0

0
0

文字

分享

0
0
0

想形成一顆可居住行星,沒那麼簡單!──《五十億年的孤寂》

PanSci_96
・2017/04/08 ・6258字 ・閱讀時間約 13 分鐘 ・SR值 517 ・六年級

  • 【科科愛看書】在浩瀚無垠的宇宙中,誰願意寂寞寂寞就好?自古以來,每當人們仰望星空,都希望找到其他生命的痕跡,即便旅途漫長艱辛,我們也從未停止腳步。讓我們跟著《五十億年的孤寂:繁星間尋找生命》了解人類探詢外星生命的故事,或許有生之年,你我便能在光年以外,找到外星好厝邊。

想找可居住行星?科學家有套 SOP

現在每一則科學家聲稱找到一顆可能可居住行星的聲明,背後都有一套可簡化的既定流程:天文學家首先測量新發現行星的質量,然後如果可行的話,也會測量它的半徑,因此估計出對該行星的密度,以及是否像地球一樣由岩石構成的可能性估計。他們也會決定該岩石行星繞行恆星的軌道距離,以及該恆星光芒的強度和顏色。有了這些加起來可以寫在一隻手掌上的數據,接下來就會透過數值建模來做轉譯。

特別的部分是,他們會求教於卡斯丁的論文〈主序星周圍的可居住範圍〉(Habitable Zones around Main Sequence Stars),這是他最常被引用的論文,於 1993 年發表於期刊《伊卡洛斯》(Icarus)上。論文中,卡斯丁與丹.惠特麥爾(Dan Whitmire)、雷.雷諾斯(Ray Reynolds)兩位同事,使用一種由卡斯丁發明的氣候模型,來決定哪一條環繞恆星的軌道,最有可能讓岩石行星的表面擁有液態水。

一顆在適居範圍內的行星,其表面有可能會被太陽烤得太乾,以至於所有水分瞬間化為蒸氣,遍布在大氣層內,最終慢慢逃逸至太空,如同金星的情況。至於在這範圍之外,行星表面的水可能會凍結,則如火星上所見。如果一個新發現的岩石行星確實是在卡斯丁所訂的適居範圍內,不久後其發現者便會聯絡資助機構的媒體辦公室,然後他們的名字就會出現在晚間新聞和《紐約時報》上。

2013 年一月,卡斯丁與他人聯合發表了一篇論文,稍微修正了他已有二十年歷史的計算結果,但這一點改進並未大幅改變他早期成果的核心結論。

-----廣告,請繼續往下閱讀-----
一顆在適居範圍內的行星都不一定真的能形成合適生物發展的環境,像在地球內側的金星會因為太接近太陽而被烤得太乾(圖中地球左側);像在地球外側的火星則會因為太遠而凍結(圖中地球右側)圖/By Scooter20, Public Domain, wikimedia commons

生命?問題在空氣!

僅能憑藉屈指可數的數據,來估算一顆遠方行星的適居性,其實是充滿變數的;在那之中,大量的假設和深信不移,都不可避免地會成為常態。這種估計之所以能夠成立,只是因為在我們所知的範圍內和可見的宇宙中,物理法則都是一樣的,不管在太陽系還是某些遙遠的外星球皆然。

不論在宇宙何處,只要星光照在行星上,就會把輻射能打入那行星的系統中。會有多少能量過濾進去,要看那行星的大氣層以及星光的波長(或說顏色)。在 1993 年那串經典計算中,卡斯丁和同事為虛擬行星設定的大氣構成條件,是他們認為類地行星大氣構成的最典型結果:極高量的惰性氮氣,伴隨大量二氧化碳及水汽。證據顯示,這可能是冥古宙地球的大氣結構,但對於那些未經測量且有大氣的岩石系外行星來說,任何組成方式目前都只能看做是某種可能的猜測。

在選定特定的大氣層配方之後,卡斯丁的數值法就會生效,這些多半是他在 NASA 那七年中開發的。在那段時間當中,他全心致力於讓模型更完美,甚至以手工將每一種星光與大氣的重要相互作用進行編碼。

在真實世界以及卡斯丁的模型中,某種特定波長的光子,可能會從大氣層頂端反彈回去,但其他波長的光子就有可能一路穿過大氣層,平安直達地表。至於大氣層內,不論是真實還是虛擬的情況,光子都有可能被雲層反射,或是被地表上明亮的積雪反射。它有可能被溫室氣體吸收,或是被海洋的深色海水吸收。當一個光子特別有能量時──例如紫外線或在電磁光譜上更高頻率的光子──它甚至會撞擊分子將其分解,而在空氣中與地表上產生全新的物質──這種過程稱為「光解作用」(photolysis)。接著,光解產物又會在吸收或反射光子上產生獨有的二度效應,這些全部都要算進去。

-----廣告,請繼續往下閱讀-----

多年來,卡斯丁累積所有他能找到的必要數據,建立起一個龐大的資料庫,包括輻射吸收表、光化學反應速率、不同氣體的大氣層壽命,以及各類氣體從火山噴出或被岩石吸收的全球速度。所有這些各式各樣的交互作用和輸入,結合起來會對一顆行星的大氣成分和平均溫度──也就是氣候──產生巨大的影響。

氣候才沒你想的那麼簡單!

如果你天真地只根據陽光吸收量和平均反射率(或稱「反照率」〔albedo〕),就計算當代地球表面的平均溫度,那你會得到攝氏負十八度的數值,這個數字遠低於水的冰點。但若你用卡斯丁其中一個氣候模型來計算,則會得到攝氏十五度的結果,而這當然就是地球實際的平均表面溫度。不符之處絕大部分是因為數種不同的溫室氣體所造成的暖化,其中每一種卡斯丁都得辛苦地詳加說明,好讓人容易理解。

舉例來說,水汽就必須謹慎處理,因為它實際上是種比二氧化碳強上太多的溫室氣體;比起二氧化碳,水汽在光譜上能有效吸收的熱紅外範圍要大上太多。此外,它對氣候的影響在品質上是不同的:不像二氧化碳在地球常溫下保持氣態,水汽密切受到地球溫度變化的影響。低溫可以讓水汽凝結成雲並形成降雨、降雪或冰雹,從而移除了溫室效應並使氣溫更冷;相反地,高溫會增加地表水的蒸散率,將更多水汽送入空氣,而讓氣溫進一步上升。因此,水汽有放大其他氣候改變──例如大氣層二氧化碳水平提高所造成的穩定加熱──的正回饋作用。如果二氧化碳是支撐地球氣候變遷的支點,那麼水汽可說是槓桿。

水汽實際上是種比二氧化碳強上太多的溫室氣體;比起二氧化碳,水汽在光譜上能有效吸收的熱紅外範圍要大上太多。在溫室效應的反應中,水汽可說是槓桿。圖/By Moni3, Public Domain, wikimedia commons

卡斯丁的氣候模型其中一個關鍵輸出,是所謂的「溫度壓力剖面圖」(temperature-pressure profile)──這句科學行話,指的是照耀大氣層的星光,將如何影響該星球的溫度還有其垂直結構。

-----廣告,請繼續往下閱讀-----

舉例來說,地球的大氣層反射了四分之一的入射陽光,另有四分之一被大氣中的溫室氣體吸收,最後大約有一半的陽光透入地表。這代表,地球的大氣層一般來說比地表更冷,是藉由對流從底端加溫,就像爐上燒開水一樣。地球上大部分的表面加熱和對流,發生在赤道一帶;在那裡,就像檢視任何球體時會發現的一樣,從頭頂直接打下來的光會被更多的表面地區所吸收。濕潤空氣的對流從溫暖表面開始起伏波動,在升高和擴大後溫度下降,最終冷到足以凝結水汽,而將水霧卸除──也就是形成雲和雨。大氣對流足以解釋為何熱帶比極地熱;為何山頂高處附近的空氣雖然比較接近太陽輻射,卻比海平面的平原空氣來得稀薄且乾冷;為何大雷雨通常在熱天正午過後幾小時的午後或傍晚才發生。

地球的溫度壓力剖面圖在大氣中產生的特徵,叫做對流層頂(tropopause)。這是一條區分下方溫暖、充滿天氣變化的對流層,以及上方較冷、較稀薄平流層的區隔線。因為水汽接觸低溫時會凝結,所以它會被疊在上頭較冷的大氣層有效地困在對流層頂下。1980 年代,透過卡斯丁、同事詹姆士.波拉克(James Pollack)以及一些在 NASA 阿姆斯研究中心同行的一系列研究,人們明瞭了這個「冷圈套」效應,對地球長期保有水分的狀態有多麼重要。當時他們很想知道,為何地球鄰近的孿生行星金星,儘管證據顯示它最初也曾溫和宜人,並且濕潤一如此刻的地球,但後來卻發展出和地球如此天差地別的氣候。

對流層頂是一條區分下方溫暖、充滿天氣變化的對流層,以及上方較冷、較稀薄平流層的區隔線。圖/By National Weather Service JetStream, Public Domain, wikimedia commons

如果這世界海消失了

「對我們這類人來說,金星最有趣的地方在於,它在適居範圍的內在限制上所代表的意義。」我們在他的辦公室閒聊時,他這麼說。

「它對『我們應該對太陽系外另一顆行星有什麼期待』,設下一個合理的經驗限制──我們不需要建立太多模型,就能猜到是什麼讓金星接收的陽光量變得不宜人居。所以,若想知道一顆本來跟地球條件相似的行星,若形成時太靠近恆星,會變得怎麼樣;或是想知道當一顆可居住行星的恆星隨時間變亮時,那行星會發生什麼事,金星全都會告訴你。」

卡斯丁以多位行星科學家(其中最有名的是加州理工學院的安德魯.英格索〔Andrew Ingersoll〕)的過往成果為基礎,建立了當地球軌道向內靠近太陽,而比較接近金星軌道時,以及太陽隨地質時間慢慢增加其亮度,地球大氣結構(地球的溫度壓力剖面圖)因應陽光強度增加的預測模型。他發現,若陽光強度以相對和緩的百分之十增加,或把地球軌道向內移個 0.95 天文單位,也就是向太陽靠近百分之五的話,溫度增加會讓對流層充滿水汽,而使得對流層頂加高至九十英哩(一百四十五公里)的高度,甚至更高。

-----廣告,請繼續往下閱讀-----

當卡斯丁看到對流層頂在數據模型中會如何飆高,便知道他見證了那個虛擬世界走向終結,且有一天那也會是我們的終結:抬到那種高度的水汽,大部分會飄到臭氧層的保護之上,並在那裡被太陽的紫外線光解;小比例放出的氫原子,會完全逸入外太空,與地球氧氣結合產生水的可能性也隨之從此消失。

在幾億年內,以此方法損失到太空的氫,已足以讓地球海洋乾涸,讓行星生命消失,並且乾燥無比,因為地表或空氣中都再也不剩一滴水。十億年過後,太陽遠在會膨脹成紅巨星,並在物理上吞噬地球之前,亮度就會先增強那關鍵的百分之十,而地球將開始快速失去水分及生命。現在已有共識認為,金星就是在這個「水霧平流層」機制下,在太陽系早期階段就失去其海洋。至於其 0.95 天文單位的門檻,則接近卡斯丁 1993 年那篇權威論文中適居範圍的內側邊緣。

隨著金星失去海洋,升高的氣溫把二氧化碳逼出行星的地殼,而由這些氣體填滿大氣層。因此,金星的大氣層現在大約是地球的九十倍濃,而且幾乎都是純二氧化碳,產生的溫室效應強到讓行星表面的溫度甚至可以把鉛熔化。在第二系列的研究中,卡斯丁和同事調整了地球大氣層的二氧化碳含量,來檢驗二氧化碳增加是不是比陽光增加,會更快導致平流層潮濕,而使海洋消失。

出乎卡斯丁意料之外,他發現當二氧化碳水平增加而使氣溫飆升時,釋放的大量水汽起了壓力鍋鍋蓋的作用,將低處的大氣層加壓到海洋無法沸騰的程度,使地球的平流層維持相對乾燥。

-----廣告,請繼續往下閱讀-----

數據模型指出,要讓平流層浸滿水霧,且讓海洋蒸發並逃逸至太空,地球大氣層的二氧化碳得要達到目前濃度的二十五倍以上,不過,就算把整個地球已知的「常規」石油煤炭等化石燃料全部燒光,釋放的二氧化碳也沒那麼多。但如果把整顆行星的非常規資源,如馬塞盧斯的頁岩天然氣也都燒光的話,這樣就有可能。或許人類可以輕鬆讓地球發一場毀滅社會並嚴重消滅既有生物多樣性的高燒,但卡斯丁的計算主張,人類要產生上述的濕潤平流層,其實非常困難──但並非絕對不可能。

在他的計算中,光靠燃燒化石燃料,就讓行星把海洋送到太空,顯然超過現代文明的能耐。

要讓平流層浸滿水霧,且讓海洋蒸發並逃逸至太空,地球大氣層的二氧化碳得要達到目前濃度的二十五倍以上,不過就算把整個地球已知的「常規」石油煤炭等化石燃料全部燒光,釋放的二氧化碳也沒那麼多。圖/By isakarakus @ pixabay

天邊一朵雲的美妙

然而,在卡斯丁的思考中仍有些明顯的不確定性,例如科學還不能徹底不理會人造水霧平流層,會導致地球過早出現失控溫室的可能性。此外,二氧化碳和水汽以外的溫室氣體,對地球氣候也會起作用,並有可能成為卡斯丁模型中未計算到的顯著未來效應。而且,目前沒人知道地球內確切的化石燃料封存量,也不知道根據未來市場條件和可能的技術發展,這個粗估量有多少比例能有效地提取並燃燒。更基本的是,沒人完全瞭解溫度和壓力的變化,會怎麼影響水汽吸收紅外熱輻射。這部分沒有一處是明顯的,跟觀察雲的難度可說不相上下。

對一般人來說,雲是很簡單的東西,不過是藍天中的幾片棉花,或是預告壞天氣的不祥灰幕。然而,對卡斯丁這樣的氣候建模者來說,雲是水汽最多變且迷人的形式,其極端的複雜性彷彿變幻莫測的活物。根據雲層的大小、高度和組成方式,它有可能讓地球暖化,也可能讓地球降溫。一整面濃密而低的雲層,可以把一大部分的陽光反射回太空,潛在地降低了氣溫。但若在低而濃密的雲層上方高處放一層薄雲,那麼就會因為半透明的上方雲層會讓陽光射入,但把其後要散逸的熱困住,冷卻效應就會大打折扣。每個人都同意的是,當地球這樣的行星加溫時,會有更多水汽蒸散至空中,形成更多雲。

-----廣告,請繼續往下閱讀-----

但這些雲到底會在大氣層何處形成並逗留,其回饋效應的極限又是什麼?人們則沒有共識。

全球暖化的否定者和渴望鎂光燈的行星獵人,都在這個朦朧之處找到庇護所:水汽雲,理論上可以讓一個可居住行星避免失控的全球暖化,不管這暖化是過多溫室氣體,還是鄰近恆星過量的光線所引起的。倘若行星更遠離恆星,且溫度降到二氧化碳能凝結成冰時,在某些情況下,一層絕緣的乾冰雲毯可讓一顆行星保持溫暖,而能在表面保存液態水。1993 年卡斯丁保守估計,太陽系適居範圍的外部邊緣,恰好落在稍稍超過火星軌道的 1.65 天文單位;但實際上,根據與二氧化碳雲相關的不確定性,這距離還有可能再向外延伸。

對卡斯丁這樣的氣候建模者來說,雲是水汽最多變且迷人的形式,其極端的複雜性彷彿變幻莫測的活物。圖/By theaucitron @ flickr, CC BY-SA 2.0

想看懂雲?簡單一維最快速

要以數值仿真雲朵有兩種分歧的策略。一種是在極度詳細的 3D 模擬中,建立盡可能準確的模型。這方法需要大量來自地球觀測衛星以及頂尖超級電腦的數據,並要在一陣變項與回饋中,冒著失去因果差異的風險。另一種策略,是用較少的維度簡化建立雲的模型,其風險在於,會忽略掉那些只有透過超乎模型範疇的複雜互動才會出現的重要運動。

卡斯丁偏好後者的簡易性。他的模型是單維的,用單一線性探測來仿真整個星球的大氣,有點像是透過一根從海床到海面的超長吸管,來取樣海水,如此測量海洋的平均溫度與鹽度。

-----廣告,請繼續往下閱讀-----

「雲在一維狀態是相當隨性的──在一維模型中,任意擺布呈現的方式,能得到任何你想要的效應。一維模型的理想情況是無雲的天空,這明顯是個大弱點,」當我們討論他的模型時,他這麼承認。「我避開這弱點的方式是,我把雲畫在地上,借著調整表面反照率來接近它們可能產生的效應,直到它產生我想觀察的那顆行星的平均氣溫──不管是地球或是火星。有些人基於『真實的雲朵很複雜』這點,不喜歡我這樣弄,也不喜歡我的方法實際上代表的意思;但我這麼做,是把行星溫度改變帶來的任何雲朵回饋都最小化。要做的比這個更好,你得使用 3D,這可是很大的一步;而且,即便到了那一步,雲朵還是維持著最大的不確定性──搞 3D 的那群人,也不會知道該怎麼辦。」

由於其簡易性,一維模型也比任何三維模型都要快得多。頂尖技術的三維氣候模型,可能要在非常昂貴的專用電腦叢集上花一個星期,才能達到「將地球現有大氣中的二氧化碳水平加倍,能提高平均氣溫攝氏二至五度」的結論。要算出二氧化碳加倍的結果,卡斯丁的一維模型只需在普通的桌上型電腦跑不到一分鐘,就能得出二點五度的答案。「一維模型,讓我只受限於自己思考的速度,而非受限於電腦的速度,」卡斯丁說。

「在一週的時間裡,當一個三維模型只能處理單一疊代時,我卻可以好好探索整個參數空間。這個意義就在這裡──探索可能的極限,鼓勵其他人在那數值之上打造模型,或根據經驗做出深刻的觀察。」


 

 

本文摘自《五十億年的孤寂:繁星間尋找生命》,八旗文化出版。

-----廣告,請繼續往下閱讀-----
文章難易度
PanSci_96
1256 篇文章 ・ 2383 位粉絲
PanSci的編輯部帳號,會發自產內容跟各種消息喔。

0

1
0

文字

分享

0
1
0
人與 AI 的關係是什麼?走進「2024 未來媒體藝術節」,透過藝術創作尋找解答
鳥苷三磷酸 (PanSci Promo)_96
・2024/10/24 ・3176字 ・閱讀時間約 6 分鐘

本文與財團法人臺灣生活美學基金會合作。 

AI 有可能造成人們失業嗎?還是 AI 會成為個人專屬的超級助理?

隨著人工智慧技術的快速發展,AI 與人類之間的關係,成為社會大眾目前最熱烈討論的話題之一,究竟,AI 會成為人類的取代者或是協作者?決定關鍵就在於人們對 AI 的了解和運用能力,唯有人們清楚了解如何使用 AI,才能化 AI 為助力,提高自身的工作效率與生活品質。

有鑑於此,目前正於臺灣當代文化實驗場 C-LAB 展出的「2024 未來媒體藝術節」,特別將展覽主題定調為奇異點(Singularity),透過多重視角探討人工智慧與人類的共生關係。

-----廣告,請繼續往下閱讀-----

C-LAB 策展人吳達坤進一步說明,本次展覽規劃了 4 大章節,共集結來自 9 個國家 23 組藝術家團隊的 26 件作品,帶領觀眾從了解 AI 發展歷史開始,到欣賞各種結合科技的藝術創作,再到與藝術一同探索 AI 未來發展,希望觀眾能從中感受科技如何重塑藝術的創造範式,進而更清楚未來該如何與科技共生與共創。

從歷史看未來:AI 技術發展的 3 個高峰

其中,展覽第一章「流動的錨點」邀請了自牧文化 2 名研究者李佳霖和蔡侑霖,從軟體與演算法發展、硬體發展與世界史、文化與藝術三條軸線,平行梳理 AI 技術發展過程。

圖一、1956 年達特茅斯會議提出「人工智慧」一詞

藉由李佳霖和蔡侑霖長達近半年的調查研究,觀眾對 AI 發展有了清楚的輪廓。自 1956 年達特茅斯會議提出「人工智慧(Artificial Intelligence))」一詞,並明確定出 AI 的任務,例如:自然語言處理、神經網路、計算學理論、隨機性與創造性等,就開啟了全球 AI 研究浪潮,至今將近 70 年的過程間,共迎來三波發展高峰。

第一波技術爆發期確立了自然語言與機器語言的轉換機制,科學家將任務文字化、建立推理規則,再換成機器語言讓機器執行,然而受到演算法及硬體資源限制,使得 AI 只能解決小問題,也因此進入了第一次發展寒冬。

-----廣告,請繼續往下閱讀-----
圖二、1957-1970 年迎來 AI 第一次爆發

之後隨著專家系統的興起,讓 AI 突破技術瓶頸,進入第二次發展高峰期。專家系統是由邏輯推理系統、資料庫、操作介面三者共載而成,由於部份應用領域的邏輯推理方式是相似的,因此只要搭載不同資料庫,就能解決各種問題,克服過去規則設定無窮盡的挑戰。此外,機器學習、類神經網路等技術也在同一時期誕生,雖然是 AI 技術上的一大創新突破,但最終同樣受到硬體限制、技術成熟度等因素影響,導致 AI 再次進入發展寒冬。

走出第二次寒冬的關鍵在於,IBM 超級電腦深藍(Deep Blue)戰勝了西洋棋世界冠軍 Garry Kasparov,加上美國學者 Geoffrey Hinton 推出了新的類神經網路算法,並使用 GPU 進行模型訓練,不只奠定了 NVIDIA 在 AI 中的地位, 自此之後的 AI 研究也大多聚焦在類神經網路上,不斷的追求創新和突破。

圖三、1980 年專家系統的興起,進入第二次高峰

從現在看未來:AI 不僅是工具,也是創作者

隨著時間軸繼續向前推進,如今的 AI 技術不僅深植於類神經網路應用中,更在藝術、創意和日常生活中發揮重要作用,而「2024 未來媒體藝術節」第二章「創造力的轉變」及第三章「創作者的洞見」,便邀請各國藝術家展出運用 AI 與科技的作品。

圖四、2010 年發展至今,高性能電腦與大數據助力讓 AI 技術應用更強

例如,超現代映畫展出的作品《無限共作 3.0》,乃是由來自創意科技、建築師、動畫與互動媒體等不同領域的藝術家,運用 AI 和新科技共同創作的作品。「人們來到此展區,就像走進一間新科技的實驗室,」吳達坤形容,觀眾在此不僅是被動的觀察者,更是主動的參與者,可以親身感受創作方式的轉移,以及 AI 如何幫助藝術家創作。

-----廣告,請繼續往下閱讀-----
圖五、「2024 未來媒體藝術節——奇異點」展出現場,圖為超現代映畫的作品《無限共作3.0》。圖/C-LAB 提供

而第四章「未完的篇章」則邀請觀眾一起思考未來與 AI 共生的方式。臺灣新媒體創作團隊貳進 2ENTER 展出的作品《虛擬尋根-臺灣》,將 AI 人物化,採用與 AI 對話記錄的方法,探討網路發展的歷史和哲學,並專注於臺灣和全球兩個場景。又如國際非營利創作組織戰略技術展出的作品《無時無刻,無所不在》,則是一套協助青少年數位排毒、數位識毒的方法論,使其更清楚在面對網路資訊時,該如何識別何者為真何者為假,更自信地穿梭在數位世界裡。

透過歷史解析引起共鳴

在「2024 未來媒體藝術節」規劃的 4 大章節裡,第一章回顧 AI 發展史的內容設計,可說是臺灣近年來科技或 AI 相關展覽的一大創舉。

過去,這些展覽多半以藝術家的創作為展出重點,很少看到結合 AI 發展歷程、大眾文明演變及流行文化三大領域的展出內容,但李佳霖和蔡侑霖從大量資料中篩選出重點內容並儘可能完整呈現,讓「2024 未來媒體藝術節」觀眾可以清楚 AI 技術於不同階段的演進變化,及各發展階段背後的全球政治經濟與文化狀態,才能在接下來欣賞展區其他藝術創作時有更多共鳴。

圖六、「2024 未來媒體藝術節——奇異點」分成四個章節探究 AI 人工智慧時代的演變與社會議題,圖為第一章「流動的錨點」由自牧文化整理 AI 發展歷程的年表。圖/C-LAB 提供

「畢竟展區空間有限,而科技發展史的資訊量又很龐大,在評估哪些事件適合放入展區時,我們常常在心中上演拉鋸戰,」李佳霖笑著分享進行史料研究時的心路歷程。除了從技術的重要性及代表性去評估應該呈現哪些事件,還要兼顧詞條不能太長、資料量不能太多、確保內容正確性及讓觀眾有感等原則,「不過,歷史事件與展覽主題的關聯性,還是最主要的決定因素,」蔡侑霖補充指出。

-----廣告,請繼續往下閱讀-----

舉例來說,Google 旗下人工智慧實驗室(DeepMind)開發出的 AI 軟體「AlphaFold」,可以準確預測蛋白質的 3D 立體結構,解決科學家長達 50 年都無法突破的難題,雖然是製藥或疾病學領域相當大的技術突破,但因為與本次展覽主題的關聯性較低,故最終沒有列入此次展出內容中。

除了內容篩選外,在呈現方式上,2位研究者也儘量使用淺顯易懂的方式來呈現某些較為深奧難懂的技術內容,蔡侑霖舉例說明,像某些比較艱深的 AI 概念,便改以視覺化的方式來呈現,為此上網搜尋很多與 AI 相關的影片或圖解內容,從中找尋靈感,最後製作成簡單易懂的動畫,希望幫助觀眾輕鬆快速的理解新科技。

吳達坤最後指出,「2024 未來媒體藝術節」除了展出藝術創作,也跟上國際展會發展趨勢,於展覽期間規劃共 10 幾場不同形式的活動,包括藝術家座談、講座、工作坊及專家導覽,例如:由策展人與專家進行現場導覽、邀請臺灣 AI 實驗室創辦人杜奕瑾以「人工智慧與未來藝術」為題舉辦講座,希望透過帶狀活動創造更多話題,也讓展覽效益不斷發酵,讓更多觀眾都能前來體驗由 AI 驅動的未來創新世界,展望 AI 在藝術與生活中的無限潛力。

展覽資訊:「未來媒體藝術節——奇異點」2024 Future Media FEST-Singularity 
展期 ▎2024.10.04 ( Fri. ) – 12.15 ( Sun. ) 週二至週日12:00-19:00,週一休館
地點 ▎臺灣當代文化實驗場圖書館展演空間、北草坪、聯合餐廳展演空間、通信分隊展演空間
指導單位 ▎文化部
主辦單位 ▎臺灣當代文化實驗場

-----廣告,請繼續往下閱讀-----
文章難易度

討論功能關閉中。

0

0
0

文字

分享

0
0
0
從認證到實踐:以智慧綠建築三大標章邁向淨零
鳥苷三磷酸 (PanSci Promo)_96
・2024/11/15 ・4487字 ・閱讀時間約 9 分鐘

-----廣告,請繼續往下閱讀-----

本文由 建研所 委託,泛科學企劃執行。 


當你走進一棟建築,是否能感受到它對環境的友善?或許不是每個人都意識到,但現今建築不只提供我們居住和工作的空間,更是肩負著重要的永續節能責任。

綠建築標準的誕生,正是為了應對全球氣候變遷與資源匱乏問題,確保建築設計能夠減少資源浪費、降低污染,同時提升我們的生活品質。然而,要成為綠建築並非易事,每一棟建築都需要通過層層關卡,才能獲得標章認證。

為推動環保永續的建築環境,政府自 1999 年起便陸續著手推動「綠建築標章」、「智慧建築標章」以及「綠建材標章」的相關政策。這些標章的設立,旨在透過標準化的建築評估系統,鼓勵建築設計融入生態友善、能源高效及健康安全的原則。並且政府在政策推動時,為鼓勵業界在規劃設計階段即導入綠建築手法,自 2003 年特別辦理優良綠建築作品評選活動。截至 2024 年為止,已有 130 件優良綠建築、31 件優良智慧建築得獎作品,涵蓋學校、醫療機構、公共住宅等各類型建築,不僅提升建築物的整體性能,也彰顯了政府對綠色、智慧建築的重視。

-----廣告,請繼續往下閱讀-----

說這麼多,你可能還不明白建築要變「綠」、變「聰明」的過程,要經歷哪些標準與挑戰?

綠建築標章智慧建築標章綠建材標章
來源:內政部建築研究所

第一招:依循 EEWH 標準,打造綠建築典範

環境友善和高效率運用資源,是綠建築(green building)的核心理念,但這樣的概念不僅限於外觀或用材這麼簡單,而是涵蓋建築物的整個生命週期,也就是包括規劃、設計、施工、營運和維護階段在內,都要貼合綠建築的價值。

關於綠建築的標準,讓我們先回到 1990 年,當時英國建築研究機構(BRE)首次發布有關「建築研究發展環境評估工具(Building Research Establishment Environmental Assessment Method,BREEAM®)」,是世界上第一個建築永續評估方法。美國則在綠建築委員會成立後,於 1998 年推出「能源與環境設計領導認證」(Leadership in Energy and Environmental Design, LEED)這套評估系統,加速推動了全球綠建築行動。

臺灣在綠建築的制訂上不落人後。由於臺灣地處亞熱帶,氣溫高,濕度也高,得要有一套我們自己的評分規則——臺灣綠建築評估系統「EEWH」應運而生,四個英文字母分別為 Ecology(生態)、Energy saving(節能)、Waste reduction(減廢)以及 Health(健康),分成「合格、銅、銀、黃金和鑽石」共五個等級,設有九大評估指標。

-----廣告,請繼續往下閱讀-----

我們就以「台江國家公園」為例,看它如何躍過一道道指標,成為「鑽石級」綠建築的國家公園!

位於臺南市四草大橋旁的「台江國家公園」是臺灣第8座國家公園,也是臺灣唯一的濕地型的國家公園。同時,還是南部行政機關第一座鑽石級的綠建築,其外觀採白色系列,從高空俯瞰,就像在一座小島上座落了許多白色建築群的聚落;從地面看則有臺南鹽山的意象。

因其地形與地理位置的特殊,生物多樣性的保護則成了台江國家公園的首要考量。園區利用既有的魚塭結構,設計自然護岸,保留基地既有的雜木林和灌木草原,並種植原生與誘鳥誘蟲等多樣性植物,採用複層雜生混種綠化。以石籠作為擋土護坡與卵石回填增加了多孔隙,不僅強化了環境的保護力,也提供多樣的生物棲息環境,使這裡成為動植物共生的美好棲地。

台江國家公園是南部行政機關第一座鑽石級的綠建築。圖/內政部建築研究所

第二招:想成綠建築,必用綠建材

要成為一幢優秀好棒棒的綠建築,使用在原料取得、產品製造、應用過程和使用後的再生利用循環中,對地球環境負荷最小、對人類身體健康無害的「綠建材」非常重要。

-----廣告,請繼續往下閱讀-----

這種建材最早是在 1988 年國際材料科學研究會上被提出,一路到今日,國際間對此一概念的共識主要包括再使用(reuse)、再循環(recycle)、廢棄物減量(reduce)和低污染(low emission materials)等特性,從而減少化學合成材料產生的生態負荷和能源消耗。同時,使用自然材料與低 VOC(Volatile Organic Compounds,揮發性有機化合物)建材,亦可避免對人體產生危害。

在綠建築標章後,內政部建築研究所也於 2004 年 7 月正式推行綠建材標章制度,以建材生命週期為主軸,提出「健康、生態、高性能、再生」四大方向。舉例來說,為確保室內環境品質,建材必須符合低逸散、低污染、低臭氣等條件;為了防溫室效應的影響,須使用本土材料以節省資源和能源;使用高性能與再生建材,不僅要經久耐用、具高度隔熱和防音等特性,也強調材料本身的再利用性。


在台江國家公園內,綠建材的應用是其獲得 EEWH 認證的重要部分。其不僅在設計結構上體現了生態理念,更在材料選擇上延續了對環境的關懷。園區步道以當地的蚵殼磚鋪設,並利用蚵殼作為建築格柵的填充材料,為鳥類和小生物營造棲息空間,讓「蚵殼磚」不再只是建材,而是與自然共生的橋樑。園區的內部裝修選用礦纖維天花板、矽酸鈣板、企口鋁板等符合綠建材標準的系統天花。牆面則粉刷乳膠漆,整體綠建材使用率為 52.8%。

被建築實體圍塑出的中庭廣場,牆面設計有蚵殼格柵。圖/內政部建築研究所

在日常節能方面,台江國家公園也做了相當細緻的設計。例如,引入樓板下的水面蒸散低溫外氣,屋頂下設置通風空氣層,高處設置排風窗讓熱空氣迅速排出,廊道還配備自動控制的微噴霧系統來降溫。屋頂採用蚵殼與漂流木創造生態棲地,創造空氣層及通風窗引入水面低溫外企,如此一來就能改善事內外氣溫及熱空氣的通風對流,不僅提升了隔熱效果,減少空調需求,讓建築如同「與海共舞」,在減廢與健康方面皆表現優異,展示出綠建築在地化的無限可能。

-----廣告,請繼續往下閱讀-----
島式建築群分割後所形成的巷道與水道。圖/內政部建築研究所

在綠建材的部分,另外補充獲選為 2023 年優良綠建築的臺南市立九份子國民中小學新建工程,其採用生產過程中二氧化碳排放量較低的建材,比方提高高爐水泥(具高強度、耐久、緻密等特性,重點是發熱量低)的量,並使用能提高混凝土晚期抗壓性、降低混凝土成本與建物碳足跡的「爐石粉」,還用再生透水磚做人行道鋪面。

2023 年優良綠建築的臺南市立九份子國民中小學。圖/內政部建築研究所
2023 年優良綠建築的臺南市立九份子國民中小學。圖/內政部建築研究所

同樣入選 2023 年綠建築的還有雲林豐泰文教基金會的綠園區,首先,他們捨棄金屬建材,讓高爐水泥使用率達 100%。別具心意的是,他們也將施工開挖的土方做回填,將有高地差的荒地恢復成平坦綠地,本來還有點「工業風」的房舍告別荒蕪,無痛轉綠。

雲林豐泰文教基金會的綠園區。圖/內政部建築研究所

等等,這樣看來建築夠不夠綠的命運,似乎在建材選擇跟設計環節就決定了,是這樣嗎?當然不是,建築是活的,需要持續管理–有智慧的管理。

第三招:智慧管理與科技應用

我們對生態的友善性與資源運用的效率,除了從建築設計與建材的使用等角度介入,也須適度融入「智慧建築」(intelligent buildings)的概念,即運用資通訊科技來提升建築物效能、舒適度與安全性,使空間更人性化。像是透過建築物佈建感測器,用於蒐集環境資料和使用行為,並作為空調、照明等設備、設施運轉操作之重要參考。

-----廣告,請繼續往下閱讀-----

為了推動建築與資通訊產業的整合,內政部建築研究所於 2004 年建立了「智慧建築標章」制度,為消費者提供判斷建築物是否善用資通訊感知技術的標準。評估指標經多次修訂,目前是以「基礎設施、維運管理、安全防災、節能管理、健康舒適、智慧創新」等六大項指標作為評估基準。
以節能管理指標為例,為了掌握建築物生命週期中的能耗,需透過系統設備和技術的主動控制來達成低耗與節能的目標,評估重點包含設備效率、節能技術和能源管理三大面向。在健康舒適方面,則在空間整體環境、光環境、溫熱環境、空氣品質、水資源等物理環境,以及健康管理系統和便利服務上進行評估。

樹林藝文綜合大樓在設計與施工過程中,充分展現智慧建築應用綜合佈線、資訊通信、系統整合、設施管理、安全防災、節能管理、健康舒適及智慧創新 8 大指標先進技術,來達成兼顧環保和永續發展的理念,也是利用建築資訊模型(BIM)技術打造的指標性建築,受到國際矚目。

樹林藝文綜合大樓。圖/內政部建築研究所「111年優良智慧建築專輯」(新北市政府提供)

在興建階段,為了保留基地內 4 棵原有老樹,團隊透過測量儀器對老樹外觀進行精細掃描,並將大小等比例匯入 BIM 模型中,讓建築師能清晰掌握樹木與建築物之間的距離,確保施工過程不影響樹木健康。此外,在大樓啟用後,BIM 技術被運用於「電子維護管理系統」,透過 3D 建築資訊模型,提供大樓內設備位置及履歷資料的即時讀取。系統可進行設備的監測和維護,包括保養計畫、異常修繕及耗材管理,讓整棟大樓的全生命週期狀況都能得到妥善管理。

智慧建築導入 BIM 技術的應用,從建造設計擴展至施工和日常管理,使建築生命周期的管理更加智慧化。以 FM 系統 ( Facility Management,簡稱 FM ) 為例,該系統可在雲端進行遠端控制,根據會議室的使用時段靈活調節空調風門,會議期間開啟通往會議室的風門以加強換氣,而非使用時段則可根據二氧化碳濃度調整外氣空調箱的運轉頻率,保持低頻運作,實現節能效果。透過智慧管理提升了節能效益、建築物的維護效率和公共安全管理。

-----廣告,請繼續往下閱讀-----

總結

綠建築、綠建材與智慧建築這三大標章共同構建了邁向淨零碳排、居住健康和環境永續的基礎。綠建築標章強調設計與施工的生態友善與節能表現,從源頭減少碳足跡;綠建材標章則確保建材從生產到廢棄的全生命週期中對環境影響最小,並保障居民的健康;智慧建築標章運用科技應用,實現能源的高效管理和室內環境的精準調控,增強了居住的舒適性與安全性。這些標章的綜合應用,讓建築不僅是滿足基本居住需求,更成為實現淨零、促進健康和支持永續的具體實踐。

建築物於魚塭之上,採高腳屋的構造形式,尊重自然地貌。圖/內政部建築研究所

-----廣告,請繼續往下閱讀-----
文章難易度

討論功能關閉中。

0

3
1

文字

分享

0
3
1
溫室效應有救了?把二氧化碳埋進地底吧!  
鳥苷三磷酸 (PanSci Promo)_96
・2024/03/25 ・1389字 ・閱讀時間約 2 分鐘

-----廣告,請繼續往下閱讀-----

本文由 台灣中油股份有限公司 委託,泛科學企劃執行。 

近年全球對於氣候變遷的關注日益增加,各國紛紛宣布淨零排放(Net Zero Emissions)的目標,聯手應對氣候變遷所帶來的挑戰。淨零排放是指將全球人為排放的溫室氣體量和人為移除的量相抵銷後為零。而「碳捕存再利用技術(Carbon Capture Utilization and Storage,簡稱 CCUS)」技術被視為達成淨零重要的措施之一。 

CCUS 示意圖。圖/INPEX CCS and CCUS Business Introduction Video 2022 

「碳捕存再利用技術 CCUS」是什麼? 

CCUS 技術可以有效地將二氧化碳從大氣中捕捉並封存,進而減少溫室氣體的排放。CCUS 包含捕捉、運輸、封存或再利用三個階段,也就是將二氧化碳抓下來,並且存起來或是轉換成其他有價值的化學原料。關於如何捕捉二氧化碳,可以參考我們先前拍的影片《減碳速度太慢?現在已經能主動把二氧化碳抓下來!?抓下來的二氧化碳又去了哪裡?》。 

至於捉下二氧化碳之後,該存放在哪裡呢?科學家們看上一個經過數千萬年驗證、最適合儲存的地方——地底。沒錯,地底可不只有石頭跟蜥蜴人,只要這些石頭中存在孔隙,就可以儲存氣體或液體。最常見的就是天然氣與石油。現在,我們只要將二氧化碳儲存到這些孔隙就好。 

-----廣告,請繼續往下閱讀-----

封存的地質條件也很簡單,第一,要有一層擁有良好空隙率及滲透性的「儲集層」,通常是砂岩。第二,有一層緻密、不透水且幾乎無孔隙的岩石,用來阻擋儲集層的氣體向上逸散的「蓋層」,常見的是頁岩。只要儲集層在下,蓋層在上,就是一個理想的儲存環境。 

臺灣哪裡適合地質封存? 

臺灣由東往西,從西部麓山帶、西部平原、濱海到臺灣海峽,都有深度達 10 公里的廣大沉積層,並且砂岩與頁岩交替出現,可說是良好的儲氣構造。 

至於臺灣適合封存二氧化碳的地點,有個很直接的作法,就是參考石油、天然氣的儲存場域就好,也就是所謂的「枯竭油氣層」。將開採過的天然氣或石油的空間,重新拿來儲存二氧化碳。而臺灣的油氣田,主要集中在西部的苗栗與臺南一帶,在 1959~2016 年,累計產了 500 億立方公尺的天然氣,和超過 500 萬公秉的凝結油。 

臺灣油氣田位置圖。圖/《科學發展》2017 年 6 月第 534 期
鐵砧山每年封存 10 萬噸二氧化碳(相當於通霄鎮 1/3 人口一年的二氧化碳排放量)。圖/台灣中油

而至今這些枯竭油氣田,適合來做二氧化碳的封存。例如苗栗縣通霄鎮的鐵砧山是臺灣目前陸上發現最大的油氣田,不只是封閉型背斜構造,更擁有厚實緻密的緻密蓋岩層。在原有油氣田枯竭後,從民國 77 年開始轉為天然氣儲氣窖利用原始天然氣儲層調節北部用氣的方式,已持續超過 35 年。因此中油也正規劃在鐵砧山氣田選擇合適的蓋層和鹽水層,進行小規模的二氧化碳注入,作為全國首座碳封存的示範場址。並同時進行多面向的長期監測,驗證二氧化碳封存的可行性與安全性。 

-----廣告,請繼續往下閱讀-----

更多詳細內容及國際 CCUS 案例,歡迎觀看影片解惑! 

-----廣告,請繼續往下閱讀-----

討論功能關閉中。

鳥苷三磷酸 (PanSci Promo)_96
211 篇文章 ・ 312 位粉絲
充滿能量的泛科學品牌合作帳號!相關行銷合作請洽:contact@pansci.asia