Loading [MathJax]/extensions/tex2jax.js

0

0
0

文字

分享

0
0
0

亞里斯多德的單人版維基百科:科學何須計算?--《科學大歷史》

azothbooks_96
・2017/08/04 ・4382字 ・閱讀時間約 9 分鐘 ・SR值 554 ・八年級

-----廣告,請繼續往下閱讀-----

  • 【科科愛讀書】人類花了數百萬年學習和思考,才從那個連「科學」怎麼寫都還沒一撇的古早時代,到今天能夠運用科技超越肉身的限制,探索小粒子的無窮和大宇宙的廣袤。但是人類的璀璨成就絕非是一蹴可幾,而是建立在無數先人的跌跌撞撞之上,這過程其中也不乏許多學校沒教、卻相當有趣的故事。就讓《科學大歷史》帶你坐上時光機重回科學史萌芽的年代,來一趟精彩的發現之旅吧!
亞里斯多德像。圖/WikimediaCommons

亞里斯多德的研究方法,和後來的科學還有一個重要的衝突:他是做定性研究(qualitative),而不是做定量研究(quantitative)。如今的物理學,即使是簡單的高中物理,都是計量的科學。

修基礎物理學的學生會學到,時速六十英里的汽車每秒移動八十八英尺;蘋果每掉落一秒鐘,加速度是每平方秒三十二英尺;他們會以數學計算你一屁股坐進椅子時,椅子對你的脊椎所產生的瞬間反作用力可能大於一千磅。亞里斯多德的物理學完全不是那樣,而且他還大聲抨擊有些哲學家試圖把哲學「變成數學」。

圖/cea +@Flickr

比起計算,更重視目的

當然,在亞里斯多德那個年代,想把自然哲學轉變成計量學術,會因為古希臘的知識有限而受到阻礙。亞里斯多德沒有碼錶,沒有秒針,他甚至沒想過用精確的時間間隔來思考事件。此外,那個年代的代數和算術,跟泰勒斯的年代相比,也沒有進步多少。那時連加號、減號、等號都還沒發明出來,也沒有數字系統或「時速幾英里」的概念。

不過,十三世紀以及後來的學者在計量物理學上的進步,也沒有用到多麼先進的工具和數學,可見工具和數學不是方程式、衡量、數字預測等科學的唯一阻礙。更重要的因素在於,亞里斯多德跟其他人一樣,對計量描述不感興趣。

-----廣告,請繼續往下閱讀-----

即便是在研究運動時,亞里斯多德的分析也只限於定性分析。例如,他對速度只有模糊的概念,比如「同樣的時間內,有些東西跑得比較遠」,這種說法讀起來好像幸運餅乾裡的籤文,但是在亞里斯多德那個年代,大家覺得那樣的描述已經夠精確了。既然他對速度只有定性分析,就更不可能知道我們在中學裡學到的「加速度」了。尤其古今差異那麼大,如果有人有時光機可以回到古代,把牛頓的物理學文件拿給亞里斯多德看,那對他來說也只是天書罷了。他不僅無法瞭解牛頓所謂的「力」或「加速度」是什麼意思,而且也沒有興趣。

亞里斯多德對速度只有模糊的概念,比如「同樣的時間內,有些東西跑得比較遠」,就像「在同樣的時間內,兔子就是比烏龜跑得比較遠」。圖/Pixabay

亞里斯多德進行深入的觀察時,真正讓他感興趣的是:運動和其他的改變似乎都會朝著某個目的發生。例如,他所瞭解的動作不是一種應該衡量的東西,而是一種現象,其目的是可以辨識的,比如馬拉動車子以便在路上行進,羊四處走動以尋找食物,老鼠奔跑以免遭到捕食,公兔與母兔交配以繁衍更多的兔子。

亞里斯多德認為宇宙是一個和諧運作又龐大的生態系統,各種目的隨處可見。例如,降雨是因為植物需要水分才會成長,植物成長才能供動物食用。葡萄籽長出葡萄藤,雞蛋孵出小雞,都是讓種子和雞蛋裡的潛力展現出來。打從遠古時代開始,人類就根據個人經驗來瞭解世界。所以,在古希臘時代,分析實體世界中各種事件的目的,遠比用畢達哥拉斯及其追隨者所發明的數學定律去解釋那些事件還要自然。

亞里斯多德所瞭解的動作,不是一種應該衡量的東西,而是一種現象,他認為宇宙是一個和諧運作又龐大的生態系統,各種目的隨處可見。圖/Pixabay

科學進展停滯兩千年

這裡我們再次看到,在科學中,你「問對問題」很重要。即使亞里斯多德接受畢達哥拉斯的概念,即使他相信自然是依循計量定律,但他依然不會注意到那個概念,因為他對定律的計量細節不感興趣。他比較在乎的問題是,為什麼物體會依循那些定律。什麼原因迫使琴弦或掉落的石頭以某種數字規律地運作?這才是讓亞里斯多德感興趣的問題。而這就是他的理念和現今的科學研究最大的差異-—他注意的是自然界裡的「目的」,現今的科學不是注意那些東西。

-----廣告,請繼續往下閱讀-----

亞里斯多德分析的特質—-尋找目的-—對後來的人類思維有極大的影響。這讓他深受古往今來許多基督教哲學家的喜愛,但是那也阻礙了科學進步長達兩千年,因為和指引現代研究的科學原則完全不符。兩顆撞球相碰時,牛頓率先提出的定律(那背後沒什麼宏大的目的)可用來判斷接下來會發生的狀況。

科學的興起,最初是源自於人類想要瞭解世界及尋求意義的根本慾望,所以當初亞里斯多德為了尋找目的而研究的動機, 如今依然引起許多人的共鳴。對想要瞭解天災或其他悲劇的人來說, 「事出並有因」的概念也許可以帶給他們一些慰藉。相較之下,科學家堅持宇宙不受任何「目的」的指引,可能會讓那些人覺得科學似乎很冷酷無情。

科學源自於人類想要瞭解世界及尋求意義的根本慾望。圖/Pixabay

不過,這還有另一種看法,也是我很常從父親那邊聽來的一種見解。每次談到「目的」時,我父親通常不會提起發生在他身上的事,而是提起他和我母親相識之前,我母親經歷過的某件事。那時她才十七歲, 納粹占領了她的家鄉。 其中一個納粹不知道是基於什麼原因,下令幾十個猶太人(包括我媽)排成整齊的隊伍,跪在雪地上。接著,那個人從每一排的排頭走到排尾,每走幾步就往其中一個俘虜的頭部開槍。如果這是上帝或自然的宏大計畫,我父親一點都不想跟那種上帝扯上關係。對我父親這樣的人來說,相信我們的人生無論有多悲慘或多成功,其實和恆星爆炸都是受制於同一套定律,而且這些事情無論是好是壞,最終都是一種恩賜、一種奇蹟,都是源自於那些支配世界的枯燥方程式。這樣想的話,對他們來說反而是一種解脫。

儘管亞里斯多德的理論主宰了自然界的相關思維、一直到牛頓那個年代,但是那段期間還是有許多的觀察家質疑他的理論。

-----廣告,請繼續往下閱讀-----

一顆砲彈的飛行,是因為空氣的推進?

以「物體不做自然運動下,唯有對它施加外力才會移動」這個概念為例,亞里斯多德自己也發現,這個說法讓人不禁想問:用力射箭、擲標槍,或是扔出拋射體之後,是什麼力量繼續推動它們。他的解釋是,由於自然「厭惡」真空的狀態,拋射體射出去以後,空氣粒子會衝到拋射體的後方,繼續推進那個拋射體。日本似乎把這個概念成功套用在把乘客塞進東京地鐵內。不過,連亞里斯多德本人對這個理論也沒有多大的熱情。該理論的缺陷到了十四世紀變得更加明顯,因為那時大砲大量地出現,空氣粒子在沉重的砲彈後面推著砲彈前進,這種說法似乎很荒謬。

同樣重要的是,發射大砲的士兵其實也不太在乎究竟是空氣粒子、還是無形的小精靈推著砲彈前進。他們真正想知道的是,砲彈會循著怎樣的軌跡飛行,尤其是那個軌跡最後是否會抵達敵人的頭上。這種理論和實務的脫節,顯現出亞里斯多德和後代科學家之間的實質鴻溝:對亞里斯多德來說,拋射體軌跡(不同瞬間的位置和速度)之類的議題根本無關緊要。但是如果有人想運用物理學定律來做預測,這些議題就很重要了。所以,後來取代亞里斯多德物理學的科學(亦即可以計算砲彈軌跡的科學)和流程的計量細節有關,它們會衡量力道、速度、加速度,而不管那些流程的目的或哲理。

十四世紀大砲大量地出現,使得空氣粒子在沉重的砲彈後面推著砲彈前進,這種說法似乎很荒謬。圖/wikipedia

亞里斯多德知道他的物理學並不完美。他寫道:

「我的是第一步,只是一小步,不過我也花了很多心思和勞力。這應該以第一步來看待,並寬容對待。諸位讀者或聽講者,如果你認為我在這個起步已經盡力而為了······就會肯定我所做的,並容我把它留給其他人去完成。」

這裡,亞里斯多德說出了他和後來許多物理學天才都有的一種感覺。我們認為牛頓、愛因斯坦等人無所不知,對其知識充滿了自信,甚至有些自大。但後面我們會看到,他們就像亞里斯多德一樣,對很多事情感到不解,而他們自己也都有自知之明。

-----廣告,請繼續往下閱讀-----

「研究亞里斯多德的學說,就是研究自然」

公元前三二二年,亞里斯多德過世,享年六十二歲,死因似乎是胃病。一年前,他以前的學生亞歷山大死後,那個親馬其頓的政府遭到推翻,他逃離了雅典。雖然亞里斯多德在柏拉圖的學苑裡待了二十年,他在雅典始終感覺像外人一樣。關於雅典,他寫道:「同樣的事情,對外地人和本地人來說並非一樣恰當,讓人無所適從。」不過,亞歷山大過世後,要不要繼續留下來變得很重要,因為任何和馬其頓有關的人都可能遭到攻擊,他很清楚蘇格拉底遭到政治處決已經有了先例,一杯毒芹汁就足以徹底反駁任何哲學論點。亞里斯多德始終是一個深謀遠慮的思想家,他想要逃離雅典,不想冒著犧牲成仁的風險。他為自己的決定提出了一個崇高的理由--避免雅典人再次犯下「反哲學」的罪過。不過,那個決定就像亞里斯多德的人生態度一樣,其實非常務實。

亞里斯多德過世以後,萊西姆學苑的學生以及評論其著作的人把他的思想代代相傳。中世紀初期,他的理論連同所有的相關知識逐漸沒落,但是在中世紀盛期又受到阿拉伯哲學家的重視,西方學者就是從阿拉伯哲學家那裡得知亞里斯多德的學說。他的思想經過一些修改後,最後變成羅馬天主教會的官方哲學。所以,接下來的十九個世紀,研究自然就是指研究亞里斯多德的學說。

希臘薩摩斯二世,計算太陽,月球和地球的相對尺寸。圖/wikimedia commons

我們已經看到人類如何發展出發問及充滿求知慾的大腦,以及發明那些用來解題的工具 (書寫、數學和定律的概念)。希臘人學習運用理性來分析宇宙以後,人類因此抵達「科學」這個輝煌新世界的岸邊。不過,那只是展開更大探險的起點。


 

 

本文摘自《科學大歷史:人類從走出叢林到探索宇宙, 從學會問「為什麼」到破解自然定律的心智大躍進》漫遊者文化出版。

-----廣告,請繼續往下閱讀-----
-----廣告,請繼續往下閱讀-----
文章難易度
azothbooks_96
55 篇文章 ・ 21 位粉絲
漫遊也許有原因,卻沒有目的。 漫遊者的原因就是自由。文學、人文、藝術、商業、學習、生活雜學,以及問題解決的實用學,這些都是「漫遊者」的範疇,「漫遊者」希望在其中找到未來的閱讀形式,尋找新的面貌,為出版文化找尋新風景。

0

1
0

文字

分享

0
1
0
拆解邊緣AI熱潮:伺服器如何提供穩固的運算基石?
鳥苷三磷酸 (PanSci Promo)_96
・2025/05/21 ・5071字 ・閱讀時間約 10 分鐘

-----廣告,請繼續往下閱讀-----

本文與 研華科技 合作,泛科學企劃執行。

每次 NVIDIA 執行長黃仁勳公開發言,總能牽動整個 AI 產業的神經。然而,我們不妨設想一個更深層的問題——如今的 AI 幾乎都倚賴網路連線,那如果哪天「網路斷了」,會發生什麼事?

想像你正在自駕車打個盹,系統突然警示:「網路連線中斷」,車輛開始偏離路線,而前方竟是萬丈深谷。又或者家庭機器人被駭,開始暴走跳舞,甚至舉起刀具向你走來。

這會是黃仁勳期待的未來嗎?當然不是!也因為如此,「邊緣 AI」成為業界關注重點。不靠雲端,AI 就能在現場即時反應,不只更安全、低延遲,還能讓數據當場變現,不再淪為沉沒成本。

什麼是邊緣 AI ?

邊緣 AI,乍聽之下,好像是「孤單站在角落的人工智慧」,但事實上,它正是我們身邊最可靠、最即時的親密數位夥伴呀。

當前,像是企業、醫院、學校內部的伺服器,個人電腦,甚至手機等裝置,都可以成為「邊緣節點」。當數據在這些邊緣節點進行運算,稱為邊緣運算;而在邊緣節點上運行 AI ,就被稱為邊緣 AI。簡單來說,就是將原本集中在遠端資料中心的運算能力,「搬家」到更靠近數據源頭的地方。

-----廣告,請繼續往下閱讀-----

那麼,為什麼需要這樣做?資料放在雲端,集中管理不是更方便嗎?對,就是不好。

當數據在這些邊緣節點進行運算,稱為邊緣運算;而在邊緣節點上運行 AI ,就被稱為邊緣 AI。/ 圖片來源:MotionArray

第一個不好是物理限制:「延遲」。
即使光速已經非常快,數據從你家旁邊的路口傳到幾千公里外的雲端機房,再把分析結果傳回來,中間還要經過各種網路節點轉來轉去…這樣一來一回,就算只是幾十毫秒的延遲,對於需要「即刻反應」的 AI 應用,比如說工廠裡要精密控制的機械手臂、或者自駕車要判斷路況時,每一毫秒都攸關安全與精度,這點延遲都是無法接受的!這是物理距離與網路架構先天上的限制,無法繞過去。

第二個挑戰,是資訊科學跟工程上的考量:「頻寬」與「成本」。
你可以想像網路頻寬就像水管的粗細。隨著高解析影像與感測器數據不斷來回傳送,湧入的資料數據量就像超級大的水流,一下子就把水管塞爆!要避免流量爆炸,你就要一直擴充水管,也就是擴增頻寬,然而這樣的基礎建設成本是很驚人的。如果能在邊緣就先處理,把重要資訊「濃縮」過後再傳回雲端,是不是就能減輕頻寬負擔,也能節省大量費用呢?

第三個挑戰:系統「可靠性」與「韌性」。
如果所有運算都仰賴遠端的雲端時,一旦網路不穩、甚至斷線,那怎麼辦?很多關鍵應用,像是公共安全監控或是重要設備的預警系統,可不能這樣「看天吃飯」啊!邊緣處理讓系統更獨立,就算暫時斷線,本地的 AI 還是能繼續運作與即時反應,這在工程上是非常重要的考量。

所以你看,邊緣運算不是科學家們沒事找事做,它是順應數據特性和實際應用需求,一個非常合理的科學與工程上的最佳化選擇,是我們想要抓住即時數據價值,非走不可的一條路!

邊緣 AI 的實戰魅力:從工廠到倉儲,再到你的工作桌

知道要把 AI 算力搬到邊緣了,接下來的問題就是─邊緣 AI 究竟強在哪裡呢?它強就強在能夠做到「深度感知(Deep Perception)」!

-----廣告,請繼續往下閱讀-----

所謂深度感知,並非僅僅是對數據進行簡單的加加減減,而是透過如深度神經網路這類複雜的 AI 模型,從原始數據裡面,去「理解」出更高層次、更具意義的資訊。

研華科技為例,旗下已有多項邊緣 AI 的實戰應用。以工業瑕疵檢測為例,利用物件偵測模型,快速將工業產品中的瑕疵挑出來,而且由於 AI 模型可以使用同一套參數去檢測,因此品管上能達到一致性,減少人為疏漏。尤其在高產能工廠中,檢測速度必須快、狠、準。研華這套 AI 系統每分鐘最高可處理 8,000 件產品,替工廠節省大量人力,同時確保品質穩定。這樣的效能來自於一台僅有膠囊咖啡機大小的邊緣設備—IPC-240。

這樣的效能來自於一台僅有膠囊咖啡機大小的邊緣設備—IPC-240。/ 圖片提供:研華科技

此外,在智慧倉儲場域,研華與威剛合作,研華與威剛聯手合作,在 MIC-732AO 伺服器上搭載輝達的 Nova Orin 開發平台,打造倉儲系統的 AMR(Autonomous Mobile Robot) 自走車。這跟過去在倉儲系統中使用的自動導引車 AGV 技術不一樣,AMR 不需要事先規劃好路線,靠著感測器偵測,就能輕鬆避開障礙物,識別路線,並且將貨物載到指定地點存放。

當然,還有語言模型的應用。例如結合檢索增強生成 ( RAG ) 跟上下文學習 ( in-context learning ),除了可以做備忘錄跟排程規劃以外,還能將實務上碰到的問題記錄下來,等到之後碰到類似的問題時,就能詢問 AI 並得到解答。

你或許會問,那為什麼不直接使用 ChatGPT 就好了?其實,對許多企業來說,內部資料往往具有高度機密性與商業價值,有些場域甚至連手機都禁止員工帶入,自然無法將資料上傳雲端。對於重視資安,又希望運用 AI 提升效率的企業與工廠而言,自行部署大型語言模型(self-hosted LLM)才是理想選擇。而這樣的應用,並不需要龐大的設備。研華的 SKY-602E3 塔式 GPU 伺服器,體積僅如後背包大小,卻能輕鬆支援語言模型的運作,實現高效又安全的 AI 解決方案。

但問題也接著浮現:要在這麼小的設備上跑大型 AI 模型,會不會太吃資源?這正是目前 AI 領域最前沿、最火熱的研究方向之一:如何幫 AI 模型進行「科學瘦身」,又不減智慧。接下來,我們就來看看科學家是怎麼幫 AI 減重的。

-----廣告,請繼續往下閱讀-----

語言模型瘦身術之一:量化(Quantization)—用更精簡的數位方式來表示知識

當硬體資源有限,大模型卻越來越龐大,「幫模型減肥」就成了邊緣 AI 的重要課題。這其實跟圖片壓縮有點像:有些畫面細節我們肉眼根本看不出來,刪掉也不影響整體感覺,卻能大幅減少檔案大小。

模型量化的原理也是如此,只不過對象是模型裡面的參數。這些參數原先通常都是以「浮點數」表示,什麼是浮點數?其實就是你我都熟知的小數。舉例來說,圓周率是個無窮不循環小數,唸下去就會是3.141592653…但實際運算時,我們常常用 3.14 或甚至直接用 3,也能得到夠用的結果。降低模型參數中浮點數的精度就是這個意思! 

然而,量化並不是那麼容易的事情。而且實際上,降低精度多少還是會影響到模型表現的。因此在設計時,工程師會精密調整,確保效能在可接受範圍內,達成「瘦身不減智」的目標。

當硬體資源有限,大模型卻越來越龐大,「幫模型減肥」就成了邊緣 AI 的重要課題。/ 圖片來源:MotionArray

模型剪枝(Model Pruning)—基於重要性的結構精簡

建立一個 AI 模型,其實就是在搭建一整套類神經網路系統,並訓練類神經元中彼此關聯的參數。然而,在這麼多參數中,總會有一些參數明明佔了一個位置,卻對整體模型沒有貢獻。既然如此,不如果斷將這些「冗餘」移除。

這就像種植作物的時候,總會雜草叢生,但這些雜草並不是我們想要的作物,這時候我們就會動手清理雜草。在語言模型中也會有這樣的雜草存在,而動手去清理這些不需要的連結參數或神經元的技術,就稱為 AI 模型的模型剪枝(Model Pruning)。

-----廣告,請繼續往下閱讀-----

模型剪枝的效果,大概能把100變成70這樣的程度,說多也不是太多。雖然這樣的縮減對於提升效率已具幫助,但若我們要的是一個更小幾個數量級的模型,僅靠剪枝仍不足以應對。最後還是需要從源頭著手,採取更治本的方法:一開始就打造一個很小的模型,並讓它去學習大模型的知識。這項技術被稱為「知識蒸餾」,是目前 AI 模型壓縮領域中最具潛力的方法之一。

知識蒸餾(Knowledge Distillation)—讓小模型學習大師的「精髓」

想像一下,一位經驗豐富、見多識廣的老師傅,就是那個龐大而強悍的 AI 模型。現在,他要培養一位年輕學徒—小型 AI 模型。與其只是告訴小型模型正確答案,老師傅 (大模型) 會更直接傳授他做判斷時的「思考過程」跟「眉角」,例如「為什麼我會這樣想?」、「其他選項的可能性有多少?」。這樣一來,小小的學徒模型,用它有限的「腦容量」,也能學到老師傅的「智慧精髓」,表現就能大幅提升!這是一種很高級的訓練技巧,跟遷移學習有關。

舉個例子,當大型語言模型在收到「晚餐:鳳梨」這組輸入時,它下一個會接的詞語跟機率分別為「炒飯:50%,蝦球:30%,披薩:15%,汁:5%」。在知識蒸餾的過程中,它可以把這套機率表一起教給小語言模型,讓小語言模型不必透過自己訓練,也能輕鬆得到這個推理過程。如今,許多高效的小型語言模型正是透過這項技術訓練而成,讓我們得以在資源有限的邊緣設備上,也能部署愈來愈強大的小模型 AI。

但是!即使模型經過了這些科學方法的優化,變得比較「苗條」了,要真正在邊緣環境中處理如潮水般湧現的資料,並且高速、即時、穩定地運作,仍然需要一個夠強的「引擎」來驅動它們。也就是說,要把這些經過科學千錘百鍊、但依然需要大量計算的 AI 模型,真正放到邊緣的現場去發揮作用,就需要一個強大的「硬體平台」來承載。

-----廣告,請繼續往下閱讀-----

邊緣 AI 的強心臟:SKY-602E3 的三大關鍵

像研華的 SKY-602E3 塔式 GPU 伺服器,就是扮演「邊緣 AI 引擎」的關鍵角色!那麼,它到底厲害在哪?

一、核心算力
它最多可安裝 4 張雙寬度 GPU 顯示卡。為什麼 GPU 這麼重要?因為 GPU 的設計,天生就擅長做「平行計算」,這正好就是 AI 模型裡面那種海量數學運算最需要的!

你想想看,那麼多數據要同時處理,就像要請一大堆人同時算數學一樣,GPU 就是那個最有效率的工具人!而且,有多張 GPU,代表可以同時跑更多不同的 AI 任務,或者處理更大流量的數據。這是確保那些科學研究成果,在邊緣能真正「跑起來」、「跑得快」、而且「能同時做更多事」的物理基礎!

二、工程適應性——塔式設計。
邊緣環境通常不是那種恆溫恆濕的標準機房,有時是在工廠角落、辦公室一隅、或某個研究實驗室。這種塔式的機箱設計,體積相對緊湊,散熱空間也比較好(這對高功耗的 GPU 很重要!),部署起來比傳統機架式伺服器更有彈性。這就是把高性能計算,進行「工程化」,讓它能適應台灣多樣化的邊緣應用場景。

三、可靠性
SKY-602E3 用的是伺服器等級的主機板、ECC 糾錯記憶體、還有備援電源供應器等等。這些聽起來很硬的規格,背後代表的是嚴謹的工程可靠性設計。畢竟在邊緣現場,系統穩定壓倒一切!你總不希望 AI 分析跑到一半就掛掉吧?這些設計確保了部署在現場的 AI 系統,能夠長時間、穩定地運作,把實驗室裡的科學成果,可靠地轉化成實際的應用價值。

-----廣告,請繼續往下閱讀-----
研華的 SKY-602E3 塔式 GPU 伺服器,體積僅如後背包大小,卻能輕鬆支援語言模型的運作,實現高效又安全的 AI 解決方案。/ 圖片提供:研華科技

台灣製造 × 在地智慧:打造專屬的邊緣 AI 解決方案

研華科技攜手八維智能,能幫助企業或機構提供客製化的AI解決方案。他們的技術能力涵蓋了自然語言處理、電腦視覺、預測性大數據分析、全端軟體開發與部署,及AI軟硬體整合。

無論是大小型語言模型的微調、工業瑕疵檢測的模型訓練、大數據分析,還是其他 AI 相關的服務,都能交給研華與八維智能來協助完成。他們甚至提供 GPU 與伺服器的租借服務,讓企業在啟動 AI 專案前,大幅降低前期投入門檻,靈活又實用。

台灣有著獨特的產業結構,從精密製造、城市交通管理,到因應高齡化社會的智慧醫療與公共安全,都是邊緣 AI 的理想應用場域。更重要的是,這些情境中許多關鍵資訊都具有高度的「時效性」。像是產線上的一處異常、道路上的突發狀況、醫療設備的即刻警示,這些都需要分秒必爭的即時回應。

如果我們還需要將數據送上雲端分析、再等待回傳結果,往往已經錯失最佳反應時機。這也是為什麼邊緣 AI,不只是一項技術創新,更是一條把尖端 AI 科學落地、真正發揮產業生產力與社會價值的關鍵路徑。讓數據在生成的那一刻、在事件發生的現場,就能被有效的「理解」與「利用」,是將數據垃圾變成數據黃金的賢者之石!

👉 更多研華Edge AI解決方案
👉 立即申請Server租借

-----廣告,請繼續往下閱讀-----
-----廣告,請繼續往下閱讀-----
文章難易度

討論功能關閉中。

0

3
2

文字

分享

0
3
2
【2023 諾貝爾物理獎】什麼是「阿秒脈衝雷射」?能捕捉到電子運動的脈衝雷射?
PanSci_96
・2023/11/28 ・5966字 ・閱讀時間約 12 分鐘

-----廣告,請繼續往下閱讀-----

林俊傑《江南》:「相信愛一天,抵過永遠,在這一剎那凍結了時間」

這一剎那持續了多久?這出自佛經的時間單位有多個解讀,其中最短,可以對應的國際單位制是阿秒。 1 阿秒又有多快呢? 1 阿秒等於一百萬兆分之一秒,是已經短到不行的飛秒的千分之一。在這段時間,別說是談戀愛了,連世界上行動最快的光,也只能移動一顆原子直徑的距離。

在阿秒的時間尺度裡,連光都得停下腳步,過去我們認為捉摸不定的電子,也終於將在我們眼前現身。 2023 年的諾貝爾物理學獎,正是頒給了三位帶領人類進入阿秒領域,探索全新世界的科學家。而這項技術,還可能讓電腦的運算速度加快一萬倍!

就讓我們一起來進入阿秒的領域吧,領域展開!

什麼是阿秒脈衝雷射?

今年諾貝爾物理學獎的三位得主分別是 Pierre Agostini 、 Ferenc Krausz 、和 Anne L’Huillier ,表彰他們對阿秒脈衝雷射實驗技術的貢獻。

-----廣告,請繼續往下閱讀-----
圖/X

所謂的阿秒脈衝雷射,指的是持續時間僅有數十到數百阿秒的雷射。當我們能使用脈衝雷射來觀察目標,就好比使用快門時間極短的相機對目標拍照,能捕捉到瞬間的畫面。

2018 年的諾貝爾物理學獎,就頒給了極短脈衝雷射的研究。短短 5 年後,雷射領域再次得獎,但這次是更快的阿秒雷射,能捕捉到電子運動的超快脈衝雷射。

世界上沒有東西能真正的觸碰彼此?看見電子能帶來什麼突破?

為什麼看見電子的運動那麼重要呢?我們複習一下原子的基本構造,在原子核之外,帶有微小負電荷的電子,被帶正電的原子核束縛住。量子力學告訴我們電子沒有確切的位置,而是以特定的機率分布在原子核周圍的不同地方,也就是所謂的電子雲。

圖/YouTube

雖然電子的體積比原子核小很多,但電子雲的範圍,卻占了原子體積的絕大部分。在物理或化學反應中,真正和其他原子產生交互作用的,幾乎都是這些外面的電子。在電影《奧本海默》中,當男女主角手心貼著手心,奧本海默這時卻說:「世界上沒有東西能真正的觸碰彼此,因為我們觸摸到的物體,都只是其中原子的電子雲和我們手上的電子雲產生的斥力。」

-----廣告,請繼續往下閱讀-----
圖/screenrant

對了,這種話也只有奧本海默跟五條悟可以講,一般人請不要隨便亂牽別人的手。

除了和心儀的他牽手,不同的電子排列狀態也會直接影響物質的化學活性、材料的導電導熱等基本性質,各種化學和物理過程都和電子息息相關。從非常實際的層面來說,電子可以說是物質世界最重要的基本單位。所以不難想像,如果我們能看見電子,甚至獲得可以操縱個別電子排列與能量的技術,我們能真正成為材料的創世神,許多不可能都將化為可能,是相當重大的突破。

捕捉電子運動有多困難?

但要操縱電子可不是什麼簡單的事,不只是因為電子非常小,更重要的是他們動得非常快。具體來說,電子在原子周圍跳動的週期時間尺度大約是十的負十八次方秒,也就是一阿秒。一顆原子的大小約是十的負十次方公尺,速度等於距離除以週期,換算下來,電子雲差不多是以光速等級的速度在原子核周圍跳動。

圖/wikipedia

如果要捕捉到阿秒尺度的電子運動,就必須將實驗的時間解析度也提升到阿秒等級,否則就會像是用長曝光鏡頭拍攝亞運競速滑冰比賽一樣,只能拍到一團糊糊的影像,而沒辦法分出勝負。

-----廣告,請繼續往下閱讀-----

可是,在 1980 年代,脈衝雷射最快只能達到十的負十五次方左右,還只有飛秒等級。而且光靠當時的技術和材料優化,已經沒辦法再縮短脈衝時間了,因此這時候,就要從原理上重新打造一套方法了。

如何製造更快的脈衝?

首先,要製造更快的脈衝並不是用頻率更高的電磁波就好。你想,我們在拍照時,想要讓曝光時間更短,要改善的不是把室內光源從可見光改成頻率更高的紫外光,而是調快快門的開闔速度,讓光一段一段進入感光元件中,變成影片一幀一幀的畫面。而這一段一段進入像機的光訊號,就像是我們的脈衝。

不論是皮秒雷射、飛秒雷射還是阿秒雷射,一直以來在做的都是同一件事,在整體輸出功率不變的情況下,讓每一次脈衝的持續時間更短,同時單一次的功率也會更高。簡單來說,就是要從無數次的普通攻擊,變成每一次都是集氣後再攻擊。

但要怎麼為光集氣呢?光和其他波動一樣,可以和其他波動疊加。把不同頻率的光疊加在一起,波峰和波谷會抵消,波峰遇上波峰則會增強。只要用特定的比例組合許多不同頻率的光,就可以在整體總能量不變的情況下,產生一個超級窄的波峰,其他地方全部抵銷。

-----廣告,請繼續往下閱讀-----

1987 年,本次諾貝爾獎得主之一的 Anne L’Huillier 教授發現,當紅外線雷射穿過惰性氣體時,氣體會被激發放出整數倍頻的光。也就是氣體放出許多不同頻率的光,而這些頻率都是原本光源頻率的整數倍,從兩倍三倍到三十幾倍以上的高倍頻光都有。而橫跨這麼大頻率範圍的光,就能組合出時間長度很短的脈衝光。

不過這聽起來未免也太好康了,真的有那麼簡單嗎?

這個看似魔法的實驗背後其實有著相當簡潔的物理圖像。電子原本是被電磁力束縛在原子中,當一道強度夠強的雷射通過氣體原子,原本抓住電子的電位能被雷射削弱。

雖然這道牆只是矮了一些可是還是存在,但此時,在電子的大小尺度下,量子力學發揮了作用。調皮的電子有機會透過量子穿隧現象,穿過這道束縛,暫時逃離原子核的掌控。關於量子穿隧效應的介紹,我們近期也會再做一集節目來專門介紹。

-----廣告,請繼續往下閱讀-----

但電子還來不及逃遠,雷射光已經從波谷翻到波峰。電磁波的波谷與波峰,不是指能量的高和低,而是指方向相反。因此在相反的電磁場方向下,不幸的電子被推回原子核附近,再度被原子核捕獲。但在這欲擒故縱、七擒七縱的過程後,電子並非一無所獲,他所得到的動能會以光的形式重新放出。

而因為這些能量最早都來自雷射,因此電子放出的光波長,也剛好會是雷射的整數倍。再說的細一些,你可以理解為這些電子在吸收一顆顆光子後,一口氣釋放這些能量,所以能量都是一開始光子的整數倍。

在 1990 年代,科學家已經掌握了這個現象背後的原理。但一直到千禧年過後。這次諾貝爾獎得主之一 Pierre Agostini 教授和他的研究團隊才終於在適當的實驗條件之下,利用高倍頻光打造出了一連串寬度只有 250 阿秒的脈衝。同時第三位得主 Ferenc Krausz 也使用不同方法,分離出 650 阿秒的脈衝。

最後,獲得阿秒脈衝這個祕密武器之後,我們的世界將迎來哪些變化呢?

-----廣告,請繼續往下閱讀-----

阿秒脈衝在各領域的應用

其實啊,有在關注諾貝爾獎都知道,諾貝爾獎通常不會頒給時下正夯的新興研究,前面講的研究,實際上都已經是二十多年前的往事了,而這些辛苦的科學家會在這麼多年後拿下諾貝爾獎的榮耀,正是因為阿秒雷射的發明經過了時間的考驗,成為非常普及的實驗技術,而且被大家公認為重要的科學貢獻。

當然,今年生醫獎的 mRNA 是個超快例外,有興趣的話,別忘了點擊下方影片,看看編劇都編不出來的 mRNA 研究歷程。

說了那麼多,阿秒雷射究竟對人類生活有什麼幫助呢?當然,它能讓我們更深刻了解物質還有光的本質,但是除了幫電子拍下美美的照片放在期刊的封面上,阿秒雷射可以用來做什麼?

在過去這二十年,許多研究已經找到了相當有潛力的應用。

-----廣告,請繼續往下閱讀-----

舉例來說,在醫療方面,阿秒雷射可以用來分析血液或尿液樣本。控制良好的超短脈衝可以精準的刺激生物樣本中的各種有機分子,讓這些分子震動並放出紅外線訊號。如果使用的脈衝長度太長,分子釋放的訊號就很容易和原本施加刺激的雷射混在一起,造成量測的困難。唯有阿秒等級的超短脈衝能夠實現這樣的量測。

這些紅外線光譜就像是質譜儀一樣,能幫助我們快速分析血液中的蛋白質、脂質、核酸等重點物質的關鍵官能基狀態。並透過機器學習的方式整合,成為個人化的健康狀態報表,或是做為診斷的依據,將精準醫療提升到全新的層次。

圖/attoworld

不只如此,發送超短脈衝的技術也可能革新當今的電腦運算。電腦運作的方式就是利用電晶體這種微小的開關,不斷的開開關關去發送一跟零的訊號,所以開關電流的速度便決定了你的運算速度。以半導體為基礎的電晶體,工作頻率通常不超過上百 GHz ,在時間上也就是十的負十一次方秒。

自從阿秒雷射技術普及之後,就有科學家想到:既然雷射脈衝的速度更快,那不如就別用半導體了,改用光學脈衝來控制電流作為運算的媒介。這個概念叫做光學電晶體(Optical Transistor)。

今年初,亞利桑那大學的團隊便發展示了如何利用小於十的負十五次方秒的超短雷射脈衝,來開關電流並傳送一與零的位元,這個頻率比現有半導體電晶體快了一萬倍以上。這顯示了光學方法的操作頻率可以有多快,或許能讓我們突破訊號處理和運算上的速度瓶頸。

看完這些便可以理解,阿秒等級的超快雷射脈衝的確是相當近代的一個科學里程碑。就像是科學革命時望遠鏡和顯微鏡的發明,讓人們看見那些最遠和最小的事物,超快脈衝用最快的時間解析度,讓我們看到許多人類從未看過的景象。

阿秒脈衝雷射的出現,是科學上的一個里程碑,讓我們能用更高的時間解析度,讓我們看到許多過去從未看到的景象。最後也想問問大家,在雷射這一塊,你最期待有哪些應用,或者最希望我們接著來講哪個主題呢?

  1. 為什麼醫美、眼科手術那麼喜歡用飛秒、阿秒雷射,真的有比較好嗎?
  2. 使用雷射脈衝的光學電晶體真的有可能取代傳統電晶體嗎?
  3. 除了光學電晶體,最近很夯的矽光子技術,聽說裡面也有用到雷射,可以一起來介紹嗎?

歡迎訂閱 Pansci Youtube 頻道 獲取更多深入淺出的科學知識!

參考資料

-----廣告,請繼續往下閱讀-----
PanSci_96
1262 篇文章 ・ 2411 位粉絲
PanSci的編輯部帳號,會發自產內容跟各種消息喔。

0

2
0

文字

分享

0
2
0
破除歐洲殖民之前的非洲沒有科學發展史的迷思!非洲原來也有豐富的科學傳統?——《被蒙蔽的視野》
時報出版_96
・2023/06/14 ・3003字 ・閱讀時間約 6 分鐘

1577 年 11 月,廷布克圖(編按:城市名)上空出現了一陣壯麗的流星雨,那座城市就位於現今的馬利(Mali)(編按:位於西部非洲的國家)境內。有關西非天文現象的報告,在整個十六和十七世紀期間都不斷出現。十七世紀早期一位西非編年史家阿卜杜.薩迪(Abd al-Sadi)便曾記載道:

一顆彗星出現在眼前。它在黎明時分從地平線升起,接著一點一點上升,並在日落和黑夜之間達到正上空。最後它消失不見。

西非皇廷裡的天文學家

我們在本章已經見到,在這段時期,伊斯蘭世界各地,從撒馬爾罕到伊斯坦堡的統治者,對天文學是抱持著多麼濃厚的興趣。撒哈拉以南非洲地區也有這相同的情況。許多文學家受聘在桑海帝國(Songhay Empire)統治者阿斯基亞.穆罕默德(Askia Muhammad)的皇廷工作。桑海帝國是個伊斯蘭蘇丹國,16 世紀期間控制了西非大半地區。這些天文學家協助編制年曆並提供宗教指引,對桑海帝國統治做出貢獻。

海桑帝國在十五世紀的領土範圍。約在今日的西非撒哈拉沙漠和沙漠以南的區域。圖/wikipedia

阿斯基亞.穆罕默德本人是個虔誠的穆斯林,支付他的天文學家豐厚的俸祿,要他們協助計算禮拜時間和齋戒月日期。另有些人則奉命判定麥加的方向。

十六世紀廷布克圖出現了天文學家的身影,見證了撒哈拉以南非洲地區在現代科學史上所扮演的重要地位。這個地方比其他任何地帶都更被人排除在科學革命歷史之外。然而就連在認可更廣闊世界之重要性的科學史料當中,撒哈拉以南非洲地區,依然是令人起疑地完全缺席。

-----廣告,請繼續往下閱讀-----

然而,歐洲殖民時期之前的非洲並沒有科學的想法是個迷思,而且急需更正。就像世界其他地區,非洲也擁有豐富的科學傳統,而且在十五和十六世紀時,還隨著宗教和貿易網絡的擴張而經歷了重大轉變。

因此,與其將撒哈拉以南非洲地區看成與世界其他範圍區隔開來的地帶,我們必須把它看成我們在本章所深入探究的這同一段故事——全球文化交流的故事——的一個環節。

與世界各地聯繫 貿易網絡的擴張和伊斯蘭教的傳入

廷布克圖在十二世紀建城,接著在十五和十六世紀期間經歷了大幅擴張,特別是在桑海帝國興起之後。桑海帝國在一四六八年掌控了那座城市。這次擴張主要是跨撒哈拉地區的貿易勃興所驅動,商旅隊伍絡繹於途,從廷布克圖運送黃金、鹽和奴隸到埃及以及其他地方,並藉由絲路把西非與亞洲連接起來。

在這同一時期,其他非洲王國也開始在沿岸地區與歐洲人進行貿易。這標誌了跨大西洋奴隸貿易的開端,所造成的衝擊,我們在接下來兩章就會更詳細深入探究。

廷布克圖很快富裕起來,也讓桑海帝國的統治者得以支撐起「一所富麗堂皇,內裝豪華的宮廷」還加上了「眾多醫師、法官、學者、和祭司」。

-----廣告,請繼續往下閱讀-----

除了貿易、宗教之外,還有個關鍵因素讓非洲和更寬廣世界連繫起來。穆斯林在公元七世紀征服北非之後,從十世紀開始,伊斯蘭教便擴散跨越撒哈拉傳入西非。接著從十四世紀開始,伊斯蘭教就愈來愈廣泛散播開來,特別在鄉村地帶。就在這段期間,除了進口手抄本之外,西非伊斯蘭學者也開始在各地方著述愈來愈多原創手抄本,這些地點包括廷布克圖等都市。非洲統治者早就體認到,伊斯蘭教對於鞏固政權的重要性。阿斯基亞.穆罕默德甚至還曾於一四九六年,在廷布克圖許多學者陪同下,完成了一趟麥加朝聖之旅。

天文學知識的傳入 進一步引發科學發展

隨著貿易和朝聖而來的是知識。阿斯基亞.穆罕默德從麥加返國時,帶回了好幾百部阿拉伯手抄本,內容詳細記載了從天文學新觀點到伊斯蘭教法原則等一切事項。商人從撒哈拉各地回到西非時,也帶來了在伊斯坦堡和開羅購買的一批批阿拉伯手抄本。

「這裡有從巴巴里(Barbary)(編按:北非地名)帶來的手抄本書籍,比其他任何商品獲利都更豐厚,」十六世紀的著名旅行家利奧.阿非利加努斯(Leo Africanus)在他前往廷布克圖時便曾這樣寫道。

另有些手抄本則是隨著許多伊斯蘭學者抵達,他們是在天主教征服穆斯林西班牙時逃來此處,那次戰役最終便導致格拉納達酋長國(Emirate of Granada)在十五世紀末敗亡。稍後我們就會見到,阿拉伯手抄本在西非的散播,最終便導入了科學的轉型,這段故事與文藝復興時期的歐洲有驚人的相似之處。

-----廣告,請繼續往下閱讀-----
廷布克圖手抄本的其中一頁,內容是關於數學與天文學,並以阿拉伯文記載。這些收抄本也象徵著阿拉伯地區的知識傳入,對西非地區的科學發展史有重要的影響。圖/wikipedia

在伊斯蘭教傳播之前,非洲民眾就仰觀天象。古馬利多貢人(Dogon)為所有不同星辰命名,而南非的科薩人(Xhosa)則在夜間使用木星來引路。中世紀貝南王國(Kingdom of Benin,位於當今的現代奈及利亞)的統治者甚至還聘僱了很特別的一群天文學家來追蹤太陽、月球和星辰在全年期間的運行。這群專家稱為伊沃烏基(Iwo-Uki),也就是「月升協會」(Society of the Rising Moon)

這對於規劃農曆尤其重要。貝南王國首都的中世紀天文學家,密切監看獵戶座腰帶的推移並宣告「當這顆星從天空消失,民眾就知道,該種植山藥了」。伊費王國(Kingdom of Ife,也是位於現今奈及利亞境內)的中世紀統治者,同樣體認到天文學對於城內農業和宗教生活的重要性。伊費城是約魯巴文化(Yoruba culture)的一處核心,城內有許多神殿。國王在這附近建造了一批大型花崗岩柱,用來追蹤太陽運行,並判定宗教節日時間以及年度收成時節。

從十五世紀起,這些現存的天文學傳統經歷了重大變遷。就像在歐洲,非洲學者也開始藉由阿拉伯文譯本來研讀(諸如亞里士多德和托勒密等)古希臘思想家的著作。夜間,成群學生齊聚營火周圍,看著星辰流逝,並拿他們測定的結果來與見於種種阿拉伯手抄本的星曆表做個比較。

其中一部手抄本很可能在十六世紀的廷布克圖被用來教導天文學,書名稱為「星辰運動的知識」(Knowledge of the Movement of the Stars)。它一開始先解釋古希臘和羅馬作者的天文學理論,隨後轉向較為晚近的伊斯蘭思想家,好比海什木,他在十一世紀針對托勒密的天文學寫出一部影響深遠的批評著述。那部手抄本接著還解釋,如何判定特定星辰的位置,還有它們在占星上的重要意義。

-----廣告,請繼續往下閱讀-----

還有一部手抄本是廷布克圖一位名叫穆罕默德.巴哈約戈(Muhammad Baghayogho)的學者寫的,內容解釋了如何計算出白天(使用日晷)和夜晚(使用月球位置)的禮拜時間。巴哈約戈在十六世紀早期完成了一趟麥加朝聖,而且他擁有十分豐富的阿拉伯手抄本藏書,在廷布克圖首屈一指,他還針對十六世紀鄂圖曼一位名叫穆罕默德.塔朱里(Muhammed al-Tajuri)的天文學家所著作品撰寫了一部評註。沒錯,你在廷布克圖找得到的手抄本,不只是以阿拉伯文寫成的,還包括鄂圖曼土耳其文的內容,這就顯示在這段時期,鄂圖曼和西非的科學發展,有很密切的關係。

——本文摘自《被蒙蔽的視野:科學全球發展史的真貌》,2023 年 5 月,時報出版,未經同意請勿轉載。

-----廣告,請繼續往下閱讀-----
時報出版_96
174 篇文章 ・ 35 位粉絲
出版品包括文學、人文社科、商業、生活、科普、漫畫、趨勢、心理勵志等,活躍於書市中,累積出版品五千多種,獲得國內外專家讀者、各種獎項的肯定,打造出無數的暢銷傳奇及和重量級作者,在台灣引爆一波波的閱讀議題及風潮。