0

0
0

文字

分享

0
0
0

為了台灣,一直走在最前面的地震預警

震識:那些你想知道的震事_96
・2017/07/24 ・2850字 ・閱讀時間約 5 分鐘 ・SR值 561 ・九年級

文/吳逸民|台大地質系教授

「強震警報簡訊」為我們爭取了數秒鐘的預警時間,能在地震發生時、震波來襲前搶先知道地震即將來臨,或許大家可能多少知道這樣的簡訊服務逐漸普遍,但你知道這項技術的發展史和背後默默努力的科學家嗎?今天震識邀請了在國內地震預警技術發展扮演重要角色的吳逸民教授,跟我們談談過去的內幕秘辛點滴!

吳逸民教授(投影片中也是)。圖/震識站主潘昌志(阿樹)於 2013 年拍攝

重視地震威脅,地震預警很重要

台灣、日本及墨西哥是最早投入地震預警系統(註 1)的國家,地震頻繁的日本同時擁有先進的高速鐵路,而地震預警的發展也因應而生。至於墨西哥,則是因為墨西哥市就建在乾枯的湖泊上,即使是遠在三百公里外的隱沒帶發生大地震,因為盆地及場址效應,也會放大地震波而造成墨西哥市高樓的損壞,1985 的墨西哥地震就是一個典型的案例。

地震災害總是會提醒著人們,不要輕忽地震威脅,而台灣投入地震預警系統開發的科學動機,自然也是一起顯著的地震。1986 年的花蓮地震發生在外海,對花蓮的住家並沒有造成太大損害,這次地震反而最嚴重的災害卻是在 120 公里外的台北。根據震波的速度推估,具破壞力剪力波(S 波)從這次地震的發震位置傳遞到台北的時間,至少要 30 秒,因此,若在花蓮建立預警系統,就可以對台北提供預警時間。

透過 P 波與 S 波的速率差距,在地震來臨時對各觀測站與民眾進行即時通知。圖/ I, Genppy, CC BY-SA 3.0, wikimedia commons.

經濟起飛時,帶著科學一起翱翔吧

有了科學動機,還要有資源投入,到底是什麼樣的契機,讓台灣在二十幾年前就開始發展地震預警系統?1990 年代,台灣正值經濟繁榮,國家建設開始蓬勃發展,中央氣象局便打鐵趁熱成立地震測報中心,當時的局長是蔡清彥教授,地震測報中心的主任是辛在勤博士。

地震測報中心初期在思考該如何推動地震觀測的發展時,那時延聘了鄧大量院士、吳大銘教授、蔡義本教授及李泓鑑博士為顧問。蔡義本教授就建議應該建立強地動的觀測網(註2),因為,當時有許多國家的強地動觀測網都在大地震發生後才建置,大多未能留下大地震的強震紀錄(註3)。蔡局長接受了建議,開啟了台灣大規模的強震觀測史,密集設置強地動觀測站。因此,1999 年 921 集集大地震發生後,台灣便因而得到前所未有的近斷層強震紀錄,這些紀錄對於往後地震科學發展有莫大助益。這些寶貴的科學資源,也是拜當年睿智的決定所賜。

車籠埔斷層造成921地震。圖/經濟部水利署中區水資源局。資料來源:石管中心。

開發的點滴,獨家的記憶

此外,服務於美國地質調查所的李泓鑑博士,當時也建議台灣應該要發展地震預警系統,基於 1986 年的花蓮地震案例,加上當時國際間地震預警處於剛發展的初期,李泓鑑博士認為這領域是台灣有潛力可領先世界的研究項目,於是便開始發展地震預警系統。

當年的地震預警系統主要由加拿大的地震儀器公司負責開發,系統主要接收在花蓮地區十個地震站進行解算,而預警系統的主機分別設在花蓮及台北,這是當年的主(A)計畫。鄧大量院士回來台灣時發現,當年傳輸地震訊號的數據線路(可以想成像網路訊號的概念)仍有一半的頻寬可以使用,建議將共站的強震儀訊號即時傳回,以發展地震預警系統的備案(B)計畫。

服完兵役的我,於 1993 年進入氣象局工作,不久就被指派接手 B 計畫,當時有些資深前輩認為,地震預警不會成功,所以 B 計畫就由我這菜鳥接手。我一直認為戰士是不能選戰場的,所以接手後便孜孜不倦的進行這計畫,與在遠地球另一端李泓鑑博士一起工作、分頭進行。李泓鑑博士心跳是一般人的兩倍速率,是個急躁的人,自稱是 Slave driver,為了解決難題,三天兩頭總有超過一兩小時的國際電話。當年我也曾兩度飛到美國地質調查所與他共事,而他來台灣時,便是由我接待,我還曾帶他到基隆配眼鏡喝啤酒……;李泓鑑博士近年來健康狀況不佳,而我現在也不喝啤酒了,如今回想起往事,不勝唏噓。

九二一報告,效率領先世界

當年公務人員出國多少也有酬庸性質,第一年我出國去與李泓鑑博士工作,第二年要換其他人去時,李泓鑑博士就說,如果要換其他人,那也不用來了!所以第二次還是我出國工作。因為李泓鑑博士的專業指導,原先是備案的 B 計畫反而成功了,由於當年的 A 計畫因為是商業的系統,使用者無法進行修改,儀器業者的地震專業仍有些不足,最後終究被 B 計畫淘汰,然而 A 計畫的細節畢竟已是塵封的往事,如今也毋需多談了。

但 B 計畫是如何成功的呢?首先,利用即時強地動訊號進行有感地震測報,因為是來自強震儀器的訊號,除了可以利用地震波形資訊進行地震定位及計算規模,亦能同時將地動加速度轉成震度。在 1995 年之前,光是發布一個有感地震就要花上約 30 分鐘的時間,運用 B 計畫的技術後,便可縮短在 10 分鐘之內,而在九二一地震發生後,地震速報的訊息約兩分鐘就可以送出,是 B 計畫的成效,也是當時領先世界的效率。

B 計畫的基礎技術由李泓鑑博士提供,當年的計算時效最終仍遇到一個難以突破的瓶頸:為了追求時效,需要用地震初始振動定出規模,但這是一個難以突破的關鍵技術,直到 1998 年提出新的規模計算法,才開始有辦法在 30 秒提供地震解算結果,初探地震預警的先機,藉由預警子網及虛擬子網(註 4),到了 2002 年,已經可以在地震發生後 22 秒提供初步的地震訊息,為當時最佳的地震預警系統,這也是有心插柳的結果,也讓地震預警可進入下一步的應用階段。

虛擬子網示意圖,圖中三角形指的是即時強震測站,虛線為在不同地方發生地震事件時,系統自動搜尋圓半徑約 60 公里的子網範圍,計算範圍中的測站可以增加地震資訊處理的效率。圖中星星為 1999 集集地震的震央位置。圖/截自 Yih-Min Wu, T.-l. T. (2002), A Virtual Subnetwork Approach to Earthquake Early Warning, Bull. Seism. Soc. Am, 92(5), 11

本文轉載自震識:那些你想知道的震事──《台灣發展地震預警的過往雲煙》


註釋

  • 註1:本文所提到的「地震預警」並非預測地震的方法,而是在地震發生時搶快在震波來襲前提供警報的技術,氣象局官方名稱為「強震即時警報」。然在技術發展過程中皆以「預警」來描述,故本文仍使用地震預警一詞。
  • 註2:「強地動觀測網」指的是以強震儀(提供紀錄為「加速度值」)所組成的地震觀測網,而加速度值可以直接換算並對應震度的資訊。
  • 註3:本文中所有「強震儀」、「強震資料」都是指記錄地震動加速度值的儀器與紀錄,都是因應工程與震度等需求而生的。
  • 註4:「子網」的概念是將全台的即時強震站再細分為數個較小的網路,如將北部畫成一區、花蓮畫成一區……,以此類推。當子網的儀器偵測到地震時先行分析處理資料,比起處理全台的資料,較少測站的子網可有效縮短時間。其中預警子網是事先用人工方式分區,而虛擬子網則是在地震訊號進來時,電腦依收到設號的測站位置自動畫分子網範圍,可再進一步加速預警時效,得到更多預警時間。

文章難易度
震識:那些你想知道的震事_96
38 篇文章 ・ 6 位粉絲
《震識:那些你想知道的震事》由中央大學馬國鳳教授與科普作家潘昌志(阿樹)共同成立的地震知識部落格。我們希望透過淺顯易懂的文字,讓地震知識走入日常生活中,同時也會藉由分享各種地震的歷史或生活故事,讓地震知識也充滿人文的溫度。


1

4
0

文字

分享

1
4
0

解析「福衛七號」的觀測原理——它發射升空後,如何讓天氣預報更準確?

科技大觀園_96
・2021/10/25 ・2915字 ・閱讀時間約 6 分鐘

2019 年 6 月 25 日,福爾摩沙衛星七號(簡稱福衛七號)在國人的引頸期盼下升空。一年多來(編按:以原文文章發佈時間計算),儘管衛星還沒有全部轉換到預定的軌道,但已經回傳許多資料,這些資料對於天氣預報的精進,帶來很大的助益。中央大學大氣系特聘教授黃清勇及團隊成員楊舒芝教授、陳舒雅博士最近的研究主題,就是福衛七號傳回的資料,對天氣預報能有哪些改善。

掩星觀測的原理

要介紹福衛七號帶來的貢獻,得先從它的上一代──福衛三號說起。福衛三號包含了 6 顆氣象衛星,軌道高度 700~800 公里,以 72 度的傾角繞著地球運轉(繞行軌道與赤道夾角為 72 度)。這些衛星提供氣象資訊的方式,是接收更高軌道(約 20,200 公里)的 GPS 衛星所放出的電波,這些電波在行進到氣象衛星的路程中,會從太空進入大氣,並產生偏折,再由氣象衛星接收。換句話說,氣象衛星接收到的電波並不是走直線傳遞來的,而是因為大氣的折射,產生了偏折,藉由偏折角可推得大氣資訊。

▲低軌道衛星(如福衛三號)持續接收 GPS 衛星訊號,直到接收不到為止,整個過程會轉換成一次掩星事件,讓科學家取得大氣溫濕度垂直分佈。圖/黃清勇教授提供

氣象衛星會一邊移動,一邊持續接收電波,直到接收不到為止,在這段過程中,電波穿過的大氣從最高層、較稀薄的大氣,逐漸變為最底層、最接近地面的大氣,科學家能將這段過程中每一層大氣所造成的偏折角,通過計算回推出折射率,而折射率又和大氣溫度、水氣、壓力有關  ,因此可再藉由每個高度的大氣折射率,得出溫濕度垂直分布,這種觀測方式稱為「掩星觀測」。掩星觀測所得到的資料,可以納入數值預報模式,進一步做各種預報分析。 

資料同化──觀測與模式的最佳結合

在將掩星觀測資料納入數值預報模式時,必須先經過「資料同化」的過程。數值預報模式內含動力方程式,可以模擬任何一個位置的氣塊的運動,但是因為大氣環境非常複雜,模擬時不可能納入全部的動力條件,因此模擬結果不一定正確。而另一方面,掩星觀測資料提供的是真實觀測資訊,楊舒芝形容:「觀測就像拿著照相機拍照,不管什麼動力方程式,拍到什麼就是什麼。」但是,觀測的分布是不均勻的—唯有觀測過的位置,我們才會有觀測資料。

所以,我們一手擁有分布不均勻但很真實的觀測資料,另一手擁有很全面但可能不太正確的模式模擬。資料同化就是結合這兩者,找到一個最具代表性的大氣初始分析場,再以這個分析場為起點,去做後續的預報。資料同化正是楊舒芝和陳舒雅的重點工作之一。 

中央大學分別模擬 2010 年梅姬颱風和 2013 年海燕颱風的路徑,發現加入福三掩星觀測資料之後,可以降低颱風模擬路徑的誤差。圖/黃清勇教授提供

由於掩星觀測取得的資料與大氣的溫度、濕度、壓力有密切關係,因此在預報颱風、梅雨或豪大雨等與水氣量息息相關的天氣時,帶來重要的幫助。黃清勇的團隊針對福衛三號的掩星觀測資料對天氣預報的影響,做了許多模擬與研究,發現在預測颱風或氣旋生成、預報颱風路徑,以及豪大雨的降雨區域及雨量等,納入福衛三號的掩星觀測資料,都能有效提升預報的準確度。

黃清勇進一步說明,由於颱風都是在海面上生成的,而掩星觀測技術仰賴的是繞著地球運行的衛星來收集資料,相較於一般位於陸地上的觀測站,更能夠取得海上大氣資料,因此對於預測颱風的生成有很好的幫助。另一方面,這些資料也能幫助科學家掌握大氣環境,例如對於太平洋高壓的範圍抓得很準確,那麼對颱風路徑的預測自然也會更準。根據團隊的研究,加入福衛三號的掩星觀測資料,平均能將 72 小時颱風路徑預報的誤差減少約 12 公里,相當於改進了 5%。

豪大雨的預測則不只溫濕度等資訊,還需要風場資訊的協助,楊舒芝以 2008 年 6 月 16 日臺灣南部降下豪大雨的事件做為舉例,一般來說豪大雨都發生在山區,但這次的豪大雨卻集中在海岸邊,而且持續時間很久。為了找出合理的預測模式,楊舒芝探討了如何利用掩星觀測資料來修正風場。 

從 2008 年 6 月 16 日的個案發現,掩星資料有助於研究團隊掌握西南氣流的水氣分佈。上圖 CNTL 是未使用掩星資料的控制組,而 REF 和 BANGLE 皆有加入掩星資料(同化算子不一樣),有掩星資料可明顯改善模擬,更接近觀測值(Observation)。圖/黃清勇教授提供

福衛七號接棒觀測

隨著福衛三號的退休,福衛七號傳承了氣象觀測的重責大任。福衛七號也包含了 6 顆氣象衛星,不過它和福衛三號有些不同之處。

福衛三號是以高達 72 度的傾角繞著地球運轉,取得的資料點分布比較均勻,高緯度地區會比低緯度地區密集一些。相較之下,福衛七號的傾角只有 24 度,它所觀測的點集中在南北緯 50 度之間,對臺灣所在的副熱帶及熱帶地區來說,密集度更高;加上福衛七號收集的電波來源除了美國的 GPS 衛星,還增加了俄國的 GLONASS 衛星,這些因素使得在低緯度地區,福衛七號所提供的掩星觀測資料將比福衛三號多出約四倍,每天可達 4,000 筆。

福衛三號與福衛七號比較表。圖/fatcat 11 繪

另一方面,福衛七號的軟硬體比起福衛三號更加先進,可以獲得更低層的大氣資料,而因為水氣主要都集中在低層,所以福衛七號對水氣掌握會比福衛三號更具優勢。

從福衛三號到福衛七號,其實模式也在逐漸演進。早期的模式都是納入「折射率」進行同化,而折射率又是從掩星觀測資料測得的偏折角計算出來的。「偏折角」是衛星在做觀測時,最直接觀測到的數據,相較之下,折射率是計算出來的,就像加工過的產品,一定有誤差。因此,近來各國學者在做數值模擬時,愈來愈多都是直接納入偏折角,而不採用折射率。黃清勇解釋:「直接納入偏折角會增加模式計算的複雜度,也會增加運算所需的時間,而預報又是得追著時間跑的工作,因此早期才會以折射率為主。」不過現在由於電腦的運算能力與模式都已經有了進步,因此偏折角逐漸成為主流的選擇。 

由左至右依序為,楊舒芝教授、黃清勇特聘教授、陳舒雅助理研究員。圖/簡克志攝

福衛七號其實還沒有全部轉換到預定的軌道,不過這一年多來的掩星觀測資料,已經讓中央氣象局對熱帶地區的天氣預報,準確度提升了 4~10%;陳舒雅也以今年 8 月的哈格比颱風為案例,成功地利用福衛七號的掩星觀測資料,模擬出哈格比颱風的生成。

除了福衛七號,還有一顆稱為「獵風者」的實驗型衛星,預計 2022 年將會升空。獵風者的任務是接收從地表反射的 GPS 衛星電波,然後推估風速。可以想見,一旦有了獵風者的加入,我們對大氣環境的掌握度勢必更好,對於颱風等天氣現象的預報也能更加準確。就讓我們一起期待吧!

科技大觀園_96
156 篇文章 ・ 376 位粉絲
為妥善保存多年來此類科普活動產出的成果,並使一般大眾能透過網際網路分享科普資源,科技部於2007年完成「科技大觀園」科普網站的建置,並於2008年1月正式上線營運。 「科技大觀園」網站為一數位整合平台,累積了大量的科普影音、科技新知、科普文章、科普演講及各類科普活動訊息,期使科學能扎根於每個人的生活與文化中。
網站更新隱私權聲明
本網站使用 cookie 及其他相關技術分析以確保使用者獲得最佳體驗,通過我們的網站,您確認並同意本網站的隱私權政策更新,了解最新隱私權政策