0

0
0

文字

分享

0
0
0

亞里斯多德的單人版維基百科:科學何須計算?--《科學大歷史》

azothbooks_96
・2017/08/04 ・4382字 ・閱讀時間約 9 分鐘 ・SR值 554 ・八年級

  • 【科科愛讀書】人類花了數百萬年學習和思考,才從那個連「科學」怎麼寫都還沒一撇的古早時代,到今天能夠運用科技超越肉身的限制,探索小粒子的無窮和大宇宙的廣袤。但是人類的璀璨成就絕非是一蹴可幾,而是建立在無數先人的跌跌撞撞之上,這過程其中也不乏許多學校沒教、卻相當有趣的故事。就讓《科學大歷史》帶你坐上時光機重回科學史萌芽的年代,來一趟精彩的發現之旅吧!
亞里斯多德像。圖/WikimediaCommons

亞里斯多德的研究方法,和後來的科學還有一個重要的衝突:他是做定性研究(qualitative),而不是做定量研究(quantitative)。如今的物理學,即使是簡單的高中物理,都是計量的科學。

修基礎物理學的學生會學到,時速六十英里的汽車每秒移動八十八英尺;蘋果每掉落一秒鐘,加速度是每平方秒三十二英尺;他們會以數學計算你一屁股坐進椅子時,椅子對你的脊椎所產生的瞬間反作用力可能大於一千磅。亞里斯多德的物理學完全不是那樣,而且他還大聲抨擊有些哲學家試圖把哲學「變成數學」。

圖/cea +@Flickr

比起計算,更重視目的

當然,在亞里斯多德那個年代,想把自然哲學轉變成計量學術,會因為古希臘的知識有限而受到阻礙。亞里斯多德沒有碼錶,沒有秒針,他甚至沒想過用精確的時間間隔來思考事件。此外,那個年代的代數和算術,跟泰勒斯的年代相比,也沒有進步多少。那時連加號、減號、等號都還沒發明出來,也沒有數字系統或「時速幾英里」的概念。

不過,十三世紀以及後來的學者在計量物理學上的進步,也沒有用到多麼先進的工具和數學,可見工具和數學不是方程式、衡量、數字預測等科學的唯一阻礙。更重要的因素在於,亞里斯多德跟其他人一樣,對計量描述不感興趣。

-----廣告,請繼續往下閱讀-----

即便是在研究運動時,亞里斯多德的分析也只限於定性分析。例如,他對速度只有模糊的概念,比如「同樣的時間內,有些東西跑得比較遠」,這種說法讀起來好像幸運餅乾裡的籤文,但是在亞里斯多德那個年代,大家覺得那樣的描述已經夠精確了。既然他對速度只有定性分析,就更不可能知道我們在中學裡學到的「加速度」了。尤其古今差異那麼大,如果有人有時光機可以回到古代,把牛頓的物理學文件拿給亞里斯多德看,那對他來說也只是天書罷了。他不僅無法瞭解牛頓所謂的「力」或「加速度」是什麼意思,而且也沒有興趣。

亞里斯多德對速度只有模糊的概念,比如「同樣的時間內,有些東西跑得比較遠」,就像「在同樣的時間內,兔子就是比烏龜跑得比較遠」。圖/Pixabay

亞里斯多德進行深入的觀察時,真正讓他感興趣的是:運動和其他的改變似乎都會朝著某個目的發生。例如,他所瞭解的動作不是一種應該衡量的東西,而是一種現象,其目的是可以辨識的,比如馬拉動車子以便在路上行進,羊四處走動以尋找食物,老鼠奔跑以免遭到捕食,公兔與母兔交配以繁衍更多的兔子。

亞里斯多德認為宇宙是一個和諧運作又龐大的生態系統,各種目的隨處可見。例如,降雨是因為植物需要水分才會成長,植物成長才能供動物食用。葡萄籽長出葡萄藤,雞蛋孵出小雞,都是讓種子和雞蛋裡的潛力展現出來。打從遠古時代開始,人類就根據個人經驗來瞭解世界。所以,在古希臘時代,分析實體世界中各種事件的目的,遠比用畢達哥拉斯及其追隨者所發明的數學定律去解釋那些事件還要自然。

亞里斯多德所瞭解的動作,不是一種應該衡量的東西,而是一種現象,他認為宇宙是一個和諧運作又龐大的生態系統,各種目的隨處可見。圖/Pixabay

科學進展停滯兩千年

這裡我們再次看到,在科學中,你「問對問題」很重要。即使亞里斯多德接受畢達哥拉斯的概念,即使他相信自然是依循計量定律,但他依然不會注意到那個概念,因為他對定律的計量細節不感興趣。他比較在乎的問題是,為什麼物體會依循那些定律。什麼原因迫使琴弦或掉落的石頭以某種數字規律地運作?這才是讓亞里斯多德感興趣的問題。而這就是他的理念和現今的科學研究最大的差異-—他注意的是自然界裡的「目的」,現今的科學不是注意那些東西。

-----廣告,請繼續往下閱讀-----

亞里斯多德分析的特質—-尋找目的-—對後來的人類思維有極大的影響。這讓他深受古往今來許多基督教哲學家的喜愛,但是那也阻礙了科學進步長達兩千年,因為和指引現代研究的科學原則完全不符。兩顆撞球相碰時,牛頓率先提出的定律(那背後沒什麼宏大的目的)可用來判斷接下來會發生的狀況。

科學的興起,最初是源自於人類想要瞭解世界及尋求意義的根本慾望,所以當初亞里斯多德為了尋找目的而研究的動機, 如今依然引起許多人的共鳴。對想要瞭解天災或其他悲劇的人來說, 「事出並有因」的概念也許可以帶給他們一些慰藉。相較之下,科學家堅持宇宙不受任何「目的」的指引,可能會讓那些人覺得科學似乎很冷酷無情。

科學源自於人類想要瞭解世界及尋求意義的根本慾望。圖/Pixabay

不過,這還有另一種看法,也是我很常從父親那邊聽來的一種見解。每次談到「目的」時,我父親通常不會提起發生在他身上的事,而是提起他和我母親相識之前,我母親經歷過的某件事。那時她才十七歲, 納粹占領了她的家鄉。 其中一個納粹不知道是基於什麼原因,下令幾十個猶太人(包括我媽)排成整齊的隊伍,跪在雪地上。接著,那個人從每一排的排頭走到排尾,每走幾步就往其中一個俘虜的頭部開槍。如果這是上帝或自然的宏大計畫,我父親一點都不想跟那種上帝扯上關係。對我父親這樣的人來說,相信我們的人生無論有多悲慘或多成功,其實和恆星爆炸都是受制於同一套定律,而且這些事情無論是好是壞,最終都是一種恩賜、一種奇蹟,都是源自於那些支配世界的枯燥方程式。這樣想的話,對他們來說反而是一種解脫。

儘管亞里斯多德的理論主宰了自然界的相關思維、一直到牛頓那個年代,但是那段期間還是有許多的觀察家質疑他的理論。

-----廣告,請繼續往下閱讀-----

一顆砲彈的飛行,是因為空氣的推進?

以「物體不做自然運動下,唯有對它施加外力才會移動」這個概念為例,亞里斯多德自己也發現,這個說法讓人不禁想問:用力射箭、擲標槍,或是扔出拋射體之後,是什麼力量繼續推動它們。他的解釋是,由於自然「厭惡」真空的狀態,拋射體射出去以後,空氣粒子會衝到拋射體的後方,繼續推進那個拋射體。日本似乎把這個概念成功套用在把乘客塞進東京地鐵內。不過,連亞里斯多德本人對這個理論也沒有多大的熱情。該理論的缺陷到了十四世紀變得更加明顯,因為那時大砲大量地出現,空氣粒子在沉重的砲彈後面推著砲彈前進,這種說法似乎很荒謬。

同樣重要的是,發射大砲的士兵其實也不太在乎究竟是空氣粒子、還是無形的小精靈推著砲彈前進。他們真正想知道的是,砲彈會循著怎樣的軌跡飛行,尤其是那個軌跡最後是否會抵達敵人的頭上。這種理論和實務的脫節,顯現出亞里斯多德和後代科學家之間的實質鴻溝:對亞里斯多德來說,拋射體軌跡(不同瞬間的位置和速度)之類的議題根本無關緊要。但是如果有人想運用物理學定律來做預測,這些議題就很重要了。所以,後來取代亞里斯多德物理學的科學(亦即可以計算砲彈軌跡的科學)和流程的計量細節有關,它們會衡量力道、速度、加速度,而不管那些流程的目的或哲理。

十四世紀大砲大量地出現,使得空氣粒子在沉重的砲彈後面推著砲彈前進,這種說法似乎很荒謬。圖/wikipedia

亞里斯多德知道他的物理學並不完美。他寫道:

「我的是第一步,只是一小步,不過我也花了很多心思和勞力。這應該以第一步來看待,並寬容對待。諸位讀者或聽講者,如果你認為我在這個起步已經盡力而為了······就會肯定我所做的,並容我把它留給其他人去完成。」

這裡,亞里斯多德說出了他和後來許多物理學天才都有的一種感覺。我們認為牛頓、愛因斯坦等人無所不知,對其知識充滿了自信,甚至有些自大。但後面我們會看到,他們就像亞里斯多德一樣,對很多事情感到不解,而他們自己也都有自知之明。

-----廣告,請繼續往下閱讀-----

「研究亞里斯多德的學說,就是研究自然」

公元前三二二年,亞里斯多德過世,享年六十二歲,死因似乎是胃病。一年前,他以前的學生亞歷山大死後,那個親馬其頓的政府遭到推翻,他逃離了雅典。雖然亞里斯多德在柏拉圖的學苑裡待了二十年,他在雅典始終感覺像外人一樣。關於雅典,他寫道:「同樣的事情,對外地人和本地人來說並非一樣恰當,讓人無所適從。」不過,亞歷山大過世後,要不要繼續留下來變得很重要,因為任何和馬其頓有關的人都可能遭到攻擊,他很清楚蘇格拉底遭到政治處決已經有了先例,一杯毒芹汁就足以徹底反駁任何哲學論點。亞里斯多德始終是一個深謀遠慮的思想家,他想要逃離雅典,不想冒著犧牲成仁的風險。他為自己的決定提出了一個崇高的理由--避免雅典人再次犯下「反哲學」的罪過。不過,那個決定就像亞里斯多德的人生態度一樣,其實非常務實。

亞里斯多德過世以後,萊西姆學苑的學生以及評論其著作的人把他的思想代代相傳。中世紀初期,他的理論連同所有的相關知識逐漸沒落,但是在中世紀盛期又受到阿拉伯哲學家的重視,西方學者就是從阿拉伯哲學家那裡得知亞里斯多德的學說。他的思想經過一些修改後,最後變成羅馬天主教會的官方哲學。所以,接下來的十九個世紀,研究自然就是指研究亞里斯多德的學說。

希臘薩摩斯二世,計算太陽,月球和地球的相對尺寸。圖/wikimedia commons

我們已經看到人類如何發展出發問及充滿求知慾的大腦,以及發明那些用來解題的工具 (書寫、數學和定律的概念)。希臘人學習運用理性來分析宇宙以後,人類因此抵達「科學」這個輝煌新世界的岸邊。不過,那只是展開更大探險的起點。


 

 

本文摘自《科學大歷史:人類從走出叢林到探索宇宙, 從學會問「為什麼」到破解自然定律的心智大躍進》漫遊者文化出版。

-----廣告,請繼續往下閱讀-----
-----廣告,請繼續往下閱讀-----
文章難易度
azothbooks_96
55 篇文章 ・ 21 位粉絲
漫遊也許有原因,卻沒有目的。 漫遊者的原因就是自由。文學、人文、藝術、商業、學習、生活雜學,以及問題解決的實用學,這些都是「漫遊者」的範疇,「漫遊者」希望在其中找到未來的閱讀形式,尋找新的面貌,為出版文化找尋新風景。

0

1
0

文字

分享

0
1
0
停工即停薪:如何證明你的時間值多少?車禍背後的認知 x 情緒 x 金錢 x 法律大混戰
鳥苷三磷酸 (PanSci Promo)_96
・2026/01/09 ・3351字 ・閱讀時間約 6 分鐘

本文與 PAMO車禍線上律師 合作,泛科學企劃執行

走在台灣的街頭,你是否發現馬路變得越來越「急躁」?滿街穿梭的外送員、分秒必爭的多元計程車,為了拚單量與獎金,每個人都在跟時間賽跑 。與此同時,拜經濟發展所賜,路上的豪車也變多了 。

這場關於速度與金錢的博弈,讓車禍不再只是一場意外,更是一場複雜的經濟算計。PAMO 車禍線上律師施尚宏律師在接受《思想實驗室 video podcast》訪談時指出,我們正處於一個交通生態的轉折點,當「把車當生財工具」的職業駕駛,撞上了「將車視為珍貴資產」的豪車車主,傳統的理賠邏輯往往會失靈 。

在「停工即停薪」(有跑才有錢,沒跑就沒收入)的零工經濟時代,如果運氣不好遇上車禍,我們該如何證明自己的時間價值?又該如何在保險無法覆蓋的灰色地帶中全身而退?

-----廣告,請繼續往下閱讀-----
如果運氣不好遇上車禍,我們該如何證明自己的時間價值?/ 圖片來源: Nano Banana

薪資證明的難題:零工經濟者的「隱形損失」

過去處理車禍理賠,邏輯相對單純:拿出公司的薪資單或扣繳憑單,計算這幾個月的平均薪資,就能算出因傷停工的「薪資損失」。

但在零工經濟時代,這套邏輯卡關了!施尚宏律師指出,許多外送員、自由接案者或是工地打工者,他們的收入往往是領現金,或者分散在多個不同的 App 平台中 。更麻煩的是,零工經濟的特性是「高度變動」,上個月可能拚了 7 萬,這個月休息可能只有 0 元,導致「平均收入」難以定義 。

這時候,律師的角色就不只是法條的背誦者,更像是一名「翻譯」。

施律師解釋「PAMO車禍線上律師的工作是把外送員口中零散的『跑單損失』,轉譯成法官或保險公司聽得懂的法律語言。」 這包括將不同平台(如 Uber、台灣大車隊)的流水帳整合,或是找出過往的接單紀錄來證明當事人的「勞動能力」。即使當下沒有收入(例如學生開學期間),只要能證明過往的接單能力與紀錄,在談判桌上就有籌碼要求合理的「勞動力減損賠償 」。

-----廣告,請繼續往下閱讀-----
PAMO車禍線上律師的工作是把外送員口中零散的『跑單損失』,轉譯成法官或保險公司聽得懂的法律語言 / 圖片來源: Nano Banana

300 萬張罰單背後的僥倖:你的直覺,正在害死你

根據警政署統計,台灣交通違規的第一名常年是「違規停車」,一年可以開出約 300 萬張罰單 。這龐大的數字背後,藏著兩個台灣駕駛人最容易誤判的「直覺陷阱」。

陷阱 A:我在紅線違停,人還在車上,沒撞到也要負責? 許多人認為:「我人就在車上,車子也沒動,甚至是熄火狀態。結果一台機車為了閃避我,自己操作不當摔倒了,這關我什麼事?」

施律師警告,這是一個致命的陷阱。「人在車上」或「車子沒動」在法律上並不是免死金牌 。法律看重的是「因果關係」。只要你的違停行為阻礙了視線或壓縮了車道,導致後方車輛必須閃避而發生事故,你就可能必須背負民事賠償責任,甚至揹上「過失傷害」的刑責 。 

數據會說話: 台灣每年約有 700 件車禍是直接因違規停車導致的 。這 300 萬張罰單背後的僥倖心態,其巨大的代價可能是人命。

-----廣告,請繼續往下閱讀-----

陷阱 B:變換車道沒擦撞,對方自己嚇到摔車也算我的? 另一個常年霸榜的肇事原因是「變換車道不當」 。如果你切換車道時,後方騎士因為嚇到而摔車,但你感覺車身「沒震動、沒碰撞」,能不能直接開走?

答案是:絕對不行。

施律師強調,車禍不以「碰撞」為前提 。只要你的駕駛行為與對方的事故有因果關係,你若直接離開現場,在法律上就構成了「肇事逃逸」。這是一條公訴罪,後果遠比你想像的嚴重。正確的做法永遠是:停下來報警,釐清責任,並保留行車記錄器自保 。

正確的做法永遠是:停下來報警,釐清責任,並保留行車記錄器自保 。/ 圖片來源: Nano Banana

保險不夠賠?豪車時代的「超額算計」

另一個現代駕駛的惡夢,是撞到豪車。這不僅是因為修車費貴,更因為衍生出的「代步費用」驚人。

-----廣告,請繼續往下閱讀-----

施律師舉例,過去撞到車,只要把車修好就沒事。但現在如果撞到一台 BMW 320,車主可能會主張修車的 8 天期間,他需要租一台同等級的 BMW 320 來代步 。以一天租金 4000 元計算,光是代步費就多了 3 萬多塊 。這時候,一般人會發現「全險」竟然不夠用。為什麼?

因為保險公司承擔的是「合理的賠償責任」,他們有內部的數據庫,只願意賠償一般行情的修車費或代步費 。但對方車主可能不這麼想,為了拿到這筆額外的錢,對方可能會採取「以刑逼民」的策略:提告過失傷害,利用刑事訴訟的壓力(背上前科的恐懼),迫使你自掏腰包補足保險公司不願賠償的差額 。

這就是為什麼在全險之外,駕駛人仍需要懂得談判策略,或考慮尋求律師協助,在保險公司與對方的漫天喊價之間,找到一個停損點 。

談判桌的最佳姿態:「溫柔而堅定」最有效?

除了有單據的財損,車禍中最難談判的往往是「精神慰撫金」。施律師直言,這在法律上沒有公式,甚至有點像「開獎」,高度依賴法官的自由心證 。

-----廣告,請繼續往下閱讀-----

雖然保險公司內部有一套簡單的算法(例如醫療費用的 2 到 5 倍),但到了法院,法官會考量雙方的社會地位、傷勢嚴重程度 。在缺乏標準公式的情況下,正確的「態度」能幫您起到加分效果。

施律師建議,在談判桌上最好的姿態是「溫柔而堅定」。有些人會試圖「扮窮」或「裝兇」,這通常會有反效果。特別是面對看過無數案件的保險理賠員,裝兇只會讓對方心裡想著:「進了法院我保證你一毛都拿不到,準備看你笑話」。

相反地,如果你能客氣地溝通,但手中握有完整的接單紀錄、醫療單據,清楚知道自己的底線與權益,這種「堅定」反而能讓談判對手買單,甚至在證明不足的情況下(如外送員的開學期間收入),更願意採信你的主張 。

車禍不只是一場意外,它是認知、情緒、金錢與法律邏輯的總和 。

在這個交通環境日益複雜的時代,無論你是為了生計奔波的職業駕駛,還是天天上路的通勤族,光靠保險或許已經不夠。大部分的車禍其實都是小案子,可能只是賠償 2000 元的輕微擦撞,或是責任不明的糾紛。為了這點錢,要花幾萬塊請律師打官司絕對「不划算」。但當事人往往會因為資訊落差,恐懼於「會不會被告肇逃?」、「會不會留案底?」、「賠償多少才合理?」而整夜睡不著覺 。

-----廣告,請繼續往下閱讀-----

PAMO看準了這個「焦慮商機」, 推出了一種顛覆傳統的解決方案——「年費 1200 元的訂閱制法律服務 」。

這就像是「法律界的 Netflix」或「汽車強制險」的概念。PAMO 的核心邏輯不是「代打」,而是「賦能」。不同於傳統律師收費高昂,PAMO 提倡的是「大腦武裝」,當車禍發生時,線上律師團提供策略,教你怎麼做筆錄、怎麼蒐證、怎麼判斷對方開價合不合理等。

施律師表示,他們的目標是讓客戶在面對不確定的風險時,背後有個軍師,能安心地睡個好覺 。平時保留好收入證明、發生事故時懂得不亂說話、與各方談判時掌握對應策略 。

平時保留好收入證明、發生事故時懂得不亂說話、與各方談判時掌握對應策略 。 / 圖片來源: Nano Banana

從違停的陷阱到訂閱制的解方,我們正處於交通與法律的轉型期。未來,挑戰將更加嚴峻。

-----廣告,請繼續往下閱讀-----

當 AI 與自駕車(Level 4/5)真正上路,一旦發生事故,責任主體將從「駕駛人」轉向「車廠」或「演算法系統」 。屆時,誰該負責?怎麼舉證?

但在那天來臨之前,面對馬路上的豪車、零工騎士與法律陷阱,你選擇相信運氣,還是相信策略? 先「武裝好自己的大腦」,或許才是現代駕駛人最明智的保險。

PAMO車禍線上律師官網:https://pse.is/8juv6k 

-----廣告,請繼續往下閱讀-----
文章難易度

討論功能關閉中。

0

1
0

文字

分享

0
1
0
人工智慧的極限
賴昭正_96
・2026/01/15 ・5792字 ・閱讀時間約 12 分鐘

在發現的道路上,智慧(intellect)作用不大。意識(consciousness)━你可以稱之為直覺或其它任何你想用的詞━會發生一次飛躍,答案會突然出現在你面前,而你卻不知道它是如何或為什麼出現的。

-愛因斯坦(1879-1955),1921年諾貝爾物理獎

2025 年 10 月 13 日在參加建國中學高三 6 班畢業 66 週年的同學旅遊後,希望能瞭解一下投稿多年、從未謀面之《泛科學》的作業情形及發展計畫等,我決定到「泛科創新股份有限公司」參觀一下:沒想到知識長鄭國威竟然邀請我錄了一集「思想實驗室」。當被問及有關人工智慧(artificial intelligence,AI)的看法時,我突然冒出「因為科學的發現很多都是意外的,因此AI無法像人類一樣具有創造性」。沒想到這句話似乎成為這次訪問的主題,也引起比較熱烈的討論,因此我想在這裡補充一下。

AI(人工智慧)是否能青出於藍、更勝於藍地超越我們?這事實上也是專家爭論最多的話題。我不是專家,雖然知道「我思故我在」,但完全不知人類如何思想、大腦如何運作,更不瞭解上面愛因斯坦所提到之意識(consciousness)如何飛躍!但是已經被國威推上了這個平台,因此只好在這裡野人獻曝,依我所知的科學史提出懷疑。

回歸正題,上面問題的直覺反應答案是:人製造出來的怎麼可能比人聰明呢?但相信很多人都知道:人類所製造出來的圍棋軟體 AlphaGo 已經戰勝了所有的人類!其主人谷歌(Google)謂:它能戰勝人類是因為它利用策略網絡來推薦有希望的走法,並利用價值網絡來評估在給定局面下獲勝的機率,從而大幅縮小搜尋空間,使得它能夠「預想」數百萬步棋,並透過自身的對弈不斷學習,最終超越人類的層次。從這段話看來,我覺得 AlphaGo 能戰勝人類是基於高速地使用人類所設計出來之有路可循、亦有跡可尋的「邏輯策略」!

同樣地,如果我們給 AI 一含所有物質之性質的資料庫,然後告訴它如何尋找「規律」(pattern),相信它會非常勝任地發現許多具有某種特性的「新物質」、「新藥物」、甚或告訴我們如何製造它們(有機合成的資料庫)。但是 AI 雖然知道哈密瓜的所有性質(資料庫),可是它會想到哈密瓜含有能大量分泌青黴素的菌株、即時在第二次世界大戰中拯救了上百萬士兵的生命嗎(見後)?我覺得後者不是邏輯的問題,是沒辦法訓練的,因此 AI 不能「真正創造」不是依靠邏輯的發現。這正是本文所要談的:許多科學大突破都不是靠訓練或邏輯分析的!

-----廣告,請繼續往下閱讀-----

視眾人所見視,思眾人所未思

牛頓的傳記《艾薩克·牛頓爵士生平回憶錄》(Memoirs of Sir Isaac Newton’s Life)於1752年出版;作者斯圖克利(William Stukeley)在書中轉述:「晚餐後,天氣溫暖,我們去了花園,在幾棵蘋果樹的樹蔭下喝茶……他(牛頓)告訴我,他當時的處境和以前一樣,剛剛想到萬有引力的概念。當他正沉思時,一個蘋果掉了下來。他心想:『為什麼蘋果總是垂直落到地上,永遠不會向上或向一側掉落呢?……』,這使他得出結論:地球一定具有『引力』,從而發展出他的萬有引力理論。」

早在西元前 4 世紀左右,亞里斯多德(Aristotle)及歐幾里德(Euclid)等希臘哲學家就為自然哲學和邏輯奠定了基礎。樹上的水果都是往地面掉,這是任何小孩都知道的「常識」,但為什麼卻等了 1700 年才引起牛頓的注意?我們不知道為何牛頓會想到這個問題,但 AI 也會注意到這個現象嗎?如果會,它會先想到萬有引力或是直接跳到更精確的愛因斯坦廣義相對論(見後)呢? 

發現世上第一個抗生素的弗萊明(Alexander Fleming)度假回來後發現培養皿因未加蓋而發霉(見後),一般的研究者大多會將這些被黴菌孢子污染的培養皿丟掉;但弗萊明這次卻心血來潮……。他回憶說:

「基於先前「溶菌酶」的經驗,也像許多細菌學家那樣,我應該會把污染的培養皿丟掉,……某些細菌學家也有可能(早就)注意到我(那時)看到的相似變化,……但是在對天然產生的抗菌物質沒有任何興趣的情況下,都會順手地將培養物丟棄。……但(這次)我沒有找個藉口丟掉受污染的培養液;相反地,我做了進一步的探討。」

如果AI也能做實驗,它會像許多細菌學家那樣「順手地」丟棄培養物嗎?機會總是降臨在那些做好準備的「人」身上。

-----廣告,請繼續往下閱讀-----

幸運的靈感/直覺

一位正在自由下落的人不會感覺到自己的重量,那不是等於漂浮在沒有任何重力的外太空空間嗎?如果加速度可以抵消重力,那麼在沒有重力的情況下,加速度本身不是可以模擬重力,產生與真實重力沒有區別的人造重力嗎?愛因斯坦稱上面這一發現為「等效原理」(Equivalence Principle):我們雖然不知道重力是什麼,但其現象可以用加速度來模擬!這一想法啟動了愛因斯坦嘗試改變牛頓重力論的八年艱苦抗戰,於 1915 年 11 月完成了人類有史以來最美麗的物理理論━「廣義相對論」(General Theory of Relativity)。100 多年後的今天,愛因斯坦這一透過想像力來推測的理論仍然在指引著物理學家們去瞭解宇宙的基本特徵!怪不得愛因斯坦後來大膽地稱它為「我一生中最幸運的靈感」。

德國理論物理學家普朗克 (Max Planck) 謂他是靠「幸運的直覺 (lucky intuition) 」而意外地敲響了量子力學革命之鐘聲!在 1918 年諾貝爾獎頒獎典禮上,普朗克回憶說:

「然而,即使(我推導出來的)輻射公式絕對準確,它仍然只是一個幸運猜測(lucky guess)了正確插值公式的結果,其價值是非常有限的。因為這個原因,從那時起,我就忙著… 想闡明此公式的真實物理特性,這導致我考慮連接熵和概率之間的波茲曼(Boltzmann)關係。在經過我生命中最艱苦的幾個星期之工作後,光明終於驅除了黑暗,一個新的、從未夢想到的的觀點在我面前展開了。」

這普朗克從未夢想到的觀點是什麼呢? 就是「能量量化」的觀念,違反了當時「能量是連續」的共識!因之此後的十幾年,普朗克便一直在努力地想使他的量子觀念能容於古典力學裡;可是每次嘗試的結果,似乎均使自己失望得想收回那革命性的「大膽假設」而已。

錯誤的假設

好吧,就假設 AI 像愛因斯坦一樣也有「最幸運的靈感」,發現了廣義相對論。可是後來物理學家瞭解到了愛因斯坦的「等效定理」事實上不完全正確,是有限制的,也就是說它只是一種近似的基本定律,只適用於一個局部、無限小的時空區域內。哈,如果AI比人類聰明,怎麼會在邏輯上犯下這個錯誤呢?如果不犯這個錯誤,它能發現廣義相對論呢?

-----廣告,請繼續往下閱讀-----

又如 1905 年,愛因斯坦在題為「關於運動物體的電動力學」的(狹義相對論)論文引言裡,開宗明義地謂「不要爭辯」光速了:

「我們建議將「相對性原理」這個猜想(conjecture)提升到一個公設(postulate)的地位,並引入另一個表面上與前者不調和(irreconcilable)的公設,即光是在真空中的傳播速率為一與發射體運動狀態無關的定值 c。 這兩個假設足以(讓我們)透過適用於靜止物體(狀態)之馬克斯威(Maxwell)理論,導出一個簡單且不矛盾(consistent)的電動力學理論。」

愛因斯坦真大膽:一個可以用實驗來確定的光速,怎麼可以定為「公設」呢?光速與發射體運動狀態無關不是完全違反了我們日常生活的經驗(如聲速)嗎?愛因斯坦在其時鐘「同步程序」的假想實驗裡魔術般地導入了他的公設:光在任何方向的速度都是一樣的 c 值!完全忽略了當時幾乎所有物理學家都相信光是在「以太」中傳播的理論。

1924 年,一位名不見經傳,任教於東巴基斯坦的講師波思 (Styendra Bose) 在一篇 1500 字的論文裡做了一個誤打誤撞、連他自己本人都不知道、在整篇論文中隻字未提的重要及創新性假設:光量子是不可分辨的!在當時,所有的物理學家都認為光量子像銅板一樣是可以分辨的(我們可以分辨哪個是 A 銅板、哪個是 B 銅板、…),因此兩個銅板出現「一正及一反」的或然率是 2/4;但如果它們不能分辨呢?則出現「一正及一反」的或然率將變成 1/3。沒想到這一「錯誤」的假設後來竟成為打開量子統計力學的鑰匙!超強邏輯的AI會犯這種錯誤嗎?

愛因斯坦1915年完成他的廣義相對論後,發現他的方程式所預測的宇宙只能膨脹或收縮,與當時大部分科學家所認為的靜態宇宙觀相衝突!沒想到推翻了深植物理學家心中達兩百多年之牛頓時空觀念的革命壯士,竟然在這裡屈服了:為了符合當時的想法,愛因斯坦於1917年強行地於其廣義相對論導出之宇宙觀中加入一「常數」來平衡萬有引力,使他的宇宙能保持靜態!沒想到1929年後,新數據顯示宇宙不是靜態,而是在膨脹中;愛因斯坦因而後悔當初為何不相信自己的推論,稱那強行加入人為常數━「宇宙論常數」(cosmological constant)━為他一生中所犯之「最大錯誤」。AI會犯這種錯誤嗎?

-----廣告,請繼續往下閱讀-----

只有萬有引力的宇宙膨脹速率在一段時間後應該慢慢減小;但90年代末期,新的發現顯示現在宇宙膨脹速率不是隨時間減小、而是在加大!沒想到那錯誤的「宇宙論常數」現在竟然成為提供瞭解釋膨脹速率加快所需之排斥力來源─雖然我們還不知道那是啥!當然,我們也不知道愛因斯坦在天之靈是否還認為「宇宙論常數」是他一生中所犯的最大錯誤?而AI如果當初未犯那「最大錯誤」,現在是否反而會後悔呢?

老天的幫忙

硝化甘油為液體,非常不穩定,一不小心就爆炸;因此諾貝爾 (Alfred Nobel)一直在尋找取代物,但久而不得。傳說有一天儲存的硝化甘油意外泄漏,與用來包裝儲存鐵桶之板狀矽藻土混合但未爆炸,使他想到了試用此板狀矽藻土。經實驗後,他發現兩者相混之固體不但安全可靠,而且還可保持原有之爆炸威力─這不正是他夢寐以求、研究甚久而未能找到的「穩定炸藥」嗎?他因此發了大財,設定了今日大家所知道的諾貝爾獎。

在「發現能治療糖尿病的胰島素—胰島素與生技產業的誕生(上)」一文裡,我提到了「….將狗的胰臟割除,發現這隻可憐狗整天口渴及隨地小便。數日後,一位助手覺得實驗室內的蒼蠅好像突然多了起來,尤其是在狗小便過的地板。分析狗尿及其血液後,梅倫(Joseph von Mering)及明考斯基(Oskar Minkowski)很驚奇地發現裡面充滿了糖份。」顯然地,胰腺具有調解體內糖代謝的功能,它一旦受損將導致糖尿病。就這樣,法國兩位外科手術醫生無意中發現了「困擾」人類三千多年之糖尿病的病源━胰臟分泌物「胰島素」失調!這不是透過邏輯分析得到的結果,AI能做到嗎? 

前面所提到之蘇格蘭醫生兼微生物學家弗萊明是一位粗心的實驗室技術員。1928 年夏在研究葡萄球菌的某一天,他忘了將含有葡萄球菌培養物的培養皿放在培養箱中,留在實驗室工作台上就匆匆忙忙地離開實驗室去度假。命運就是這樣作弄人:那時室內的溫度及濕度均適合霉菌(mold,或譯「黴菌」)的生長;因此兩個禮拜回來後,弗萊明發現在敞開窗戶旁的培養皿因未加蓋而發霉。經細心觀察及研究後,弗萊明發現抑制或預防細菌生長的不是黴菌本身,而是黴菌產生的「黴汁」。就這樣,弗萊明發現了世上第一個抗生素「盤尼西林」(Penicillin,又稱為「青黴素」)!被《時代》雜誌評選為20世紀的100位最重要人物!

-----廣告,請繼續往下閱讀-----

1943年的某一天,在伊利諾州皮奧里亞 (Peoria) 的農業部北部區域研究實驗室 (NRRL) 工作的亨特 (Mary Hunt) ,無意中在一雜貨店裡發現了一顆表皮長滿漂亮及金色青黴的哈密瓜。將它帶回實驗室,篩選出能大量分泌青黴素的菌株後,她發現該菌株產生的青黴素數量是notatum的200倍━她因之贏得「發霉瑪麗 (Moldy Mary)」的綽號。在許多研究團隊紛紛加入菌種及製造方法的改良後,青黴素產量由1943年只能醫治不到1000人,一下子跳到1944年時,已有足夠的青黴素來治療每位需要的士兵,為第二次世界大戰提供了功不可沒的貢獻!也啓動了尋找其它抗生素的研究,開創了醫學的新紀元。

結論

上面我們提到科學家意外地發現了穩定的炸藥、控制血糖的胰島素、及治療特定細菌感染的抗生素。這些化合物都已經存在自然界中,但絕對不是邏輯分析可以發現其功能的,因此如果不是「老天的幫忙」,我實在很難理解AI怎麼會想到?事實上靠「老天幫忙」所發現的化學物是非常之多的。不需要靠老天幫忙的理論物理呢?

在討論牛頓「思眾人所未思」地發現萬有引力、開創了古典物理後,我們其它的討論都是針對全面改變我們日常生活之近代物理━量子力學及相對論━的發現史。希望讀完本文後,讀者能體會到科學進步不但鮮少一帆風順,相反地是一條充滿了意想不到之彎路和迷茫時刻的曲折蜿蜒旅程:這正是我在訪談中所提到的要多看「課外書」,鑑古知今瞭解理論背後歷史有助於瞭解理論本身。也希望讀完本文後,讀者能感受到科學上的突破幾乎全不是源自邏輯分析,而是出自無法捕捉的「靈感」、「直覺」、「錯誤假設」,「老天幫忙」、以及挑戰既有認知的「勇氣」。AI具有這些人性「缺點」嗎?

最後讓我們在此以公認為最偉大之兩位物理學家的話來結束。牛頓說:「沒有大膽的猜測,就沒有偉大的發現」;愛因斯坦謂:「我從未通過理性思考的過程取得任何發現」。

-----廣告,請繼續往下閱讀-----

致謝

謹在此感謝《泛科學》鄭國威、曹盛威、謝富丞、廖儀瑄、王喆宣等同仁的招待及讓我有機會當了一次近代科技 Podcast 的明星。Podcast 的出現造就了許多不需要經過好萊塢的影視明星以及網紅,是我首次接觸到之近代日常生活典範的另一個重大轉變,真是活到老學到老。

延伸閱讀

-----廣告,請繼續往下閱讀-----

討論功能關閉中。

賴昭正_96
50 篇文章 ・ 61 位粉絲
成功大學化學工程系學士,芝加哥大學化學物理博士。在芝大時與一群留學生合創「科學月刊」。一直想回國貢獻所學,因此畢業後不久即回清大化學系任教。自認平易近人,但教學嚴謹,因此獲有「賴大刀」之惡名!於1982年時當選爲 清大化學系新一代的年青首任系主任兼所長;但壯志難酬,兩年後即辭職到美留浪,IBM顧問研究化學家退休 。晚期曾回台蓋工廠及創業,均應「水土不服」而鎩羽而歸。正式退休後,除了開始又爲科學月刊寫文章外,全職帶小孫女(半歲起);現已成七歲之小孫女的BFF(2015)。首先接觸到泛科學是因爲它轉載我的科學月刊上的一篇文章「愛因斯坦的最大的錯誤一宇宙論常數」。

0

3
2

文字

分享

0
3
2
【2023 諾貝爾物理獎】什麼是「阿秒脈衝雷射」?能捕捉到電子運動的脈衝雷射?
PanSci_96
・2023/11/28 ・5966字 ・閱讀時間約 12 分鐘

林俊傑《江南》:「相信愛一天,抵過永遠,在這一剎那凍結了時間」

這一剎那持續了多久?這出自佛經的時間單位有多個解讀,其中最短,可以對應的國際單位制是阿秒。 1 阿秒又有多快呢? 1 阿秒等於一百萬兆分之一秒,是已經短到不行的飛秒的千分之一。在這段時間,別說是談戀愛了,連世界上行動最快的光,也只能移動一顆原子直徑的距離。

在阿秒的時間尺度裡,連光都得停下腳步,過去我們認為捉摸不定的電子,也終於將在我們眼前現身。 2023 年的諾貝爾物理學獎,正是頒給了三位帶領人類進入阿秒領域,探索全新世界的科學家。而這項技術,還可能讓電腦的運算速度加快一萬倍!

就讓我們一起來進入阿秒的領域吧,領域展開!

什麼是阿秒脈衝雷射?

今年諾貝爾物理學獎的三位得主分別是 Pierre Agostini 、 Ferenc Krausz 、和 Anne L’Huillier ,表彰他們對阿秒脈衝雷射實驗技術的貢獻。

-----廣告,請繼續往下閱讀-----
圖/X

所謂的阿秒脈衝雷射,指的是持續時間僅有數十到數百阿秒的雷射。當我們能使用脈衝雷射來觀察目標,就好比使用快門時間極短的相機對目標拍照,能捕捉到瞬間的畫面。

2018 年的諾貝爾物理學獎,就頒給了極短脈衝雷射的研究。短短 5 年後,雷射領域再次得獎,但這次是更快的阿秒雷射,能捕捉到電子運動的超快脈衝雷射。

世界上沒有東西能真正的觸碰彼此?看見電子能帶來什麼突破?

為什麼看見電子的運動那麼重要呢?我們複習一下原子的基本構造,在原子核之外,帶有微小負電荷的電子,被帶正電的原子核束縛住。量子力學告訴我們電子沒有確切的位置,而是以特定的機率分布在原子核周圍的不同地方,也就是所謂的電子雲。

圖/YouTube

雖然電子的體積比原子核小很多,但電子雲的範圍,卻占了原子體積的絕大部分。在物理或化學反應中,真正和其他原子產生交互作用的,幾乎都是這些外面的電子。在電影《奧本海默》中,當男女主角手心貼著手心,奧本海默這時卻說:「世界上沒有東西能真正的觸碰彼此,因為我們觸摸到的物體,都只是其中原子的電子雲和我們手上的電子雲產生的斥力。」

-----廣告,請繼續往下閱讀-----
圖/screenrant

對了,這種話也只有奧本海默跟五條悟可以講,一般人請不要隨便亂牽別人的手。

除了和心儀的他牽手,不同的電子排列狀態也會直接影響物質的化學活性、材料的導電導熱等基本性質,各種化學和物理過程都和電子息息相關。從非常實際的層面來說,電子可以說是物質世界最重要的基本單位。所以不難想像,如果我們能看見電子,甚至獲得可以操縱個別電子排列與能量的技術,我們能真正成為材料的創世神,許多不可能都將化為可能,是相當重大的突破。

捕捉電子運動有多困難?

但要操縱電子可不是什麼簡單的事,不只是因為電子非常小,更重要的是他們動得非常快。具體來說,電子在原子周圍跳動的週期時間尺度大約是十的負十八次方秒,也就是一阿秒。一顆原子的大小約是十的負十次方公尺,速度等於距離除以週期,換算下來,電子雲差不多是以光速等級的速度在原子核周圍跳動。

圖/wikipedia

如果要捕捉到阿秒尺度的電子運動,就必須將實驗的時間解析度也提升到阿秒等級,否則就會像是用長曝光鏡頭拍攝亞運競速滑冰比賽一樣,只能拍到一團糊糊的影像,而沒辦法分出勝負。

-----廣告,請繼續往下閱讀-----

可是,在 1980 年代,脈衝雷射最快只能達到十的負十五次方左右,還只有飛秒等級。而且光靠當時的技術和材料優化,已經沒辦法再縮短脈衝時間了,因此這時候,就要從原理上重新打造一套方法了。

如何製造更快的脈衝?

首先,要製造更快的脈衝並不是用頻率更高的電磁波就好。你想,我們在拍照時,想要讓曝光時間更短,要改善的不是把室內光源從可見光改成頻率更高的紫外光,而是調快快門的開闔速度,讓光一段一段進入感光元件中,變成影片一幀一幀的畫面。而這一段一段進入像機的光訊號,就像是我們的脈衝。

不論是皮秒雷射、飛秒雷射還是阿秒雷射,一直以來在做的都是同一件事,在整體輸出功率不變的情況下,讓每一次脈衝的持續時間更短,同時單一次的功率也會更高。簡單來說,就是要從無數次的普通攻擊,變成每一次都是集氣後再攻擊。

但要怎麼為光集氣呢?光和其他波動一樣,可以和其他波動疊加。把不同頻率的光疊加在一起,波峰和波谷會抵消,波峰遇上波峰則會增強。只要用特定的比例組合許多不同頻率的光,就可以在整體總能量不變的情況下,產生一個超級窄的波峰,其他地方全部抵銷。

-----廣告,請繼續往下閱讀-----

1987 年,本次諾貝爾獎得主之一的 Anne L’Huillier 教授發現,當紅外線雷射穿過惰性氣體時,氣體會被激發放出整數倍頻的光。也就是氣體放出許多不同頻率的光,而這些頻率都是原本光源頻率的整數倍,從兩倍三倍到三十幾倍以上的高倍頻光都有。而橫跨這麼大頻率範圍的光,就能組合出時間長度很短的脈衝光。

不過這聽起來未免也太好康了,真的有那麼簡單嗎?

這個看似魔法的實驗背後其實有著相當簡潔的物理圖像。電子原本是被電磁力束縛在原子中,當一道強度夠強的雷射通過氣體原子,原本抓住電子的電位能被雷射削弱。

雖然這道牆只是矮了一些可是還是存在,但此時,在電子的大小尺度下,量子力學發揮了作用。調皮的電子有機會透過量子穿隧現象,穿過這道束縛,暫時逃離原子核的掌控。關於量子穿隧效應的介紹,我們近期也會再做一集節目來專門介紹。

-----廣告,請繼續往下閱讀-----

但電子還來不及逃遠,雷射光已經從波谷翻到波峰。電磁波的波谷與波峰,不是指能量的高和低,而是指方向相反。因此在相反的電磁場方向下,不幸的電子被推回原子核附近,再度被原子核捕獲。但在這欲擒故縱、七擒七縱的過程後,電子並非一無所獲,他所得到的動能會以光的形式重新放出。

而因為這些能量最早都來自雷射,因此電子放出的光波長,也剛好會是雷射的整數倍。再說的細一些,你可以理解為這些電子在吸收一顆顆光子後,一口氣釋放這些能量,所以能量都是一開始光子的整數倍。

在 1990 年代,科學家已經掌握了這個現象背後的原理。但一直到千禧年過後。這次諾貝爾獎得主之一 Pierre Agostini 教授和他的研究團隊才終於在適當的實驗條件之下,利用高倍頻光打造出了一連串寬度只有 250 阿秒的脈衝。同時第三位得主 Ferenc Krausz 也使用不同方法,分離出 650 阿秒的脈衝。

最後,獲得阿秒脈衝這個祕密武器之後,我們的世界將迎來哪些變化呢?

-----廣告,請繼續往下閱讀-----

阿秒脈衝在各領域的應用

其實啊,有在關注諾貝爾獎都知道,諾貝爾獎通常不會頒給時下正夯的新興研究,前面講的研究,實際上都已經是二十多年前的往事了,而這些辛苦的科學家會在這麼多年後拿下諾貝爾獎的榮耀,正是因為阿秒雷射的發明經過了時間的考驗,成為非常普及的實驗技術,而且被大家公認為重要的科學貢獻。

當然,今年生醫獎的 mRNA 是個超快例外,有興趣的話,別忘了點擊下方影片,看看編劇都編不出來的 mRNA 研究歷程。

說了那麼多,阿秒雷射究竟對人類生活有什麼幫助呢?當然,它能讓我們更深刻了解物質還有光的本質,但是除了幫電子拍下美美的照片放在期刊的封面上,阿秒雷射可以用來做什麼?

在過去這二十年,許多研究已經找到了相當有潛力的應用。

-----廣告,請繼續往下閱讀-----

舉例來說,在醫療方面,阿秒雷射可以用來分析血液或尿液樣本。控制良好的超短脈衝可以精準的刺激生物樣本中的各種有機分子,讓這些分子震動並放出紅外線訊號。如果使用的脈衝長度太長,分子釋放的訊號就很容易和原本施加刺激的雷射混在一起,造成量測的困難。唯有阿秒等級的超短脈衝能夠實現這樣的量測。

這些紅外線光譜就像是質譜儀一樣,能幫助我們快速分析血液中的蛋白質、脂質、核酸等重點物質的關鍵官能基狀態。並透過機器學習的方式整合,成為個人化的健康狀態報表,或是做為診斷的依據,將精準醫療提升到全新的層次。

圖/attoworld

不只如此,發送超短脈衝的技術也可能革新當今的電腦運算。電腦運作的方式就是利用電晶體這種微小的開關,不斷的開開關關去發送一跟零的訊號,所以開關電流的速度便決定了你的運算速度。以半導體為基礎的電晶體,工作頻率通常不超過上百 GHz ,在時間上也就是十的負十一次方秒。

自從阿秒雷射技術普及之後,就有科學家想到:既然雷射脈衝的速度更快,那不如就別用半導體了,改用光學脈衝來控制電流作為運算的媒介。這個概念叫做光學電晶體(Optical Transistor)。

今年初,亞利桑那大學的團隊便發展示了如何利用小於十的負十五次方秒的超短雷射脈衝,來開關電流並傳送一與零的位元,這個頻率比現有半導體電晶體快了一萬倍以上。這顯示了光學方法的操作頻率可以有多快,或許能讓我們突破訊號處理和運算上的速度瓶頸。

看完這些便可以理解,阿秒等級的超快雷射脈衝的確是相當近代的一個科學里程碑。就像是科學革命時望遠鏡和顯微鏡的發明,讓人們看見那些最遠和最小的事物,超快脈衝用最快的時間解析度,讓我們看到許多人類從未看過的景象。

阿秒脈衝雷射的出現,是科學上的一個里程碑,讓我們能用更高的時間解析度,讓我們看到許多過去從未看到的景象。最後也想問問大家,在雷射這一塊,你最期待有哪些應用,或者最希望我們接著來講哪個主題呢?

  1. 為什麼醫美、眼科手術那麼喜歡用飛秒、阿秒雷射,真的有比較好嗎?
  2. 使用雷射脈衝的光學電晶體真的有可能取代傳統電晶體嗎?
  3. 除了光學電晶體,最近很夯的矽光子技術,聽說裡面也有用到雷射,可以一起來介紹嗎?

歡迎訂閱 Pansci Youtube 頻道 獲取更多深入淺出的科學知識!

參考資料

-----廣告,請繼續往下閱讀-----
PanSci_96
1266 篇文章 ・ 2632 位粉絲
PanSci的編輯部帳號,會發自產內容跟各種消息喔。