;然而,也正是因為有自己的記憶體來源和電源,它可以比整合式顯示卡提供更高的效能。

2007 年,英偉達發布了可以在獨立 GPU 上進行平行處理的軟體層後,科學家發現獨立 GPU 不但能夠快速處理圖形變化,在需要大量計算才能實現特定結果的任務上也非常有效,因此開啟了為計算密集型的實用題目編寫 GPU 程式的領域。如今獨立 GPU 的應用範圍已遠遠超出當初圖形處理,不但擴大到醫學影像和地震成像等之複雜圖像和影片編輯及視覺化,也應用於駕駛、導航、天氣預報、大資料庫分析、機器學習、人工智慧、加密貨幣挖礦、及分子動力學模擬(註三)等其它領域。獨立 GPU 已成為人工智慧生態系統中不可或缺的一部分,正在改變我們的生活方式及許多行業的遊戲規則。英特爾在這方面發展較遲,遠遠落在英偉達(80%)及超微半導體公司(Advance Micro Devices Inc.,19%,註四)之後,大約只有 1% 的市場。

-----廣告,請繼續往下閱讀-----
典型的CPU與GPU架構

事實上現在的中央處理單元也不再是真正的「單元」,而是如圖二可含有多個可以同時處理運算的核心(core)單元。GPU 犧牲大量快取和控制單元以獲得更多的處理核心,因此其核心功能不如 CPU 核心強大,但它們能同時高速執行大量相同的指令,在平行運算中發揮強大作用。現在電腦通常具有 2 到 64 個核心;GPU 則具有上千、甚至上萬的核心。

結論

我們一看到《我愛科學》這本書,不需要一點一點地從左上到右下慢慢掃描,即可瞬間知道它上面有書名、出版社等,也知道它擺斜了。這種「平行運作」的能力不僅限於視覺,它也延伸到其它感官和認知功能。例如筆者在清華大學授課時常犯的一個毛病是:嘴巴在講,腦筋思考已經不知往前跑了多少公里,常常為了追趕而越講越快,將不少學生拋到腦後!這不表示筆者聰明,因為研究人員發現我們的大腦具有同時處理和解釋大量感官輸入的能力。

人工智慧是一種讓電腦或機器能夠模擬人類智慧和解決問題能力的科技,因此必須如人腦一樣能同時並行地處理許多資料。學過矩陣(matrix)的讀者應該知道,如果用矩陣和向量(vector)表達,上面所談到之座標轉換將是非常簡潔的(註五)。而矩陣和向量計算正是機器學習(machine learning)演算法的基礎!也正是獨立圖形處理單元最強大的功能所在!因此我們可以了解為什麼 GPU 會成為人工智慧開發的基石:它們的架構就是充分利用並行處理,來快速執行多個操作,進行訓練電腦或機器以人腦之思考與學習的方式處理資料——稱為「深度學習」(deep learning)。

黃仁勳在 5 月 22 日的發布業績新聞上謂:「下一次工業革命已經開始了:企業界和各國正與英偉達合作,將價值數萬億美元的傳統資料中心轉變為加速運算及新型資料中心——人工智慧工廠——以生產新商品『人工智慧』。人工智慧將為每個產業帶來顯著的生產力提升,幫助企業降低成本和提高能源效率,同時擴大收入機會。」

附錄

人工智慧的實用例子:下面一段是微軟的「copilot」代書、谷歌的「translate」代譯之「one paragraph summary of GPU and AI」。讀完後,讀者是不是認為筆者該退休了?

-----廣告,請繼續往下閱讀-----

GPU(圖形處理單元)和 AI(人工智慧)之間的協同作用徹底改變了高效能運算領域。GPU 具有平行處理能力,特別適合人工智慧和機器學習所需的複雜資料密集運算。這導致了影像和視訊處理等領域的重大進步,使自動駕駛和臉部辨識等技術變得更加高效和可靠。NVIDIA 開發的平行運算平台 CUDA 進一步提高了 GPU 的效率,使開發人員能夠透過將人工智慧問題分解為更小的、可管理的、可同時處理的任務來解決這些問題。這不僅加快了人工智慧研究的步伐,而且使其更具成本效益,因為 GPU 可以在很短的時間內執行與多個 CPU 相同的任務。隨著人工智慧的不斷發展,GPU 的角色可能會變得更加不可或缺,推動各產業的創新和新的可能性。大腦透過神經元網路實現這一目標,這些神經元網路可以獨立但有凝聚力地工作,使我們能夠執行複雜的任務,例如駕駛、導航、觀察交通信號、聽音樂並同時規劃我們的路線。此外,研究表明,與非人類動物相比,人類大腦具有更多平行通路,這表明我們的神經處理具有更高的複雜性。這個複雜的系統證明了我們認知功能的卓越適應性和效率。我們可以一邊和朋友聊天一邊走在街上,一邊聽音樂一邊做飯,或一邊聽講座一邊做筆記。人工智慧是模擬人類腦神經網路的科技,因此必須能同時並行地來處理許多資料。研究人員發現了人腦通訊網路具有一個在獼猴或小鼠中未觀察獨特特徵:透過多個並行路徑傳輸訊息,因此具有令人難以置信的多任務處理能力。

註解

(註一)當讀者看到此篇文章時,其股票已一股換十股,現在每一股約在 $100 左右。

(註二)組裝或升級過個人電腦的讀者或許還記得「英偉達精視 256」(GeForce 256)插卡吧?

(註三)筆者於 1984 年離開清華大學到 IBM 時,就是參加了被認為全世界使用電腦時間最多的量子化學家、IBM「院士(fellow)」Enrico Clementi 的團隊:因為當時英偉達還未有可以在 GPU 上進行平行處理的軟體層,我們只能自己寫軟體將 8 台中型電腦(非 IBM 品牌!)與一大型電腦連接來做平行運算,進行分子動力學模擬等的科學研究。如果晚生 30 年或許就不會那麼辛苦了?

-----廣告,請繼續往下閱讀-----

(註四)補助個人電腦用的 GPU 品牌到 2000 年時只剩下兩大主導廠商:英偉達及 ATI(Array Technology Inc.)。後者是出生於香港之四位中國人於 1985 年在加拿大安大略省成立,2006 年被超微半導體公司收購,品牌於 2010 年被淘汰。超微半導體公司於 2014 年 10 月提升台南出生之蘇姿豐(Lisa Tzwu-Fang Su)博士為執行長後,股票從每股 $4 左右,上升到今天每股超過 $160,其市值已經是英特爾的兩倍,完全擺脫了在後者陰影下求生存的小眾玩家角色,正在挑戰英偉達的 GPU 市場。順便一題:超微半導體公司現任總裁(兼 AI 策略負責人)為出生於台北的彭明博(Victor Peng);與黃仁勳及蘇姿豐一樣,也是小時候就隨父母親移居到美國。

(註五)

延伸閱讀

  • 熱力學與能源利用」,《科學月刊》,1982 年 3 月號;收集於《我愛科學》(華騰文化有限公司,2017 年 12 月出版),轉載於「嘉義市政府全球資訊網」。
  • 網路安全技術與比特幣」,《科學月刊》,2020 年 11 月號;轉載於「善科教育基金會」的《科技大補帖》專欄。
文章難易度

討論功能關閉中。

賴昭正_96
43 篇文章 ・ 56 位粉絲
成功大學化學工程系學士,芝加哥大學化學物理博士。在芝大時與一群留學生合創「科學月刊」。一直想回國貢獻所學,因此畢業後不久即回清大化學系任教。自認平易近人,但教學嚴謹,因此穫有「賴大刀」之惡名!於1982年時當選爲 清大化學系新一代的年青首任系主任兼所長;但壯志難酬,兩年後即辭職到美留浪。晚期曾回台蓋工廠及創業,均應「水土不服」而鎩羽而歸。正式退休後,除了開始又爲科學月刊寫文章外,全職帶小孫女(半歲起);現已成七歲之小孫女的BFF(2015)。首先接觸到泛科學是因爲科學月刊將我的一篇文章「愛因斯坦的最大的錯誤一宇宙論常數」推薦到泛科學重登。

2

0
1

文字

分享

2
0
1
皮質醇能阻斷恐懼
陸子鈞
・2011/03/30 ・787字 ・閱讀時間約 1 分鐘 ・SR值 572 ・九年級

有懼高症的人常常做出誇張的舉動,比方為了避免坐飛機,而選擇長途巴士,或避免駕駛經過很高的橋,而花費好幾個小時繞路。新的研究發現,人類的皮質醇(cortisol)或許有助於克服懼高症的行為療程。

目前標準的行為療程,包括將求診者在安全環境中,藉由視覺虛擬實境,模擬害怕的因子,像是高度、蛇或者其他恐怖的事物。療程中,當然沒有壞事發生,而求診者就會漸漸以安全的印象,取代過去的恐懼。

然而,這樣的療程需要重複許多次,而且過程中可能會感到不舒服,所以有時求診者會中途放棄。一些科學家已經開始尋找藥物輔助,希望能加速標準的行為療程。其中一種能幫助新記憶生成的物質,環絲胺酸(D-cycloserine),已經於恐懼症的臨床治療中測試。此外,在動物及人類的研究中,壓力荷爾蒙除了能加速產生「安全印象」,還能抑制害怕的記憶。

瑞典的神經生物學家Dominique de Quervain領導的研究團隊,在40名有懼高症的受測者,進行療程前,給予皮質醇藥丸,或安慰劑。療程中,受測者會在虛擬實境中,「搭乘」很高的電梯,或者之類的情境。「這真的很可怕,如果你怕高的話。我去體驗過;我只有一點怕高,而他也能讓我害怕。」de Quervain說。

療程前及開始一個月後,受測者都必須填寫一份問卷;問卷將恐懼程度分為120個等級。結果有服用皮質醇的受測者,害怕等級從58降到24;而服用安慰劑的對照組,則平均只從59降到35。除了問卷,若療程一個月後,讓受測者再進入虛擬實境,並記錄其電生理反應,和對照組相比,只有五分之一的受測者會有激動的反應。

-----廣告,請繼續往下閱讀-----

de Quervain認為,理論上,這項技術也能應用在其他恐懼症上,像是社交恐懼、強迫症或者創傷症候群。但因為專一的恐懼症(對高、蜘蛛…等感到恐懼)較容易建立療程,未來對於其他恐懼的治療,仍需要更多的研究。

資料來源:ScienceNow: Damping Down Fear With Cortisol [28 March 2011]

所有討論 2
陸子鈞
294 篇文章 ・ 4 位粉絲
Z編|台灣大學昆蟲所畢業,興趣廣泛,自認和貓一樣兼具宅氣和無窮的好奇心。喜歡在早上喝咖啡配RSS,克制不了跟別人分享生物故事的衝動,就連吃飯也會忍不住將桌上的食物作生物分類。