4

1
0

文字

分享

4
1
0

海龜溺死了

大海子
・2012/02/15 ・1580字 ・閱讀時間約 3 分鐘 ・SR值 479 ・五年級

一群海龜因誤闖流刺網因而集體溺死-圖片來自於Sea Shepherd South Africa
一群海龜因誤闖流刺網因而集體溺死-圖片來自於Sea Shepherd South Africa

「你看!這新聞真邪門耶!」

「什麼?!海裡的海龜居然會溺死?」

「真的假的?!海龜不是潛水高手嗎?」

一般來說,海龜換一次氣的確可以在水中待上很長一段時間,加上又有硬殼的保護,悠游大海中應該可以高枕無憂,只有當體內空氣不足時稍微抬頭在水面上張一下口,瞬間就可完成換氣的動作;也因為牠可以憋氣很久,所以牠可以潛入水中大吃海草(藻)與海綿等底棲生物,享受水中大餐,吞嚥時還不會噎到或是嗆到水呢!這樣超高的水中生活技巧,就連魚類也自嘆不如呢!因為魚吞食食物後還需要將鰓蓋打開,以便將多餘的水排放出來。

-----廣告,請繼續往下閱讀-----

海龜通常只要在海上吸一口氣就可以在水中潛泳長達數小時,而且還能在水中睡覺,睡夢中還會記得夢游到水面換口氣之後繼續呼呼大睡,這麼高超的換氣高手怎麼可能溺死在水中呢?這種新聞絕對是為了博取新聞版面,增加媒體曝光率,而由不肖記者杜撰出來的假新聞吧!

還是有人惡意戲弄將海龜的頭一直壓在水中,不讓牠浮起換氣,所以海龜才溺死的吧!因為海龜畢竟是用肺呼吸的,不管它在水中憋氣功夫多麼厲害了得,總還是要回到海面呼吸呼吸新鮮空氣,因為牠們不像魚有鰓可以作用,所以無法跟魚一樣在水中呼吸。

海龜是用肺呼吸需要露出水面才能換氣

如果海龜真的是潛水高手,那牠為什麼還會溺死呢?一般來說,海龜若是處於悠閒輕鬆的狀態,身心沒有受到任何的驚嚇下,身體內的耗氧量是很低,因此海龜只要吸一口氣,自然而然就可以在水中待很久,不需要常常換氣。這好比人心情輕鬆悠閒下,呼吸自然變得緩慢的道理是一樣的;一旦人處於驚慌失措,甚至面臨生命危險的狀況時,身體就會武裝自己準備隨時應付突發的狀況,這時腎上腺素便大量分泌,需要消耗大量的氧氣以產生能量,身體的耗氧量大幅增加,心跳與呼吸加快以增加換氣的速率變成必要的手段。

同樣的道理,當海龜受到驚嚇的時候,其生理反應也是如此,此時身體需要大量的氧氣產生足夠的力氣處理危急狀況,若牠在此時無法即時在海面上頻頻換氣,卻又不得不在水中開口的話,就造成肺中充滿了海水而溺死在水中的最終命運。

-----廣告,請繼續往下閱讀-----

問題是海龜為何會在大海中受到驚嚇呢?它不是有硬殼保護嗎?它不是有一張尖銳的鷹嘴嗎?就連海中大型的掠食者如鯊魚或是虎鯨都拿牠沒轍,大海上遇到都只有望殼興歎;而海龜體型不大不小又個性溫和,也不會招惹其他魚類,哪會發生驚嚇的情況呢?但就算海龜與其他海洋生物和平相處,人類的漁網卻是讓海龜溺死的元兇,因為當海龜被流刺網勾住或誤闖入圍網之際,因無法掙脫漁網的束縛便感到驚慌失措,當海龜越想掙脫漁網,往往卻被纏得越緊密,猶如一隻小貓玩弄毛線球,結果毛線鬆脫了反而把自己綑滿毛線,除非有人幫牠脫離毛線,不然最後只會變成一團毛線貓;被漁網纏身的海龜也是如此,在無外力協助下,海龜笨拙地想要掙脫漁網反而是造成牠溺死在海中的最大原因。因為海龜在無法掙脫漁網的致命糾纏下,身心都感到強大的壓迫,體內便消耗大量的氧氣,此時若是又無法即時到水面上換氣,最後只好在海中張口換氣,不料卻吸進大量的海水進入肺裡反而溺死在水中。

受傷痊癒的海龜再度野放返回大海的家
受傷痊癒的海龜再度野放返回大海的家

如何避免海龜因漁網纏身而溺死海中的悲劇停止上演,是人類在利用海洋資源之際,需要謹慎檢討的重大議題之一。

文章難易度
所有討論 4
大海子
53 篇文章 ・ 3 位粉絲
希望以人文關懷的觀點,將海洋生物世界中的驚奇與奧妙, 透過多媒體的設計與展現,分享個人心得給社會大眾, 期望能引起更多人關心海洋的公共議題, 為保護海洋略盡一份心力。

0

3
3

文字

分享

0
3
3
圖形處理單元與人工智慧
賴昭正_96
・2024/06/24 ・6944字 ・閱讀時間約 14 分鐘

  • 作者/賴昭正|前清大化學系教授、系主任、所長;合創科學月刊

我擔心人工智慧可能會完全取代人類。如果人們能設計電腦病毒,那麼就會有人設計出能夠自我改進和複製的人工智慧。 這將是一種超越人類的新生命形式。

——史蒂芬.霍金(Stephen Hawking) 英國理論物理學家

大約在八十年前,當第一台數位計算機出現時,一些電腦科學家便一直致力於讓機器具有像人類一樣的智慧;但七十年後,還是沒有機器能夠可靠地提供人類程度的語言或影像辨識功能。誰又想到「人工智慧」(Artificial Intelligent,簡稱 AI)的能力最近十年突然起飛,在許多(所有?)領域的測試中擊敗了人類,正在改變各個領域——包括假新聞的製造與散佈——的生態。

圖形處理單元(graphic process unit,簡稱 GPU)是這場「人工智慧」革命中的最大助手。它的興起使得九年前還是個小公司的 Nvidia(英偉達)股票從每股不到 $5,上升到今天(5 月 24 日)每股超過 $1000(註一)的全世界第三大公司,其創辦人(之一)兼首席執行官、出生於台南的黃仁勳(Jenson Huang)也一躍成為全世界排名 20 內的大富豪、台灣家喻戶曉的名人!可是多少人了解圖形處理單元是什麼嗎?到底是時勢造英雄,還是英雄造時勢?

黃仁勳出席2016年台北國際電腦展
Nvidia 的崛起究竟是時勢造英雄,還是英雄造時勢?圖/wikimedia

在回答這問題之前,筆者得先聲明筆者不是學電腦的,因此在這裡所能談的只是與電腦設計細節無關的基本原理。筆者認為將原理轉成實用工具是專家的事,不是我們外行人需要了解的;但作為一位現在的知識分子或公民,了解基本原理則是必備的條件:例如了解「能量不滅定律」就可以不用仔細分析,即可判斷永動機是騙人的;又如現在可攜帶型冷氣機充斥市面上,它們不用往室外排廢熱氣,就可以提供屋內冷氣,讀者買嗎?

CPU 與 GPU

不管是大型電腦或個人電腦都需具有「中央處理單元」(central process unit,簡稱 CPU)。CPU 是電腦的「腦」,其電子電路負責處理所有軟體正確運作所需的所有任務,如算術、邏輯、控制、輸入和輸出操作等等。雖然早期的設計即可以讓一個指令同時做兩、三件不同的工作;但為了簡單化,我們在這裡所談的工作將只是執行算術和邏輯運算的工作(arithmetic and logic unit,簡稱 ALU),如將兩個數加在一起。在這一簡化的定義下,CPU 在任何一個時刻均只能執行一件工作而已。

-----廣告,請繼續往下閱讀-----

在個人電腦剛出現只能用於一般事物的處理時,CPU 均能非常勝任地完成任務。但電腦圖形和動畫的出現帶來了第一批運算密集型工作負載後,CPU 開始顯示心有餘而力不足:例如電玩動畫需要應用程式處理數以萬計的像素(pixel),每個像素都有自己的顏色、光強度、和運動等, 使得 CPU 根本沒辦法在短時間內完成這些工作。於是出現了主機板上之「顯示插卡」來支援補助 CPU。

1999 年,英偉達將其一「具有集成變換、照明、三角形設定/裁剪、和透過應用程式從模型產生二維或三維影像的單晶片處理器」(註二)定位為「世界上第一款 GPU」,「GPU」這一名詞於焉誕生。不像 CPU,GPU 可以在同一個時刻執行許多算術和邏輯運算的工作,快速地完成圖形和動畫的變化。

依序計算和平行計算

一部電腦 CPU 如何計算 7×5+6/3 呢?因每一時刻只能做一件事,所以其步驟為:

  • 計算 7×5;
  • 計算 6/3;
  • 將結果相加。

總共需要 3 個運算時間。但如果我們有兩個 CPU 呢?很多工作便可以同時(平行)進行:

-----廣告,請繼續往下閱讀-----
  • 同時計算 7×5 及 6/3;
  • 將結果相加。

只需要 2 個運算時間,比單獨的 CPU 減少了一個。這看起來好像沒節省多少時間,但如果我們有 16 對 a×b 要相加呢?單獨的 CPU 需要 31 個運算的時間(16 個 × 的運算時間及 15 個 + 的運算時間),而有 16 個小 CPU 的 GPU 則只需要 5 個運算的時間(1 個 × 的運算時間及 4 個 + 的運算時間)!

現在就讓我們來看看為什麼稱 GPU 為「圖形」處理單元。圖一左圖《我愛科學》一書擺斜了,如何將它擺正成右圖呢? 一句話:「將整個圖逆時針方向旋轉 θ 即可」。但因為左圖是由上百萬個像素點(座標 x, y)組成的,所以這句簡單的話可讓 CPU 忙得不亦樂乎了:每一點的座標都必須做如下的轉換

x’ = x cosθ + y sinθ

y’ = -x sinθ+ y cosθ

-----廣告,請繼續往下閱讀-----

即每一點均需要做四個 × 及兩個 + 的運算!如果每一運算需要 10-6 秒,那麼讓《我愛科學》一書做個簡單的角度旋轉,便需要 6 秒,這豈是電動玩具畫面變化所能接受的?

圖形處理的例子

人類的許多發明都是基於需要的關係,因此電腦硬件設計家便開始思考:這些點轉換都是獨立的,為什麼我們不讓它們同時進行(平行運算,parallel processing)呢?於是專門用來處理「圖形」的處理單元出現了——就是我們現在所知的 GPU。如果一個 GPU 可以同時處理 106 運算,那上圖的轉換只需 10-6 秒鐘!

GPU 的興起

GPU 可分成兩種:

  • 整合式圖形「卡」(integrated graphics)是內建於 CPU 中的 GPU,所以不是插卡,它與 CPU 共享系統記憶體,沒有單獨的記憶體組來儲存圖形/視訊,主要用於大部分的個人電腦及筆記型電腦上;早期英特爾(Intel)因為不讓插卡 GPU 侵蝕主機的地盤,在這方面的研發佔領先的地位,約佔 68% 的市場。
  • 獨立顯示卡(discrete graphics)有不與 CPU 共享的自己專用內存;由於與處理器晶片分離,它會消耗更多電量並產生大量熱量;然而,也正是因為有自己的記憶體來源和電源,它可以比整合式顯示卡提供更高的效能。

2007 年,英偉達發布了可以在獨立 GPU 上進行平行處理的軟體層後,科學家發現獨立 GPU 不但能夠快速處理圖形變化,在需要大量計算才能實現特定結果的任務上也非常有效,因此開啟了為計算密集型的實用題目編寫 GPU 程式的領域。如今獨立 GPU 的應用範圍已遠遠超出當初圖形處理,不但擴大到醫學影像和地震成像等之複雜圖像和影片編輯及視覺化,也應用於駕駛、導航、天氣預報、大資料庫分析、機器學習、人工智慧、加密貨幣挖礦、及分子動力學模擬(註三)等其它領域。獨立 GPU 已成為人工智慧生態系統中不可或缺的一部分,正在改變我們的生活方式及許多行業的遊戲規則。英特爾在這方面發展較遲,遠遠落在英偉達(80%)及超微半導體公司(Advance Micro Devices Inc.,19%,註四)之後,大約只有 1% 的市場。

-----廣告,請繼續往下閱讀-----
典型的CPU與GPU架構

事實上現在的中央處理單元也不再是真正的「單元」,而是如圖二可含有多個可以同時處理運算的核心(core)單元。GPU 犧牲大量快取和控制單元以獲得更多的處理核心,因此其核心功能不如 CPU 核心強大,但它們能同時高速執行大量相同的指令,在平行運算中發揮強大作用。現在電腦通常具有 2 到 64 個核心;GPU 則具有上千、甚至上萬的核心。

結論

我們一看到《我愛科學》這本書,不需要一點一點地從左上到右下慢慢掃描,即可瞬間知道它上面有書名、出版社等,也知道它擺斜了。這種「平行運作」的能力不僅限於視覺,它也延伸到其它感官和認知功能。例如筆者在清華大學授課時常犯的一個毛病是:嘴巴在講,腦筋思考已經不知往前跑了多少公里,常常為了追趕而越講越快,將不少學生拋到腦後!這不表示筆者聰明,因為研究人員發現我們的大腦具有同時處理和解釋大量感官輸入的能力。

人工智慧是一種讓電腦或機器能夠模擬人類智慧和解決問題能力的科技,因此必須如人腦一樣能同時並行地處理許多資料。學過矩陣(matrix)的讀者應該知道,如果用矩陣和向量(vector)表達,上面所談到之座標轉換將是非常簡潔的(註五)。而矩陣和向量計算正是機器學習(machine learning)演算法的基礎!也正是獨立圖形處理單元最強大的功能所在!因此我們可以了解為什麼 GPU 會成為人工智慧開發的基石:它們的架構就是充分利用並行處理,來快速執行多個操作,進行訓練電腦或機器以人腦之思考與學習的方式處理資料——稱為「深度學習」(deep learning)。

黃仁勳在 5 月 22 日的發布業績新聞上謂:「下一次工業革命已經開始了:企業界和各國正與英偉達合作,將價值數萬億美元的傳統資料中心轉變為加速運算及新型資料中心——人工智慧工廠——以生產新商品『人工智慧』。人工智慧將為每個產業帶來顯著的生產力提升,幫助企業降低成本和提高能源效率,同時擴大收入機會。」

附錄

人工智慧的實用例子:下面一段是微軟的「copilot」代書、谷歌的「translate」代譯之「one paragraph summary of GPU and AI」。讀完後,讀者是不是認為筆者該退休了?

-----廣告,請繼續往下閱讀-----

GPU(圖形處理單元)和 AI(人工智慧)之間的協同作用徹底改變了高效能運算領域。GPU 具有平行處理能力,特別適合人工智慧和機器學習所需的複雜資料密集運算。這導致了影像和視訊處理等領域的重大進步,使自動駕駛和臉部辨識等技術變得更加高效和可靠。NVIDIA 開發的平行運算平台 CUDA 進一步提高了 GPU 的效率,使開發人員能夠透過將人工智慧問題分解為更小的、可管理的、可同時處理的任務來解決這些問題。這不僅加快了人工智慧研究的步伐,而且使其更具成本效益,因為 GPU 可以在很短的時間內執行與多個 CPU 相同的任務。隨著人工智慧的不斷發展,GPU 的角色可能會變得更加不可或缺,推動各產業的創新和新的可能性。大腦透過神經元網路實現這一目標,這些神經元網路可以獨立但有凝聚力地工作,使我們能夠執行複雜的任務,例如駕駛、導航、觀察交通信號、聽音樂並同時規劃我們的路線。此外,研究表明,與非人類動物相比,人類大腦具有更多平行通路,這表明我們的神經處理具有更高的複雜性。這個複雜的系統證明了我們認知功能的卓越適應性和效率。我們可以一邊和朋友聊天一邊走在街上,一邊聽音樂一邊做飯,或一邊聽講座一邊做筆記。人工智慧是模擬人類腦神經網路的科技,因此必須能同時並行地來處理許多資料。研究人員發現了人腦通訊網路具有一個在獼猴或小鼠中未觀察獨特特徵:透過多個並行路徑傳輸訊息,因此具有令人難以置信的多任務處理能力。

註解

(註一)當讀者看到此篇文章時,其股票已一股換十股,現在每一股約在 $100 左右。

(註二)組裝或升級過個人電腦的讀者或許還記得「英偉達精視 256」(GeForce 256)插卡吧?

(註三)筆者於 1984 年離開清華大學到 IBM 時,就是參加了被認為全世界使用電腦時間最多的量子化學家、IBM「院士(fellow)」Enrico Clementi 的團隊:因為當時英偉達還未有可以在 GPU 上進行平行處理的軟體層,我們只能自己寫軟體將 8 台中型電腦(非 IBM 品牌!)與一大型電腦連接來做平行運算,進行分子動力學模擬等的科學研究。如果晚生 30 年或許就不會那麼辛苦了?

-----廣告,請繼續往下閱讀-----

(註四)補助個人電腦用的 GPU 品牌到 2000 年時只剩下兩大主導廠商:英偉達及 ATI(Array Technology Inc.)。後者是出生於香港之四位中國人於 1985 年在加拿大安大略省成立,2006 年被超微半導體公司收購,品牌於 2010 年被淘汰。超微半導體公司於 2014 年 10 月提升台南出生之蘇姿豐(Lisa Tzwu-Fang Su)博士為執行長後,股票從每股 $4 左右,上升到今天每股超過 $160,其市值已經是英特爾的兩倍,完全擺脫了在後者陰影下求生存的小眾玩家角色,正在挑戰英偉達的 GPU 市場。順便一題:超微半導體公司現任總裁(兼 AI 策略負責人)為出生於台北的彭明博(Victor Peng);與黃仁勳及蘇姿豐一樣,也是小時候就隨父母親移居到美國。

(註五)

延伸閱讀

  • 熱力學與能源利用」,《科學月刊》,1982 年 3 月號;收集於《我愛科學》(華騰文化有限公司,2017 年 12 月出版),轉載於「嘉義市政府全球資訊網」。
  • 網路安全技術與比特幣」,《科學月刊》,2020 年 11 月號;轉載於「善科教育基金會」的《科技大補帖》專欄。
文章難易度

討論功能關閉中。

賴昭正_96
43 篇文章 ・ 56 位粉絲
成功大學化學工程系學士,芝加哥大學化學物理博士。在芝大時與一群留學生合創「科學月刊」。一直想回國貢獻所學,因此畢業後不久即回清大化學系任教。自認平易近人,但教學嚴謹,因此穫有「賴大刀」之惡名!於1982年時當選爲 清大化學系新一代的年青首任系主任兼所長;但壯志難酬,兩年後即辭職到美留浪。晚期曾回台蓋工廠及創業,均應「水土不服」而鎩羽而歸。正式退休後,除了開始又爲科學月刊寫文章外,全職帶小孫女(半歲起);現已成七歲之小孫女的BFF(2015)。首先接觸到泛科學是因爲科學月刊將我的一篇文章「愛因斯坦的最大的錯誤一宇宙論常數」推薦到泛科學重登。

0

3
1

文字

分享

0
3
1
揭開鯨豚傷疤的秘密——花紋海豚體表傷疤分析
黑潮海洋文教基金會_96
・2023/11/04 ・3078字 ・閱讀時間約 6 分鐘

-----廣告,請繼續往下閱讀-----

圖一、玉子日記繪製之花紋海豚(Grampus griseus)傷疤圖鑑

現今海洋中存在許多船舶與漁業活動,每年在世界各地造成許多鯨豚受傷與死亡,而臺灣也不外乎如此,根據 2019-2022 年海保救援網(MARN)的擱淺報告,扣除掉無法辨識原因的擱淺鯨豚個體,疑似因為誤捕死亡的鯨豚比例均在第一、第二名之間徘徊,也有少比例個體可能是因為受到船隻撞擊事件致死,海洋中的人為威脅確實是我們需要持續追蹤且改善的。

除了透過擱淺的個體瞭解人類對鯨豚的影響程度外,我們能否有機會能從活體鯨豚身上獲得相關的資訊呢?事實上,國外已有研究者透過 Photo-ID 方法,進一步推測造成鯨豚身體上傷疤的原因,部分研究發現,鯨豚身上出現的傷疤可能跟人們在海上的漁業、船舶活動,或海洋廢棄物有關。藉由體表傷疤分析,我們能更瞭解鯨豚可能遭受到的環境威脅為何,與受威脅的個體比例有多少,也能更深入思考,未來劃設鯨類保護區後要如何制訂合適的經營管理規範。

圖二、蒐集花紋海豚同一隻個體的各個角度照片

黑潮的解說員們時常提到:「花紋海豚會用身體寫日記」,這是因為牠們在受傷癒合之後容易留下淺色的傷疤,因此年紀越大的花紋海豚身上通常也會有越多疤痕,而這些傷疤對我們來說是相當重要的線索,能讓我們瞭解在牠們生命歷程中曾有哪些遭遇,包含自然的與人為的。為了完成後續的傷疤分析,我們從黑潮資料庫中選擇長期追蹤的 50 隻花紋海豚,以亞成年與成年的個體為對象,在長年由江文龍船長所提供的照片當中蒐集其身體左右兩側、從頭至尾幹出水面的清楚照片。

透過花紋海豚體表傷疤,揭示人類對鯨豚所造成的威脅

傷疤分析的第一步,我們希望能先瞭解小型齒鯨身上可能會出現哪些人為傷疤,在蒐集了數篇國外對小型鯨豚的傷疤研究後,我們從中彙整了 11 種可能因為人為因素所造成的傷疤(表一),包含了 8 種背鰭上的傷疤、 2 種位在體幹上的傷疤與 1 種出現在嘴角的傷疤,除了位置與外觀之外,我們也將文獻中所推測的致傷原因與各類型傷疤結合。在上述工作完成了之後,接下來就是要仔細地從每隻花紋海豚的各個角度找出這些傷疤,並將辨識結果詳盡地記錄下來。

-----廣告,請繼續往下閱讀-----
表一、人為傷疤種類與示意圖
圖三、人為傷疤辨識示意圖

在分析的 50 隻花紋海豚中,我們發現其中有 19 隻(38%)身上有出現疑似人為活動所留下的傷疤,而這些傷疤主要出現在鯨豚身體中後段的背側,包含背鰭。為了更進一步瞭解哪些人為傷疤在花紋海豚身上較常見,我們將本次發現到的 7 種疑似受到人為因素產生之傷疤計算盛行率(表二),發現花紋海豚有兩種傷疤是較常見的:[1] 背鰭前端切口(Fc)、[2] 身體上的線狀勒痕(Gn),而根據文獻所描述,這兩種傷疤成因與漁業網線纏繞或是船舶螺旋槳可能有密切關聯。

表二、花紋海豚人為傷疤盛行率
盛行率 = 出現特定傷疤的花紋海豚個體隻數 ÷ 50 隻花紋海豚

「大目流刺網」與「延繩釣」是花蓮海域需要持續關注的漁法

圖四、擱淺之花紋海豚多處有疑似因遭到漁具纏繞或被割斷的切口(傷口經灰階處理)

為了進一步確認花蓮本地漁業對鯨豚的潛在威脅,我們訪談了幾位花蓮海域目前或是過去曾操作相關漁法的討海人。過程中討海人有提到,花紋海豚時常被抓旗魚、曼波魚的「大目流刺網」纏繞或割傷,在表二傷疤當中除了嘴角缺角(Hs)外,其他傷疤均有被指認可能與大目流刺網有關,在本次分析的 50 隻花紋海豚中就有 18 隻(36%)身上出現疑似刺網留下的傷疤。而在訪談中,討海人也有提到過去曾有目擊刺網誤捕飛旋海豚(Stenella longirostris)、偽虎鯨(Pseudorca crassidens)、弗氏海豚(Lagenodelphis hosei)與吐血鯃──小抹香鯨屬(genus: Kogia)的鯨豚,而多數遭誤捕的鯨豚最後都因無法至水面上換氣死亡。

除大目流刺網之外「延繩釣」也頻繁地被討海人提及,他們提到有兩種傷疤可能與延繩釣有關,分別是:嘴角缺角(Hs)與背鰭後深切口(Dc),包含上述兩種傷疤的個體共有 2 隻(4%)。因早期魷魚、透抽價格較便宜,時常被漁民當作延繩釣的餌料,吸引中大型鮪魚、鬼頭刀上鉤,而花紋海豚以頭足類動物如魷魚、花枝與章魚為主要獵物,也可能因捕食餌料而中鉤,在掙脫後會在嘴角或唇邊留下缺角的傷疤。同時也有討海人提到,曾目擊鯨豚尾部纏繞到延繩釣的主繩,因主繩堅固不易斷裂,有可能會纏繞在鯨豚尾幹,留下較深的纏勒痕跡。就現階段瞭解,鯨豚身上出現人為傷疤可能與漁業、船舶活動、海洋廢棄物等有密切關係,而漁業行為又以延繩釣和大目流刺網有較高的關連性,但目前探究僅能說明東海岸相關的漁業活動對鯨豚有潛在影響,至於影響的程度和確切成因仍需進一步探討,也需擴大追蹤更多不同年齡層的花紋海豚個體,是我們未來需要持續關注的。

線上瀏覽圖鑑

本次 50 隻花紋海豚的體表傷疤分析分析成果,已委由人氣圖文作家「玉子日記」的巧手,繪製成花紋海豚傷疤圖鑑,接下來就讓我們一同探索花紋海豚傷疤的秘密吧!

-----廣告,請繼續往下閱讀-----

致敬多年來提供黑潮影像資料的多羅滿賞鯨船長 江文龍、鯨豚顧問 余欣怡、作家 玉子日記與協助傷疤辨識的夥伴 江彥瑩。
致謝多年來贊助與補助海洋綠洲計畫的各單位,與捐款者。

參考文獻

  1. 【中華鯨豚協會】鯨豚保育的沈苛難題-漁業混獲
  2. 【海委會海洋保育署】台灣鯨豚及海龜擱淺報告及統計資料
  3. Ashe, E., Williams, R., Morton, A., & Hammond, P. S. (2021). Disentangling natural and anthropogenic forms of mortality and serious injury in a poorly studied pelagic dolphin. Frontiers in Marine Science, 8.
  4. Kiszka, J., Pelourdeau, D., & Ridoux, V. (2009). Body scars and dorsal fin disfigurements as indicators interaction between small cetaceans and fisheries around the Mozambique Channel Island of Mayotte. Western Indian Ocean Journal of Marine Science, 7(2).
  5. Luksenburg, J. A. (2014). Prevalence of external injuries in small cetaceans in Aruban Waters, Southern Caribbean. PLoS ONE, 9(2).
  6. Mariani, M., Miragliuolo, A., Mussi, B., Russo, G. F., Ardizzone, G., & Pace, D. S. (2016). Analysis of the natural markings of Risso’s dolphins (Grampus griseus) in the central Mediterranean Sea. Journal of Mammalogy, 97(6), 1512–1524.
  7. Mark Carwardine (2020). Handbook of Whales, Dolphins, and Porpoises of the World.
黑潮海洋文教基金會_96
4 篇文章 ・ 1 位粉絲
  黑潮海洋文教基金會,1998年於花蓮成立,是臺灣第一個為「鯨豚與海洋」發聲的民間非營利組織。最初以鯨豚調查為開端,多年來深耕於海洋議題、環境教育與科學調查,如同一股陸地上的黑潮洋流溫暖而堅定,期許每個臺灣人的心中都有一片海洋。

1

3
1

文字

分享

1
3
1
未來可能會有這個職業嗎?專門捕撈塑膠的塑膠漁夫!——《拯救地球的工作者》
和平國際
・2022/11/04 ・1290字 ・閱讀時間約 2 分鐘

-----廣告,請繼續往下閱讀-----

編按:現在的生活瞬息萬變,在未來的世代,可能會出現許多你想都沒想過的職業。讓我們與孩子一起發揮想像力,你覺得未來會有什麼樣的職業出現呢?

塑膠漁夫:打撈塑膠就是我們的工作!

「今天又是出海的好天氣!」亞美迪歐和其他塑膠漁夫歡聲雷動,每一天,他們都要拯救受汙染的海洋。自從人類有了石油,就發明出便宜好用的材料─塑膠。可是塑膠被丟棄後會一直在環境中漂流,不會消失。

亞美迪歐的團隊為了捕撈塑膠,會運用特殊設計的磁網,只吸引塑膠垃圾,不影響魚兒在水中的生活。

「糟糕,又來了!這星期已經發生第二次了!」亞美迪歐說完,立刻跳上救生船,原來是遠方有隻信天翁被塑膠網纏住,不斷在水裡揮動巨大的翅膀,發出淒厲的叫聲。

救援行動當然不輕鬆,耽誤了一些工作時間,還好幾分鐘之後,信天翁終於重獲自由了。

-----廣告,請繼續往下閱讀-----

除了大型塑膠垃圾外,海裡還潛藏著肉眼看不見的危險物質─塑膠微粒。它們比髮絲更細、比沙粒更小,如果被魚吃下肚,最後會成為人類盤中的食物。

這時候就要動用塑膠漁夫的最新發明。「摩比,做得好,看看你今天能吞噬多少塑膠微粒?」亞美迪歐一邊大喊,一邊走向船尾,一臺貌似藍鯨的機器人從水中冒出來,嘴裡布滿特殊長牙,這些長牙的功能類似過濾器,專門捕撈塑膠微粒。

亞美迪歐大聲歡呼:「還不賴,這裡乾淨多了!現在大家該去睡個好覺,明天繼續往南!」

海洋裡到底有多少塑膠垃圾?

4 億噸:塑膠每年在全球被製造出來,相當於 66 座吉薩金字塔。

-----廣告,請繼續往下閱讀-----

6,000 萬噸:塑膠每年在歐洲製造出來,相當於 1,000 萬頭大象。

2,600 萬噸:歐洲每年丟棄的塑膠,其中不到 30% 被回收。

1,000 萬噸:歐盟制定目標,預計在 2025 年,每年至少要回收的塑膠重量。

700 種生物正受到海洋塑膠垃圾的傷害

  • 35% 是鳥類;
  • 27% 是魚類;
  • 20% 是無脊椎動物;
  • 13% 是哺乳類動物;
  • 5% 是爬蟲類。

塑膠漁夫要有的能力

○ 喜歡海洋

○ 對生態學有興趣

○ 會游泳

○ 大而化之

○ 有遠大的目標

○ 清楚回收流程

——本文摘自《拯救地球的工作者》,2022 年 10 月,和平國際出版,未經同意請勿轉載。

-----廣告,請繼續往下閱讀-----
所有討論 1