0

1
1

文字

分享

0
1
1

參與世界最大天文臺合作計畫,懷抱夢想的天文學家賴詩萍博士

臺北天文館_96
・2017/03/10 ・3878字 ・閱讀時間約 8 分鐘 ・SR值 519 ・六年級

文/范賢娟|任職於清華大學育成中心,台北天文館刊物《臺北星空》特約採訪。

賴詩萍教授和研究團隊參與了世界最大的天文台合作計畫, ALMA 毫米波陣列。圖/臺北星空

許多人小時候會對大自然感到好奇,星空會是許多問題的來源。但在成長過程中,問題慢慢消失了,好奇心也不見了,許多人只能遵循常規去過平凡的日子。

今天訪問的學者,她還記得自己小時候的天文夢想,求學過程中的選擇也讓她一步步靠近夢想。今天她是一位大學教授,但仍保持孩童般的純真去看世界,去看自己的研究。

天文貧乏的成長環境

清華大學天文所賴詩萍教授,從小就對天文感興趣,她記得每次去書局都會把書局中跟天文有關的書全部買下來,不過那時候天文書籍還不多。她還會注意天文相關的訊息,看到哪天有月全食、日偏食,也都會刻意去看。但實際觀測到的情況不像媒體、書本上那麼大又清晰,還不容易看,許多人看了會失望,但賴教授就是很高興。

-----廣告,請繼續往下閱讀-----

她還記得 1986 年哈雷彗星回歸的時候,她也跑去圓山天文臺看,但那年的彗尾的角度從地球的方向很不容易看清楚,她隱約看到一個小小霧霧的影像,也不確定是不是真的看到,但那種經驗、感覺,讓她更喜歡天文了!

但好像沒有大學在教天文,該怎麼選擇呢?

找到方向了!

她高中的時候去中央大學參加一個為期三週的地科營,這是一個空前絕後的知識饗宴,第一週學地科,第二週學大氣,第三週就是天文了,賴教授聽完還意猶未盡,在最後問老師:「如果想念天文的話,大學應該讀哪個系所?」當時中央大學的吳心恆教授告訴她要念物理,於是她牢記在心,考大學時就以物理為第一目標,後來進入清華物理系。

在清華念大學的時候,她還加入天文社,這是一個很有傳統的社團,包括現在清大的張祥光教授、陳惠茹教授、淡江的秦一男教授、中研院的金升光博士、蘇裕農博士……,都曾經是社團要角。他們經常會去尖石、內灣觀星,或者在清大的「光明頂」一起看流星,也是很難忘的經驗。

-----廣告,請繼續往下閱讀-----

但「光明頂」在哪裡?原來那是在生科院往南門方向有個爬坡的最高點,清華人都那樣稱呼該地。當年他們就按照書上寫的觀測方式,在下半夜的時候一起去觀測,八個人背背相對、呈放射狀地躺在地面上,面對八個方向,準備好星圖,當看到流星的時候要趕快低頭在星圖上畫出它出現和消失的地方,相鄰視線重疊之處就是讓人可以互補避免遺漏。

除了獅子座流星雨偶爾的大爆發之外,每年最穩定的就屬於八月十二、十三的英仙座流星雨,賴教授記得當年曾有一個晚上觀測到一百多個流星的經驗,看過那之後其他的流星雨也就不足觀了。

清大天文社還有個特色,是喜歡辦讀書會。賴教授說與其他學校交流之後才發現,別的天文社比較偏重天文攝影,清大天文社則學術氣味很濃。當年秦一男學長帶著大家選了一本原文書來看,大家等於又修一門課,非常具有知識性,但因為參與的人都有興趣,因此也樂在其中。

正式進入天文領域

大學畢業之後,賴教授在周定一教授那兒擔任助理,同時也準備去考中央天文所,也順利考上了。她自謙說,念大學的時候成績不好,大學畢業後申請國外學校很不順利,因此碩一時特別用功。當年陳文屏教授的小組會議歡迎其他教授的學生過去聽,她會去參加,而自己論文則是跟著闕志鴻教授完成。此時她還是想出國去念書。

-----廣告,請繼續往下閱讀-----

這次申請就順利多了,賴教授申請到伊利諾大學天文研究所,同時也拿到BIMA(BerkeleyIllinois-Maryland Association)獎學金。 BIMA 是由美國多個大學合作建立的無線電波陣列,  BIMA 獎學金則是由中研院天文所設置的,希望為臺灣培養電波天文學的研究人才。

賴教授在馬里蘭大學擔任博士後研究員期間參與 BIMA 的搬遷。當時 BIMA 與加州理工學院的 OVRO(Owens Valley Radio Observatory)正進行合併,成為 CARMA (Combined Array for Research in MillimeterwaveAstronomy)。圖/臺北星空

伊利諾大學華人天文學家魯國鏞教授已研究多時,指導她了解無線電波的基本觀念。因為無線電波訊號與光學影像差很多,因此與一般人習慣性的感覺很不一樣,不能用直觀的方式去思考,而要多一點物理觀念才能理解其中意義,所以需要花功夫學習。賴教授一開始就跟著魯教授進入這個領域,但一年之後魯教授要回臺灣擔任中研院天文所的所長,因此就介紹她去跟克拉崇(Richard Crutcher)教授繼續研究,她的研究領域也改到磁場。

測量磁場主要是看則曼效應(Zeeman Effect),也就是一條譜線在外加磁場的作用下會分裂的現象,如果磁場越強,譜線分離的就越遠。不過在星際之間,磁場很微弱,因此通常能觀察到的就是譜線變寬而已,還要儀器精確度相當高,才能量出來。

賴教授的一位學長是電機背景出身,在克拉崇教授門下的時候針對一個測量星際磁場的方法設計出關鍵元件,使得賴教授可以接續此法測量磁場。該方法是利用灰塵帶靜電,再加上其形狀並非均勻正球體,所以會在磁場中有特殊的排列方向,整體而言就會產生偏極,這和磁場方向垂直。賴教授的學長利用這個特性費盡心力製造出「毫米波的偏振片」之後亦實際測量了一個波源證實此元件能正確地量測到磁場,賴教授的論文即是以此儀器測量幾個最有可能量到磁場的觀測對象,探討磁場如何影響恆星形成。

-----廣告,請繼續往下閱讀-----

拓展研究領域

畢業之後,賴教授到噴射推進實驗室(Jet Propulsion Laboratory, JPL)做博士後研究,當時 JPL 正大力鼓吹大家使用史匹哲(Spitzer)紅外線望遠鏡,這個大好機會讓賴教授開始思考如何使用紅外線觀測資料來增加恆星形成研究的深度。 2003 年史匹哲望遠鏡發射時,賴教授正在馬里蘭大學做博士後研究,當時即開始參與史匹哲太空望遠鏡的超大型探測計畫(Legacy Projects) 中有關恆星形成的「從分子雲核演化到行星盤」(From Molecular Cores to Planetary Disks)的觀測計劃 (簡稱 c2d 計劃)。史匹哲太空望遠鏡在 3-160 μm 的波長以空前靈敏的儀器提供了研究「恆星與行星形成」的關鍵性觀測資料。

目前中研院參與了世界最大的天文臺合作計劃  ALMA(Atacama Large Millimeter/submillimeter Array)毫米波陣列。在 ALMA 的第 0 階段(Cycle 0)全世界有九百多個申請案,卻只有一百多個通過,而臺灣通過申請的就有八件,成績相當優異,其中一件就是賴教授和她的學生做的原始行星盤之觀測。恆星周圍的盤狀物質,到演化後期會遵循克卜勒定律— 距離越近之處繞行越快,距離越遠繞行越慢,速度與距離中心的長度有比例關係,太陽系的行星即是遵守這個克卜勒發現的定律運行。天文學家認為,如果觀察到恆星盤面的物質遵守這定律,則代表這個盤面可以維持穩定,物質不會再大量的往恆星掉落,因此意味著行星可以開始形成了,然而對於原始行星盤究竟在多早的階段可以進入穩定狀態,天文學家仍爭論不休。

賴教授與學生穆美蓉(Nadia Murillo)分析 ALMA 的資料後,發現在「蛇夫座 Rho 星恆星形成雲」內有個三重原始恆星系統,其主星 VLA1623A 周圍有個盤狀結構,而其速度分佈合乎克卜勒定律,是個極為年輕的「克卜勒盤」(Keplarian Disk),其大小約為 150AU (1AU等於地球到太陽的距離)。此原始恆星質量僅為太陽質量的 0.2 倍,證明原始行星盤在恆星剛剛生成不久後就可以形成,也就是行星可能比過去認為的更早開始形成。

這究竟是一個特例還是通則?科學家要修改的是理論,還是找尋 VLA1623A 具有哪些獨特性造成它的克卜勒盤可以在那麼早的階段就形成?這些問題都很吸引人!因此這篇文章在投稿《天文及天文物理學報》(Astronomy and Astrophysics Journal)之後,很快獲得接受,並選為當期的重點文章,國內新聞界也對此做了相當多的報導。賴教授現在也爭取到了第 2 階段的觀測時間,希望能繼續抽絲剝繭找出答案。

-----廣告,請繼續往下閱讀-----
賴教授在記者會上發表ALMA成果。由左而右為:賴教授、清大副校長馮達旋教授、物理系系主任潘犀靈教授、天文所張祥光教授、中研院天文所研究員李景輝博士。圖/臺北星空

天文教育的參與與觀察

在研究之餘,她也會抽出時間,協助天文教育。她主持了一個國科會的科教計劃「星.雲.行動」,協助北一女發展天文觀測數據分析與專題研究課程,與北一女的老師發展出許多教學模組,啟發莘莘學子對天文的興趣。

賴教授帶領高中教師到鹿林天文臺做天文觀測實習,推廣「星.雲.行動 」計劃的課程。圖/臺北星空

ALMA小檔案:
ALMA (Atacama Large Millimeter/submillimeter Array) 位於智利的阿塔卡瑪(Atacama)沙漠高原上,那是地表最乾燥的地區,可以避免掉水氣的干擾,被認為是地表設置無線電波望遠鏡最佳的環境。 ALMA 是由歐洲、北美、東亞與智利共和國合作建造的國際天文設施。
ALMA 的經費來源包括三部分:歐洲地區由歐洲南方天文臺(ESO);北美地區為美國國家科學基金會(NSF)、加拿大國家研究理事會(NRC)、與臺灣國科會(現改為臺灣科技部);東亞地區則為日本國家自然科學研究院(NINS)和臺灣中央研究院(AS)。  ALMA 的建設和營運是由歐洲南方天文臺代表歐洲,美國的國家電波天文臺(NRAO)代表北美,以及日本的國立天文臺(NAOJ)代表東亞。聯合 ALMA 天文臺(Joint ALMA Observatory, JAO)提供天文臺的建造、營運及操作的統一領導和管理。
ALMA 共有 66 臺無線電波望遠鏡,其中 54 臺口徑為 12 公尺,而剩下的 12 臺口徑為 7 公尺,解析度最高可達 0.01 角秒,為研究宇宙中許多黑暗冰冷的環境 (如氣體分子雲、星際塵埃、恆星形成的環境,行星、衛星等),提供更精確的觀測資料。從2011年開始,已有足夠多臺望遠鏡加入運作,可以提供科學家們使用申請。

ALMA建立在五千公尺的乾燥高原,所在國家為南美的智利,由許多國家一同合作完成,是一個最能展現國際合作的典範。ALMA陣列是目前世界上最巨大的天文設施。圖/http://almaobservatory.org/

本文轉載台北天文館之網路天文館網站,《台北星空》第 68 期。

文章難易度
臺北天文館_96
482 篇文章 ・ 39 位粉絲
臺北市立天文科學教育館是國內最大的天文社教機構,我們以推廣天文教育為職志,做為天文知識和大眾間的橋梁,期盼和大家一起分享天文的樂趣!

0

2
2

文字

分享

0
2
2
一張花了五年的照片:從觀測到成像,重建銀河系中心黑洞影像
研之有物│中央研究院_96
・2022/08/14 ・4831字 ・閱讀時間約 10 分鐘

-----廣告,請繼續往下閱讀-----

本文轉載自中央研究院研之有物,泛科學為宣傳推廣執行單位。

  • 採訪撰文/歐柏昇
  • 美術設計/蔡宛潔

訪問事件視界望遠鏡計畫成員

事件視界望遠鏡(EHT)2022 年 5 月公布人馬座 A 星(Sagittarius A*, Sgr A*)的黑洞照片,終於揭開銀河系中心超大質量黑洞的面紗。黑洞觀測仰賴特長基線干涉技術(VLBI, Very-long-baseline interferometry),從硬體設備的建造到成像工作,每一步驟都大有學問。中央研究院「研之有物」專訪院內天文及天文物理研究所副研究員淺田圭一,他直接參與了本次黑洞影像的工程,以下讓我們一起深入瞭解!

淺田圭一副研究員向研之有物團隊解說黑洞影像的處理細節。圖/研之有物

首先介紹淺田圭一(Keiichi Asada)副研究員,他是事件視界望遠鏡計畫的成員,2009 年延攬來臺灣中研院天文所,從事次毫米波段的 VLBI 研究。

淺田圭一對於 EHT 陣列的格陵蘭望遠鏡(GLT)貢獻良多,完整參與了 GLT 望遠鏡的選址與建造,目前他在計畫中負責管理黑洞觀測。此外,淺田圭一也是人馬座 A 星成像團隊的一員,因此對於影像處理的細節相當瞭解,我們將透過訪問,逐漸揭開銀河系中心黑洞照片背後的秘密。

-----廣告,請繼續往下閱讀-----
人馬座 A 星是銀河系中央的超大質量黑洞,事件視界望遠鏡合作團隊成功重建此黑洞的影像。圖/ESO

會隨著時間改變結構的銀河系黑洞:人馬座 A 星

早在 2017 年,事件視界望遠鏡就同時完成 M87 和人馬座 A 星兩個黑洞的觀測。為何 M87 黑洞影像在 2019 年就公布,然而人馬座 A 星卻要多等三年呢?

淺田圭一說,研究團隊在 2018 年取得數據的時候,很快就發現 M87 的數據處理容易得多。人馬座 A 星的成像之所以困難,其中有個關鍵因素,是它的周圍結構隨著時間變化非常迅速。

電波干涉儀觀測的原理,是利用望遠鏡之間兩兩一組構成的「基線(baseline)」,測量訊號抵達的時間差,來建構出天體的長相。觀測的時候,每條基線可填入一個資料點。由於地球會自轉,隨著時間的推移,望遠鏡以不同角度接收天體訊號,資料點也愈來愈多,就像是相機長曝光一樣,可以填入愈來愈多的資訊,提高影像品質。

淺田圭一解釋,長曝光的時候目標不應該移動;如果曝光過程中,觀測目標變化很大,就會很難成像,而人馬座 A 星就是這種情況。

-----廣告,請繼續往下閱讀-----
淺田圭一說明,同一個天體的訊號,會在不同時間分別抵達兩個測站,而此時間差可用來還原天體的樣貌。圖/研之有物

一張花費五年的照片,科學家在做什麼?

這張黑洞影像的產生耗費了五年,是個浩大的工程。淺田圭一說明,從觀測到產出這張照片,共歷經四個階段的主要任務:觀測(observation)、訊號相關(correlation)、校準(calibration)、成像(imaging)。

黑洞影像的產生流程,大致分為觀測、訊號相關、校準和成像四個階段。圖/研之有物

觀測(observation)

2017 年,八座望遠鏡共同完成了人馬座 A 星的觀測,而中研院參與了其中三座望遠鏡的建造與營運。

觀測的時候,望遠鏡接收宇宙中傳來的電磁波,轉換為數位訊號(00、01、10、11),記錄在硬碟中。由於事件視界望遠鏡的各個測站距離遙遠,必須先分別將數據儲存下來,用飛機運送到美國麻省理工學院(MIT)和德國馬克斯·普朗克研究所(Max Planck Institutes)。這兩個機構擁有超級電腦,可進行下一步的運算。

為何要用飛機傳送數據呢?淺田圭一開玩笑說:「當然也可以用船!」真正的原因是黑洞的觀測資料非常龐大,每座望遠鏡每秒可生成 4 GB 的資料,一次觀測的資料總量高達 5 PB。加上有些測站地理位置偏遠,網路傳輸非常不便。例如其中一個測站是南極望遠鏡,只有非常慢的衛星網路,於是這麼龐大的資料只能靠飛機實體傳輸。

-----廣告,請繼續往下閱讀-----
黑洞觀測的龐大數據儲存在氦氣填充硬碟(helium-filled hard disk drives; HDDs)內。圖/淺田圭一

訊號相關(correlation)

研究機構收到飛機運來的硬碟之後,利用超級電腦進行「訊號相關」的步驟。電波干涉需要計算多組望遠鏡之間接收訊號的時間差,因而需把來自各地的數據關聯在一起。

這個步驟在 2018 年完成,大約花了一年時間。淺田圭一說,研究團隊不希望有任何錯誤,所以每個步驟都很仔細檢查,不斷發現問題,又回去修正,因此耗費很多時間。

校準(calibration)與成像(imaging)

完成訊號相關之後,還需要校準,將原始數據轉換為能量的物理單位。研究團隊使用兩種不同的指令流程來校準(註1),確認結果一致。

電波干涉儀所測得的數據,並不是直接的「照片」,而是影像經由傅立葉轉換後的結果。下圖稱為 uv 平面(uv plane),用來表達電波天文影像經傅立葉轉換後的空間。

-----廣告,請繼續往下閱讀-----

若要直接解出影像,電波觀測的數據需要完全填滿 uv 平面,但是現實中無法做到,只能盡可能取得 uv 平面上的資訊,進而根據既有資料,運用模擬來還原影像。總之,成像是個需要技巧的艱難任務。

uv 平面是指電波天文影像經傅立葉轉換後的空間,上圖為銀河系中心黑洞影像的觀測結果。uv 平面上一個資料點,表示一條基線(望遠鏡兩兩一組的連線)所觀測到的數據。用不同顏色來表示不同望遠鏡組別的基線,並且隨著地球自轉,各條基線在 uv 平面上的覆蓋範圍也越多。天文學家需要有足夠的 uv 覆蓋範圍,才能妥善地還原天體的影像。圖/事件視界望遠鏡合作團隊

重建黑洞影像:步驟複雜的艱難任務

淺田圭一說明,重建影像的方法很多,並且有眾多參數可調整。以 VLBI 觀測黑洞,uv 平面的數據肯定無法收滿,故一開始的觀測數據可產生非常多種影像,其中有些是環狀,有些是點狀。面對這麼多種可能性,科學家如何理出頭緒?

成像工作的重點,在於有技巧的「逆推」。為了找出 uv 數據和黑洞影像的相關性,要先「訓練」一個優秀的影像重建模型。訓練模型要先找出優良的參數,使得影像和數據結果最吻合,尋找優良參數需要依靠電腦模擬,從假設的幾何結構產生假想的數據。

在分析真實數據之前,研究團隊先拿電腦生成的假想數據來「訓練」重建影像的程式。這個「訓練」過程會嘗試非常多的參數組合,並檢驗程式生成的影像是否符合原先假設的幾何結構,藉此挑選出一些優良的參數組合。

-----廣告,請繼續往下閱讀-----

找出優良的參數之後,再將這些參數套用在真實觀測數據上,開始重建真實的黑洞影像。

研究團隊假設黑洞有環狀、盤狀、點狀等不同幾何結構,運用電腦生成假想的觀測數據,藉這些數據訓練成像的程式,找出優良的參數。圖/事件視界望遠鏡合作團隊

經由模擬找出的優良參數仍然不只一組,於是就有許多種和觀測數據吻合的影像。研究團隊並不是從中挑出唯一的影像,而是根據結構形狀把影像分為四種類型,並且取平均,得到最終公諸於世的那一張黑洞影像。

與數據吻合的銀河系中心黑洞影像數量繁多,研究團隊將最貼近觀測數據的影像分成四種類型。圖/EHT
圖為銀河系中心黑洞影像,最終的黑洞影像是多種影像平均後的結果。四種類型影像旁的長條圖,代表該類型在所有優良參數影像中所佔的比例。圖/事件視界望遠鏡合作團隊

由於成像並非直觀的過程,所以科學家們各有不同的想法來成像。淺田圭一說,大家都知道成像很困難,雖然本質是國際合作,但是想法本身都是來自個人,所以這項任務也像是國際競爭,看誰能找出最好的解法。

2018 年取得數據之後,科學家嘗試很多方法來成像。大約在 2019 年底,就產生和最終結果多少相似的影像,但是研究團隊沒有十足把握,所以繼續微調、反覆確認,直到今(2022)年初,才終於得到有把握的黑洞影像。

-----廣告,請繼續往下閱讀-----

對於事件視界望遠鏡的團隊而言,這幾年是個辛苦的歷程。他們每週都有橫跨亞洲、歐洲、美洲的線上國際會議,為了配合所有國家的時區,會議時間通常都在亞洲的晚上。淺田圭一說,對於年輕同事真是感到抱歉,他們週五晚上經常無法去放鬆 Happy,必須參與國際會議。

黑洞影像的背後,除了眾人之力,還需要先進的儀器

黑洞照片的產出仰賴眾多科技。除了軟體技術之外,若沒有先進的硬體設備,如此精密的觀測無法完成。淺田圭一認為,中研院在黑洞觀測的硬體設備上有兩大貢獻:

第一是數位轉換器(digitizer)。望遠鏡接收到的電磁波,需轉成數位訊號,才能進行下一步的數據處理。所有測站的數位轉換器都是由中研院完成,幕後功臣是天文所的江宏明研究技師。

第二是位於智利的阿塔卡瑪大型毫米及次毫米波陣列(ALMA)。事件視界望遠鏡大部分的靈敏度都來自 ALMA,遠遠超過其他望遠鏡。

-----廣告,請繼續往下閱讀-----

ALMA 本身是個由數十座望遠鏡構成的干涉儀,但是黑洞觀測要把 ALMA 當作單一的一座望遠鏡,和其他測站共同組成更大的干涉儀。欲達成此目標,需要添加特殊功能,確保 ALMA 內部每一個望遠鏡所接收的電磁波對齊。這就是國際合作的 ALMA Phasing Project 的任務,早在事件視界望遠鏡合作團隊組成之前,中研院天文所就參與了這個計畫。

由於電波干涉儀的基本原理,是運用各個測站訊號抵達的時間差,來還原天體影像,因此需要非常精確地測定時間。事件視界望遠鏡的同步器(synchronizer)是運用氫邁射(hydrogen maser)的原子鐘,每秒鐘具有 10-13 的精確度,各個測站都需要裝設此配備。

原子鐘需要放置在很穩定的溫度和磁場下,以及無震動的環境中。氫邁射原子鐘的外面需要包裹三層的容器,確保設備高度穩定。事件視界望遠鏡的每個測站,都有專門放置原子鐘的位置。淺田圭一笑著說:電波望遠鏡放置原子鐘的房間裡有張椅子,那是他最喜歡的工作地點,因為最不容易受到干擾!

事件視界望遠鏡各個測站以原子鐘測定時間。原子鐘(粉色箱子處)受到層層保護,放置在高度穩定、不受干擾的環境中。圖片為技術人員與 ALMA 陣列操作場地的原子鐘合影。圖/ALMA

黑洞影像是眾多科學家協力完成的鉅作。精密硬體設備的每個部分,都是黑洞觀測不可或缺的利器。人馬座 A 星黑洞觀測完成之後,數據分析的工作也相當艱辛,耗費五年的時間才成功重建影像。一張「黑洞照」,絕不是曝光之後就會自動跑出來,而是集合眾人之力,以嚴密科學方法達到的成就。

註解

註 1:EHT 研究團隊使用兩套指令流程來校正數據:the CASA-based rPICARD pipeline、the HOPS-based EHT-HOPS pipeline

延伸閱讀

研之有物│中央研究院_96
296 篇文章 ・ 3420 位粉絲
研之有物,取諧音自「言之有物」,出處為《周易·家人》:「君子以言有物而行有恆」。探索具體研究案例、直擊研究員生活,成為串聯您與中研院的橋梁,通往博大精深的知識世界。 網頁:研之有物 臉書:研之有物@Facebook

0

9
2

文字

分享

0
9
2
在獵戶座大星雲探測「熱微核」——尋找生命起源的線索!
研之有物│中央研究院_96
・2021/12/20 ・3970字 ・閱讀時間約 8 分鐘

本文轉載自中央研究院研之有物,泛科學為宣傳推廣執行單位。

  • 採訪撰文|歐柏昇
  • 美術設計|林洵安

為什麼要研究宇宙中的複雜分子?

生命如何在宇宙中起源?這是天文學家關注的一個大哉問,也許我們可以從星際中的複雜分子,獲得一些可能線索。「研之有物」團隊專訪中央研究院天文及天文物理研究所呂聖元副研究員,他長期研究天文化學,2020 年普查在獵戶座大星雲的恆星形成區,探測到 4 顆富含複雜分子的「熱微核」(hot corino),有助於釐清恆星誕生時周遭雲氣的化學演化。

美麗的獵戶座星雲,其恆星形成區有著富含複雜分子的熱微核。圖/Wikimedia Commons

尋找星際中的複雜分子

天文學家很早就知道,星際空間中存在著成分以氫氣為主的分子雲(molecular cloud)。到了 1960 年代,隨著電波天文學進展,學者們在分子雲中陸續偵測到新的分子訊號。這才發現,分子雲裡面除了氫氣,還摻雜著很多不同的分子。由於分子雲是恆星與行星系統誕生的地方,不禁讓人聯想,其中或許存在一些和生命起源有關的分子。

相較於簡單分子而言,由至少 6 個以上原子構成的有機分子,天文學家稱為「複雜有機分子」(complex organic molecules),可能和生命起源有更多連結。過去天文學家就試著尋找複雜有機分子,不過早期望遠鏡靈敏度低,所以起初偵測到的分子都較為簡單。

天文學家偵測星際雲氣中分子的方法,是量測分子的轉動光譜。氣態的分子有時轉得快、有時轉得慢,當分子在不同轉動模式變換時會發出或吸收光線,而這些具有特徵的光線就構成分子的轉動光譜。

-----廣告,請繼續往下閱讀-----
圖片為一氧化碳分子(亦為簡單分子)在不同轉動模式變換的示意圖,從快轉切換到慢轉的過程中會發出光子。而天文學家想要尋找的複雜有機分子,轉動模式會更為複雜。圖/Wikimedia Commons

為什麼複雜分子的訊號會比較微弱呢?呂聖元說主要原因有兩個:首先,複雜分子通常需要經歷很多化學過程才能形成,所以在星際雲氣中的豐度(註1)相對來說比較低。第二,簡單分子的轉動模式比較單純,複雜分子的轉動模式卻很多,使得每條輻射譜線的亮度相對微弱而更不容易觀測。

隨著天文儀器越來越靈敏,實驗室量測到、用來比對的分子光譜數量越來越多,科學家在星際偵測到的分子種類迅速增加,並找到更多結構複雜的分子。目前已偵測到的星際分子種類,從 50 年前的個位數,增加到最近的 200 多個。進入 21 世紀後,綠堤望遠鏡(GBT)以及阿塔卡瑪大型毫米及次毫米波陣列(ALMA,中研院亦參與研發建造)等新儀器相繼上線運作,搜尋複雜有機分子的成果更是突飛猛進。

雖然目前已找到的複雜有機分子,尚未能直接連結到生命起源,不過天文學家繼續努力搜尋和生命有關的分子。例如,許多學者努力在星際間尋找「甘胺酸」(Glycine),甘胺酸是一種構造相對簡單的胺基酸,是構成人體蛋白質的成分之一,若能找到這種分子,有望幫助我們掌握生命起源的線索。

天文學家在星際間偵測到的分子種類數量,在 1960 年代只有個位數,隨著電波天文學進展,例如綠堤望遠鏡與 ALMA 相繼上線,到 2021 年已經發現了 200 多種分子,並持續增加中。圖/McGuire 2021, arXiv

在獵戶座星雲偵測到新的「熱微核」

1990 年代找到的許多複雜有機分子,都是在大質量恆星誕生的區域發現,這些地方稱為「熱分子核(hot molecular core)」或者「熱核」。發現熱核之後,天文學家進一步想:在類似太陽系的小質量恆星誕生區,是否也能找到複雜有機分子呢?

-----廣告,請繼續往下閱讀-----

2004 年起,科學家的確在小質量恆星誕生的區域,找到了一些複雜有機分子。這些天體比起「熱核」來說,不論是大小或是質量都要來得小,因此被稱之為「熱微核(hot corino)」。

呂聖元指出,不論「熱核」或是「熱微核」,所謂的「熱」,其實只是相對一般的雲氣來說比較高溫。一般分子雲只有大約絕對溫度 10 度(10K,約 -263 ℃),非常寒冷,而熱(微)核可達大約 100K 至 200K(約 -173℃ 至 -73 ℃)。在恆星形成的過程中,部分雲氣密度變高,同時被加熱,於是可在毫米波與紅外線波段看到比較亮的區域,而「熱微核」就是相對高溫的緻密區域。

2020 年,臺灣大學的博士生許世穎和呂聖元合作發表論文,登上《天文物理期刊》(The Astrophysical Journal),他們在獵戶座大星雲偵測到了 4 個新的熱微核!在此之前,已知的熱微核並不多,只有不到 20 個,主要出現在經常被觀測且已知的明亮恆星形成區。

呂聖元研究團隊採用全然不同的途徑,不去觀測已知的恆星形成區,而是像矇著眼睛般,普查獵戶座星雲中之前沒被發現、或是尚未被詳細研究過的恆星形成區域,結果就發現了裡面的熱微核。這項重要發現受惠於 ALMA 望遠鏡的高靈敏度,故可偵測到過去可能無法被看見的訊號。

-----廣告,請繼續往下閱讀-----

事實上,幫助呂聖元團隊找到熱微核的這項 ALMA 觀測計劃,最初的目的並非尋找複雜有機分子,在呂聖元團隊看過光譜之後,才發現熱微核就在其中,可說是意外的驚喜。

那麼,偵測到新的熱微核意味著什麼?

此圖由 ALMA 望遠鏡拍攝,呈現獵戶座大星雲中一個恆星形成區的一氧化碳分布,可見到明顯的分子外流(outflow)構造。富含複雜有機分子的「熱微核」位於藍色圓圈區域。圖/呂聖元

宇宙中可能更普遍存在複雜有機分子

熱微核並不是所有恆星形成區域都能看到,但是看不到熱微核的地方是真的沒有熱微核,或者只是我們「視而不見」呢?

呂聖元團隊研究發現,目前找到的熱微核,大多仍出現在總亮度相對比較亮的恆星形成區。為什麼比較亮的地方才看得到熱微核?許世穎和呂聖元等即將發表的新論文提供了解釋:明亮的原恆星附近輻射比較強,因此可造成範圍較大的熱區,使得熱微核較容易被看到。

-----廣告,請繼續往下閱讀-----

呂聖元進一步說明,依照目前主流的了解,複雜有機分子經常在星際塵埃表面的冰晶形成。在熱區之中,冰晶中的分子得以揮發成為氣態,而能被人們透過分子轉動光譜觀測到。明亮的原恆星附近造成較大的熱區,可能就是比較容易觀測到熱微核的原因。

如果以上的解釋正確,就表示目前找到的熱微核數量,可能只是冰山一角。可能在更多的恆星形成區都有熱微核存在,只不過有些熱微核尺度不夠大,所以在目前儀器的靈敏度下沒能偵測到。

呂聖元團隊運用 ALMA 望遠鏡的高靈敏度觀測,確實已在一些過去沒有看到熱微核的地方,找到了較黯淡的熱微核,能夠支持以上的推論。也就是說,可能許多恆星形成區都有熱微核,或者說複雜分子的分布比原先想像更加普遍。

最近還有其他研究發現,在恆星誕生之前的冷雲氣中也偵測到複雜有機分子。也就是說,雲氣還沒有加熱之前,複雜有機分子就已經在氣態中。這表示可能有除了原恆星加熱外的其他管道將冰晶中的複雜有機分子釋放出來,或是有其他的化學反應機制來形成複雜有機分子。

呂聖元團隊運用 ALMA 望遠鏡的高靈敏度觀測,找到了過去儀器偵測不到的熱微核,複雜分子在星際中的分布,可能比原先想的更加普遍。圖/研之有物

持續尋找生命起源的線索

複雜有機分子與生命起源的關聯,雖然尚未有明確答案,但天文學家持續探討這類分子的相關形成機制。呂聖元團隊中的博士後研究員沙德培(Dipen Sahu),近期主導研究甘胺酸的同分異構物——氨基甲酸甲酯(Methyl carbamate)在熱微核環境的形成機制。這項研究考慮了相關的化學反應,利用天文化學模型,計算出恆星形成區此分子的含量,推導的結果與針對熱微核量測出的分子含量上限一致。

-----廣告,請繼續往下閱讀-----

呂聖元也談到複雜有機分子與生命起源研究的展望。他認為,這些研究值得以跨領域的方向來發展。國外有些研究單位,已能結合冰晶實驗、化學、天文觀測來研究複雜有機分子,而國內的學者在各個相關項目也有專長。長遠來說,如果要研究生命起源,則需結合天文學與生物學的知識,朝著「天文生物學」的方向發展。

天文學家利用 ALMA 望遠鏡的高靈敏度、高解析度觀測,不但在星際中找到更多種類的複雜有機分子,也在更多恆星形成區發現了富含複雜有機分子的「熱微核」。這些分子最終能否留在它們的太陽系,還有很多關卡要過。未來更進一步的科學研究與發現,將能幫助人們釐清星際中的化學過程,繼續向前一步回答生命起源的大哉問。

甘胺酸(左)與其同分異構物氨基甲酸甲酯(右)的分子結構示意圖,兩者的原子組成相同,但是鍵結方式不一樣。圖/Wikimedia Commons

註1:一般指該分子成分相對於氫分子(H2)的數量。好比最常見的一氧化碳分子(CO),其在星際分子雲中的豐度大約是10-4,也就是大約每 1 萬個氫分子才有 1 個一氧化碳分子。

延伸閱讀

研之有物│中央研究院_96
296 篇文章 ・ 3420 位粉絲
研之有物,取諧音自「言之有物」,出處為《周易·家人》:「君子以言有物而行有恆」。探索具體研究案例、直擊研究員生活,成為串聯您與中研院的橋梁,通往博大精深的知識世界。 網頁:研之有物 臉書:研之有物@Facebook

2

31
6

文字

分享

2
31
6
百倍於哈伯觀測能力,大小尺度通通包辦!——NASA 的下一個旗艦級「羅曼太空望遠鏡」
EASY天文地科小站_96
・2021/01/14 ・3606字 ・閱讀時間約 7 分鐘 ・SR值 507 ・六年級

-----廣告,請繼續往下閱讀-----

  • 文/林彥興(EASY天文地科團隊總編輯,就讀清大理學院學士班)

「一個哈伯不夠用,那你有試過來一百個嗎?」

哈伯太空望遠鏡可說是世上最著名的科學儀器之一。在它 1990 年升空的這三十年中,拍攝了無數令人嘆為觀止的宇宙奇景。然而,隨著時光流逝,垂垂老矣的哈伯剩下的時日恐怕已經不多。

倘若再次出現嚴重故障,可能就得和這座傳奇的天文望遠鏡永遠告別。好在,哈伯並非後繼無人,在今 (2021) 年十月韋伯太空望遠鏡升空之後,NASA 的下一個旗艦級太空望遠鏡,將以相仿的體型,卻百倍於哈伯的觀測能力幫助天文學家更深入了解宇宙的奧秘。它就是「南希.葛莉絲.羅曼太空望遠鏡 Nancy Grace Roman Space Telescope 」。

南希.葛莉絲.羅曼太空望遠鏡 Nancy Grace Roman Space Telescope。圖/Wikimedia common

誰是羅曼?人稱哈伯之母的天文學家

在介紹望遠鏡之前,讓我們先來看看羅曼究竟是誰,居然偉大到讓 NASA 以她的名字命名下一代的旗艦級望遠鏡。

南希.葛莉絲.羅曼 (1925-2018) 是著名的美國天文學家。在二十世紀前葉,科學界中的性別不平等遠比現在嚴重。但她仍然努力撐過他人的冷眼與勸退,選擇攻讀天文並在取得博士學位後,在恆星分類、星團運動等領域貢獻卓越。

-----廣告,請繼續往下閱讀-----

1959年,羅曼到 NASA 任職,並從此長年擔任 NASA 的首席天文學家。在她任職的時代,太空科技才剛剛起步,人們對太空望遠鏡的概念也相當陌生。但羅曼憑著她的遠見,參與、主持了許多 1960 與 1970 年代 NASA 的太空望遠鏡計畫,並四處為這些計畫籌措資金,為現代太空望遠鏡的蓬勃發展打下基礎。

同時,她也推動 NASA 將觀測到的資料開放給全世界使用,最終讓天文界開放資料的文化延續至今。她對 NASA 太空望遠鏡計畫的卓越貢獻,最終讓她獲得「哈伯之母」的美譽。

1972 年的羅曼博士,攝於 NASA 哥達德太空中心。圖/NASA

我要一個打一百個!羅曼的超廣視野

在被命名為羅曼太空望遠鏡之前,這個望遠鏡計畫名為「廣域紅外巡天望遠鏡
WFIRST 」
。顧名思義,這是一台觀測可見光與近紅外線,用於進行廣域巡天——也就是觀測大範圍天空——的望遠鏡。預計將在 2020 年代中期發射,與蓋亞、韋伯等前輩一起運行於日地第二拉格朗日點。

在望遠鏡的構造上,羅曼與哈伯太空望遠鏡相當類似,都使用一面直徑 2.4 公尺的主鏡。但得益於三十年來的科技進步,同樣是 2.4 公尺的主鏡,性能卻大不相同。

首先,利用先進的新式材料,羅曼的主鏡重量僅有哈伯的兩成,約 186 公斤重。再者,為了增加鏡片的反射率,一般的望遠鏡都會在鏡片的表面鍍上一層高反射率的金屬。比如哈伯太空望遠鏡的鏡片表面,就鍍上了一層約 850 奈米厚的鋁。但鋁雖然能夠很好的反射可見光與紫外光,對紅外線的反射率卻不夠理想。因此作為一個觀測近紅外線為主的望遠鏡,羅曼的主鏡片表面鍍上了厚度 400 奈米的銀,讓它能夠更好反射來自宇宙深處的黯淡紅外線。

-----廣告,請繼續往下閱讀-----
2020 年中完成製造的主鏡。圖/L3 Harris Technologies

但單純只是反射還不夠,想要得到清晰的影像,就得精確的讓光線聚焦到正確的位置。因此,望遠鏡需要非常精密的拋光。羅曼的主鏡在拋光完成後,鏡片表面的平均起伏僅有 1.2 奈米。這有多平整呢?如果我們將鏡片放大到跟地球一樣,那它表面的起伏將僅有 6 毫米高!

最後,當光線經過一連串複雜的鏡片聚焦之後,將匯聚到羅曼的相機—— 3 億像素的「廣域儀器 Wide Field Instrument 」上,轉化為影像資料後送回地球讓天文學家分析。在這一整套光學系統的合作下,羅曼太空望遠鏡保有與哈伯相同解析度的情況下,擁有視野一百倍以上的超廣視野!

羅曼太空望遠鏡的超廣視野。圖/NASA

視野超大,然後咧?

誒不過話說回來,視野廣大有什麼用呢?

望遠鏡不是要讓我們去看更暗、更小的東西用的嗎?視野變大了,解析度卻沒有提升,這樣真的算是有進步嗎?

當然有囉!

在大家的印象中,天文學家好像總拿著望遠鏡,鉅細靡遺的觀察、研究某個天體。這當然是其中一種重要的方式,但並不是天文研究的全貌。其實在真正的天文物理研究中,很多天文學家想知道的並不是特定天體的特性(比如仙女座銀河有幾根懸臂、有多少顆恆星),而是藉由大量普查宇宙中該種天體的基本性質,然後在海量的資料中尋找擁有科學價值的寶藏。

-----廣告,請繼續往下閱讀-----

覺得這像有字天書嗎?沒關係,我們舉個比較親民的例子。

如果你今天想知道新課綱對孩子們的學習成效如何,你會怎麼做呢?也許你可以找幾個孩子出來談談,仔細地問問他們對新課綱的想法。就像那些鉅細靡遺的研究特定目標的天文學家一樣;但你也可以用更宏觀的方式,比如看看他們全體的考試成績或補習花費,來了解新課綱的影響。

同理,對宇宙學家與星系天文學家來說,羅曼太空望遠鏡的廣大視野,讓他們可以在相同的時間內拍攝更廣的天空,或是在對同一片天空拍攝更久的時間,以看見更暗的天體。

當羅曼升空之後,將會拍攝早期宇宙中數以百萬計的大量星系與超新星,並對其中一部份進行更詳盡的光譜分析,藉由觀測這些星系的紅移、位置分佈、形狀、亮度、大小⋯⋯等等資訊,可以回推出宇宙膨脹歷史(與暗能量有關)、星際間暗物質的分佈(利用重力透鏡效應)、尋找早期宇宙中的特殊星系、甚至是幫忙測量本星系群之中的恆星移動。

天文學家將利用羅曼拍攝大量的星系影像進行分析,了解暗能量、暗物質與星系演
化。圖/NASA

另一方面,系外行星學家也對它充滿期待。羅曼太空望遠鏡將藉由兩種方式來偵測系外行星:

一個是藉由「微重力透鏡 Microlensing 」效應。當一顆恆星通過一個背景光源時,恆星的質量會扭曲周圍的時空並匯聚後方的光源,使得背景光源看起來像在短時間內快速的變亮、然後又恢復原狀,而且亮度變化的曲線有相當明顯的特徵。而如果這顆恆星旁邊有行星環繞,那行星的質量也將對亮度曲線造成影響。天文學家就能藉由分析亮度的變化曲線,來探測系外行星的存在。

-----廣告,請繼續往下閱讀-----
微重力透鏡效應的示意圖。圖片/NASA

第二個重點,羅曼將攜帶最先進的日冕儀 (CGI),直接拍攝系外行星與原行星盤。

甚麼是日冕儀呢?顧名思義,它最早是為了研究太陽的日冕而發明的儀器。由於平常的太陽實在太亮,使得旁邊相對黯淡的日冕相當難以觀測,因此科學家發明了日冕儀,藉由複雜的光學系統,遮擋住視野中心來自太陽的強光,才能好好的拍攝、研究黯淡的日冕。

而系外行星的探測中,由於系外行星本身又小又暗、又非常靠近明亮的母恆星,想要直接拍攝到他們,就像要你直視著汽車頭燈,然後尋找頭燈旁的蚊子一樣困難。因此,天文學家必須借助日冕儀的力量才能夠直接拍攝到它們。

哈伯太空望遠鏡 STIS 儀器的日冕儀拍攝的北落師門。藉由遮住中心恆星的強光,才能拍攝北落師門四周複雜的塵埃結構。圖/NASA

而羅曼搭載的光譜儀,將更進一步利用各種特殊的光學元件,以及類似調適光學技術中採用的可變形鏡片,利用破壞性干涉來消除主恆星的光線,讓我們能看到主恆星旁 邊,比恆星暗數百萬倍的系外行星。並進一步研究它們的光譜,看看他們溫度多高、 是由甚麼組成、讓我們更加了解這些外星世界。 

結語:值得期待的未來

作為韋伯之後的下一款大型光學太空望遠鏡,天文學大尺度與小尺度的問題羅曼通通包辦。它將能夠以哈伯等級的解析度,拍攝廣大宇宙中數以百萬計中的星系來研究宇宙學與星系演化;同時,它搭載的新一代日冕儀將能讓我們更清楚的直接拍攝系外行星。羅曼太空望遠鏡將產出哪些令人驚艷的資料?又將如何協助我們揭開宇宙的神秘面紗?就讓我們拭目以待吧!

-----廣告,請繼續往下閱讀-----

參考資料

  1. STSCI, Roman. Nancy Grace Roman Space Telescope
  2. Roman Space Telescope NASA 官網. Roman Space Telescope/NASA
  3. 主鏡製造商 Nancy Grace Roman Space Telescope 
  4. Roman Lecture Series
  5. 初稿:【時事新聞】羅曼太空望遠鏡的鍍銀主鏡
所有討論 2
EASY天文地科小站_96
23 篇文章 ・ 1441 位粉絲
EASY 是由一群熱愛地科的學生於 2017 年創立的團隊,目前主要由研究生與大學生組成。我們透過創作圖文專欄、文章以及舉辦實體活動,分享天文、太空與地球科學的大小事