Loading [MathJax]/extensions/tex2jax.js

0

0
0

文字

分享

0
0
0

聽說紅鳳菜含有生物鹼、具有毒性,這是真的嗎?

活躍星系核_96
・2017/07/31 ・2727字 ・閱讀時間約 5 分鐘 ・SR值 546 ・八年級

作者 / 林慶順教授    編輯 / 沙珮琦、雷雅淇

2017 / 7 / 11 一位好友寄來電郵,要我查證一則網路流言的真假。該流言的內容如下:

中科院植物研究所博士劉夙在微博上稱,紅鳳菜含有吡咯裡西啶生物鹼。具有肝毒性,建議大家不要食用這種野菜。他介紹,紅鳳菜在分類學上屬於菊科、千里光族、菊三七屬。上世紀,化學家就發現千里光族植物普遍含有吡咯裡西啶類生物鹼(PA),在動物身上做過了大量 PA 的毒性實驗,證明它有強烈的肝毒性,可以導致肝硬化。
此外,它還有致癌、致畸性,並可導致原發性肺高壓。專家研究表明紅鳳菜的地上部分具有最強的肝毒性。因此,建議市民最好不要食用紅鳳菜。

紅鳳、紅莧,本是一家親?

在我分析這個流言的真假之前,一定要先搞清楚「紅鳳菜」和「紅莧菜」有何不同。

紅鳳菜的植物學名為 Gynura bicolor,而紅莧菜的植物學名則為 Amaranthus tricolor。也就是說,它們在分類學上是屬於不同屬。就外觀而言,紅鳳菜的葉子是正面綠色,背面紅紫色,而紅莧菜的葉子是周邊綠色,中心紅紫色,正反兩面都一樣。

紅鳳菜與紅莧菜比較圖。

一般來說,紅鳳菜用麻油薑絲炒熟,作為一種進補的菜(口感脆硬滑),而紅莧菜則是和小魚乾一起炒熟,作為配飯的菜餚(口感軟爛澀)。紅莧菜似乎沒有什麼毒不毒的爭議。至於紅鳳菜,就請看下面的分析。

-----廣告,請繼續往下閱讀-----

博士、博士,你究竟是何方神聖?

首先,我們來看流言所說的「中科院植物研究所博士劉夙」是否真有其人。

百度百科是這麼說:
劉夙,男,1982 年 7 月生於山西省太原市。2004 年本科畢業於北京大學化學與分子工程學院。2007 年畢業於北京大學歷史學系,獲碩士學位。現為中國科學院植物研究所博士研究生。研究方向為植物學文獻和植物學史。業餘從事科普寫作和科學傳播活動,現為互動百科新知社植物組專家成員,為「自然之友」植物組指導老師和科普雜誌《新知客》專欄作者,並在《新京報》、《牛頓科學世界》等雜誌上發表科普文章數十篇。

劉夙在微博的網頁是這麼說:
1982 年 7 月 29 日出生,畢業於北京大學,是上海辰山植物園工程師,果殼網作者、微博簽約自媒體。

由於我沒有微博帳號,所以無法進一步查證劉夙是否真的有在微博談論紅鳳菜有毒。但是,有關劉夙與紅鳳菜的消息是首次出現在一篇 2013 年 8 月 13 日的四川在線文章。該文章的標題是網傳食用血皮菜可致肝癌 調查:成都菜場很好銷,第一段是:

-----廣告,請繼續往下閱讀-----

進入夏季後,野菜血皮菜 (也叫紅鳳菜)逐漸在成都菜市場上出現,不少市民以為這種野菜能夠補血,常買回家涼拌或炒豬肝吃。近日,中科院植物研究所的博士劉夙在微博上稱,血皮菜含有吡咯裡西啶生物鹼,具有肝毒性,建議大家不要食用這種野菜。

也就是說,早在 4 年前,就有有關紅鳳菜有毒的傳聞。但是,就是不知道為什麼,這個傳聞近幾日又熱絡起來。

紅鳳菜。圖/By Hakkatw @ wikipedia commons

維持多元飲食,不怕紅鳳菜有毒

不管如何,的確是有文獻說紅鳳菜含有吡咯里西啶生物鹼,而此一生物鹼的確具有肝毒性。譬如,一篇今年 1 月 21 日發表的研究調查報告就是這麼說,而它是出自於中國的科學院植物研究所。但是,反過來說,一篇 2015 年出自於長庚大學的報告卻說紅鳳菜沒有任何毒性。

還有,台灣癌症基金會的一篇文章完全沒提到紅鳳菜有毒,反而說它:

  1. 富含維生素 A 及 β 胡蘿蔔素
  2. 含鐵量高
  3. 抗發炎
  4. 有助降血壓
  5. 富含花青素

事實上,香港的食物安全中心有一份日期標示為 2017 年 1 月的「風險評估研究第 56 號報告書」,而其標題就是食物中的吡咯里西啶類生物鹼。我把其中的重點整理如下:

-----廣告,請繼續往下閱讀-----

 1. 目前已從 6000 多種植物中發現超過 660 多種吡咯里西啶類生物鹼及其相應的氮氧化衍生物。吡咯里西啶類生物鹼是分布最廣的天然毒素,有報告指出,人類會因使用了有毒的植物品種所配製的草本茶或傳統藥物,以及進食了被含有吡咯里西啶類生物鹼的種子所污染的穀物或穀物製品(麵粉或麵包)而中毒。海外研究顯示,人類進食蜂蜜、茶、奶類、蛋類和動物內臟,亦會攝入吡咯里西啶類生物鹼;不過,現時並沒有這些膳食來源導致人類中毒個案的報告。

 2. 經分析 234 個樣本後,其中有 118 個(50%)驗出含有至少一種「 1,2-不飽和吡咯里西啶類生物鹼」。在這 118 個樣本當中,大部分(91 個)屬於「乾製香料」、「蜂蜜」和「茶葉(已沖泡)」食物組別。至於其他驗出含吡咯里西啶類生物鹼的食品,還有小麥、黑麥麵粉、鴨蛋、乳酪、芝士、茶飲料等。

 3. 就不同食物組別的吡咯里西啶類生物鹼含量而言,以「乾製香料」的 1,2-不飽和吡咯里西啶類生物鹼總量最高,其次是「蜂蜜」和「茶葉(已沖泡)」。

「乾製香料」的 1,2-不飽和吡咯里西啶類生物鹼總量最高。圖/Stux @ Pixabay, CC0 Public Domain

 4. 「茶葉(已沖泡)」是市民攝入吡咯里西啶類生物鹼總量的主要來源,佔總攝入量達 3%(即攝入量下限為每日每公斤體重0.00016微克)。

-----廣告,請繼續往下閱讀-----

 5. 到目前為止,尚無人類流行病學資料顯示,攝入吡咯里西啶類生物鹼與人類患癌有關。

 6. 一般而言,根據動物研究建立的基準劑量可信限下限,計算所得的暴露限值若 ≥10000,從公眾健康角度觀之,值得關注的程度不高,並無採取風險管理措施的急切需要。

 7. 根據這次研究從膳食攝入吡咯里西啶類生物鹼總量的結果,並無充分理據建議市民改變基本的健康飲食習慣。市民應保持均衡和多元化的飲食,包括進食多種蔬果,避免因偏食某幾類食物而攝入任何過量的污染物。

從上面所列的重點可以得知,吡咯里西啶類生物鹼並不是紅鳳菜特有的,而就攝取自食物而言,並無證據顯示它真的具有風險。所以,我給讀者的建議就跟第七點一樣:只要保持均衡和多元化的飲食,就無需擔心紅鳳菜是否有毒。

-----廣告,請繼續往下閱讀-----

參考文獻:

 

-----廣告,請繼續往下閱讀-----
文章難易度
活躍星系核_96
778 篇文章 ・ 128 位粉絲
活躍星系核(active galactic nucleus, AGN)是一類中央核區活動性很強的河外星系。這些星系比普通星系活躍,在從無線電波到伽瑪射線的全波段裡都發出很強的電磁輻射。 本帳號發表來自各方的投稿。附有資料出處的科學好文,都歡迎你來投稿喔。 Email: contact@pansci.asia

0

1
0

文字

分享

0
1
0
ECU: 汽車大腦的演化與挑戰
鳥苷三磷酸 (PanSci Promo)_96
・2025/07/02 ・3793字 ・閱讀時間約 7 分鐘

本文與 威力暘電子 合作,泛科學企劃執行。

想像一下,當你每天啟動汽車時,啟動的不再只是一台車,而是一百台電腦同步運作。但如果這些「電腦」突然集體當機,後果會有多嚴重?方向盤可能瞬間失靈,安全氣囊無法啟動,整台車就像失控的高科技廢鐵。這樣的「系統崩潰」風險並非誇張劇情,而是真實存在於你我日常的駕駛過程中。

今天,我們將深入探討汽車電子系統「逆天改運」的科學奧秘。究竟,汽車的「大腦」—電子控制單元(ECU),是如何從單一功能,暴增至上百個獨立系統?而全球頂尖的工程師們,又為何正傾盡全力,試圖將這些複雜的系統「砍掉重練」、整合優化?

第一顆「汽車大腦」的誕生

時間回到 1980 年代,當時的汽車工程師們面臨一項重要任務:如何把汽油引擎的每一滴燃油都壓榨出最大動力?「省油即省錢」是放諸四海皆準的道理。他們發現,關鍵其實潛藏在一個微小到幾乎難以察覺的瞬間:火星塞的點火時機,也就是「點火正時」。

如果能把點火的精準度控制在「兩毫秒」以內,這大約是你眨眼時間的百分之一到千分之一!引擎效率就能提升整整一成!這不僅意味著車子開起來更順暢,還能直接省下一成的油耗。那麼,要如何跨過這道門檻?答案就是:「電腦」的加入!

-----廣告,請繼續往下閱讀-----

工程師們引入了「微控制器」(Microcontroller),你可以把它想像成一顆專注於特定任務的迷你電腦晶片。它能即時讀取引擎轉速、進氣壓力、油門深度、甚至異常爆震等各種感測器的訊號。透過內建的演算法,在千分之一秒、甚至微秒等級的時間內,精準計算出最佳的點火角度,並立刻執行。

從此,引擎的性能表現大躍進,油耗也更漂亮。這正是汽車電子控制單元(ECU)的始祖—專門負責點火的「引擎控制單元」(Engine Control Unit)。

汽車電子控制單元的始祖—專門負責點火的「引擎控制單元」(Engine Control Unit)/ 圖片來源:shutterstock

ECU 的失控暴增與甜蜜的負荷

第一顆 ECU 的成功,在 1980 年代後期點燃了工程師們的想像:「這 ECU 這麼好用,其他地方是不是也能用?」於是,ECU 的應用範圍不再僅限於點火,燃油噴射量、怠速穩定性、變速箱換檔平順度、ABS 防鎖死煞車,甚至安全氣囊的引爆時機……各種功能都交給專屬的 ECU 負責 。

然而,問題來了:這麼多「小電腦」,它們之間該如何有效溝通?

-----廣告,請繼續往下閱讀-----

為了解決這個問題,1986 年,德國的博世(Bosch)公司推出了一項劃時代的發明:控制器區域網路(CAN Bus)。你可以將它想像成一條專為 ECU 打造的「神經網路」。各個 ECU 只需連接到這條共用的線路上,就能將訊息「廣播」給其他單元。

更重要的是,CAN Bus 還具備「優先通行」機制。例如,煞車指令或安全氣囊引爆訊號這類攸關人命的重要訊息,絕對能搶先通過,避免因資訊堵塞而延誤。儘管 CAN Bus 解決了 ECU 之間的溝通問題,但每顆 ECU 依然需要獨立的電源線、接地線,並連接各種感測器和致動器。結果就是,一輛汽車的電線總長度可能達到 2 到 4 公里,總重量更高達 50 到 60 公斤,等同於憑空多載了一位乘客的重量。

另一方面,大量的 ECU 與錯綜複雜的線路,也讓「電子故障」開始頻繁登上汽車召回原因的榜首。更別提這些密密麻麻的線束,簡直是設計師和維修技師的惡夢。要檢修這些電子故障,無疑讓人一個頭兩個大。

大量的 ECU 與錯綜複雜的線路,也讓「電子故障」開始頻繁登上汽車召回原因的榜首。/圖片來源:shutterstock

汽車電子革命:從「百腦亂舞」到集中治理

到了2010年代,汽車電子架構迎來一場大改革,「分區架構(Zonal Architecture)」搭配「中央高效能運算(HPC)」逐漸成為主流。簡單來說,這就像在車內建立「地方政府+中央政府」的管理系統。

-----廣告,請繼續往下閱讀-----

可以想像,整輛車被劃分為幾個大型區域,像是車頭、車尾、車身兩側與駕駛艙,就像數個「大都會」。每個區域控制單元(ZCU)就像「市政府」,負責收集該區所有的感測器訊號、初步處理與整合,並直接驅動該區的馬達、燈光等致動器。區域先自理,就不必大小事都等中央拍板。

而「中央政府」則由車用高效能運算平台(HPC)擔任,統籌負責更複雜的運算任務,例如先進駕駛輔助系統(ADAS)所需的環境感知、物體辨識,或是車載娛樂系統、導航功能,甚至是未來自動駕駛的決策,通通交由車輛正中央的這顆「超級大腦」執行。

乘著這波汽車電子架構的轉型浪潮中, 2008 年成立的台灣本土企業威力暘電子,便精準地切入了這個趨勢,致力於開發整合 ECU 與區域控制器(Domain Controller)功能的模組化平台。他們專精於開發電子排檔、多功能方向盤等各式汽車電子控制模組。為了確保各部件之間的溝通順暢,威力暘提供的解決方案,就像是將好幾個「分區管理員」的職責,甚至一部分「超級大腦」的功能,都整合到一個更強大的硬體平台上。

這些模組不僅擁有強大的晶片運算能力,可同時支援 ADAS 與車載娛樂,還能兼容多種通訊協定,大幅簡化車內網路架構。如此一來,車廠在追求輕量化和高效率的同時,也能顧及穩定性與安全性。

-----廣告,請繼續往下閱讀-----
2008 年威力暘電子致力於開發整合 ECU 與區域控制器(Domain Controller)功能的模組化平台 /圖片來源:shutterstock

萬無一失的「汽車大腦」:威力暘的四大策略

然而,「做出來」與「做好」之間,還是有差別。要如何確保這顆集結所有功能的「汽車大腦」不出錯?具體來說,威力暘電子憑藉以下四大策略,築起其產品的可靠性與安全性:

  1. AUTOSAR : 導入開放且標準化的汽車軟體架構 AUTOSAR。分為應用層、運行環境層(RTE)和基礎軟體層(BSW)。就像在玩「樂高積木」,ECU 開發者能靈活組合模組,專注在核心功能開發,從根本上提升軟體的穩定性和可靠性。
  2. V-Model 開發流程:這是一種強調嚴謹、能在早期發現錯誤的軟體開發流程。就像打勾 V 字形般,左側從上而下逐步執行,右側則由下而上層層檢驗,確保每個階段的安全要求都確實落實。
  3. 基於模型的設計 MBD(Model-Based Design) 威力暘的工程師們會利用 MatLab®/Simulink® 等工具,把整個 ECU 要控制的系統(如煞車),用數學模型搭建起來,然後在虛擬環境中進行大量的模擬和測試。這等於在實體 ECU 誕生前,就能在「數位雙生」世界中反覆演練、預先排除設計缺陷,,並驗證安全機制是否有效。
  4. Automotive SPICE (ASPICE) : ASPICE 是國際公認的汽車軟體「品質管理系統」,它不直接評估最終 ECU 產品本身的安全性,而是深入檢視團隊在軟體開發的「整個過程」,也就是「方法論」和「管理紀律」是否夠成熟、夠系統化,並只根據數據來評估品質。

既然 ECU 掌管了整輛車的運作,其能否正常運作,自然被視為最優先項目。為此,威力暘嚴格遵循汽車業中一本堪稱「安全聖經」的國際標準:ISO 26262。這套國際標準可視為一本針對汽車電子電氣系統(特別是 ECU)的「超嚴格品管手冊」和「開發流程指南」,從概念、設計、測試到生產和報廢,都詳細規範了每個安全要求和驗證方法,唯一目標就是把任何潛在風險降到最低

有了上述這四項策略,威力暘確保其產品從設計、生產到交付都符合嚴苛的安全標準,才能通過 ISO 26262 的嚴格檢驗。

然而,ECU 的演進並未就此停下腳步。當ECU 的數量開始精簡,「大腦」變得更集中、更強大後,汽車產業又迎來了新一波革命:「軟體定義汽車」(Software-Defined Vehicle, SDV)。

-----廣告,請繼續往下閱讀-----

軟體定義汽車 SDV:你的愛車也能「升級」!

未來的汽車,會越來越像你手中的智慧型手機。過去,車輛功能在出廠時幾乎就「定終身」,想升級?多半只能換車。但在軟體定義汽車(SDV)時代,汽車將搖身一變成為具備強大運算能力與高速網路連線的「行動伺服器」,能夠「二次覺醒」、不斷升級。透過 OTA(Over-the-Air)技術,車廠能像推送 App 更新一樣,遠端傳送新功能、性能優化或安全修補包到你的車上。

不過,這種美好願景也將帶來全新的挑戰:資安風險。當汽車連上網路,就等於向駭客敞開潛在的攻擊入口。如果車上的 ECU 或雲端伺服器被駭,輕則個資外洩,重則車輛被遠端鎖定或惡意操控。為了打造安全的 SDV,業界必須遵循像 ISO 21434 這樣的車用資安標準。

威力暘電子運用前面提到的四大核心策略,確保自家產品能符合從 ISO 26262 到 ISO 21434 的國際認證。從品質管理、軟體開發流程,到安全認證,這些努力,讓威力暘的模組擁有最高的網路與功能安全。他們的產品不僅展現「台灣智造」的彈性與創新,也擁有與國際大廠比肩的「車規級可靠度」。憑藉這些實力,威力暘已成功打進日本 YAMAHA、Toyota,以及歐美 ZF、Autoliv 等全球一線供應鏈,更成為 DENSO 在台灣少數核准的控制模組夥伴,以商用車熱系統專案成功打入日系核心供應鏈,並自 2025 年起與 DENSO 共同展開平台化量產,驗證其流程與品質。

毫無疑問,未來車輛將有更多運作交由電腦與 AI 判斷,交由電腦判斷,比交由人類駕駛還要安全的那一天,離我們不遠了。而人類的角色,將從操作者轉為監督者,負責在故障或斷網時擔任最後的保險。透過科技讓車子更聰明、更安全,人類甘願當一個「最弱兵器」,其實也不錯!

-----廣告,請繼續往下閱讀-----
-----廣告,請繼續往下閱讀-----
文章難易度

討論功能關閉中。