0

0
0

文字

分享

0
0
0

【Gene思書齋】無限小如何形塑現代世界?

Gene Ng_96
・2016/11/22 ・3645字 ・閱讀時間約 7 分鐘 ・SR值 558 ・八年級

我是數學白痴,真的。很多人以為唸理科的,數學一定很好,才怪。因為我數學不好,所以才選擇唸生命科學,只是唸了才發現,原來還是要面對不少數學,如生物統計、計算生物學、生態學、族群遺傳學、分子演化,都用了不少數學,更甭提大一大二還得要上的微積分、物理和物理化學。

2016 年有部電影《天才無限家》(The Man Who Knew Infinity),很值得看,連一個我超愛的說書脫口秀節目《一千零一夜》主持梁文道這位文人(請參見〈一千零一夜個經典〉),也在推薦了這部關於印度天才數學家斯里尼瓦瑟‧拉馬努金(Srinivasa Ramanujan,1887—1920)的電影,也談了《費馬最後定理》(Fermat’s Last Theorem)這本書,以及數學是什麼。

 

我就自不量力,來談本和數學有關的歷史書吧,就是這本《無限小:一個危險的數學理論如何形塑現代世界》(Infinitesimal:How a Dangerous Mathematic Theory Shaped the Modern World)。即使是外行,還是會覺得數學是極為優雅的,可是歷史學家與數學家艾米爾‧亞歷山大(Amir Alexander),卻要告訴我們,數學也有過混亂,中間涉及的不僅只有數學家,還有宗教家。

ba8006

無限小》的故事,主要是發生在十六、十七世紀,爭論的是直線、平面圖形和固體,是否由無限的不可分量所構成?《無限小》中的各種爭論,要追溯到古希臘時期。公元前六世紀,畢達哥拉斯(Πυθαγόρας,約前580-前500)和追隨者,認為數學可以解釋世界上的一切事物,對數字癡迷到幾近崇拜,同時認為一切真理都可以用比例、平方及直角三角形去反映和證實。從他開始,希臘哲學開始產生了數學的傳統。

那些古代數學中的黑暗面

希帕索斯。圖/Public Domain
希帕索斯。圖/Public Domain

相傳無理數最早由畢達哥拉斯學派弟子希帕索斯(Ἵππασος)發現。他以幾何方法證明√2,無法用整數及分數表示,並引發了第一次數學危機。而畢達哥拉斯深信任意數均可用整數及分數表示,不相信無理數的存在。希帕索斯發現不可公度量(incommensurability),推論不同的量(magnitube)不是由獨立的微小原子,亦即無限小所構成。畢達哥拉斯派同道將其淹死滅口,然後他就死掉了。所以這批人,玩數學是超認真的,會鬧出人命的。

公元前五世紀,來自古希臘愛琴海北部海岸的自然派哲學家德謨克利特(Δημόκριτος,前460—前370或前356)利用無限小,計算圓錐體與圓筒體的體積。然而,伊利亞的芝諾(Ζήνων,約前490-前430),提出幾個矛盾問題,指出無限小引發的衝突,從此無限小遭到古代數學家規避。

古希臘數學家,被稱為「幾何學之父」,亞歷山卓的歐幾里得(Ευκλειδης,前325—前265),在經典巨著《幾何原本》(Elements)中,謹慎地避開無限小。《幾何原本》一直是西方兩千年來的範本。但後來的古希臘數學家阿基米德(Αρχιμήδης,公元前287—公元前212),卻用無限小實驗,在幾何圖形的面積和體積上卓有成就。

宗教戰爭燒到數學的「無限小」

後來希臘被羅馬滅了,而羅馬因異族入侵和宗教愚昧而進入中世紀。《無限小》的故事開場,是文藝復興時的宗教戰爭。1517 年,德國基督教神學家,宗教改革運動的主要發起人,基督教新教信義宗教會(即路德宗)的開創者馬丁•路德(Martin Luther,1483-1546)在當地教會的門上貼出布告九十五條論綱,列出反對贖罪券的九十五條論點,徵求學術的辯論,拉開了天主教和新教長達兩世紀鬥爭的序幕。

1540 年,耶穌會(Societas Iesu)創建在一個天主教開始沒落的時代,羅耀拉的依納爵(San Ignacio de Loyola,1491-1556)和他的弟子們展開一連串復興天主教的行動,但其中最耀眼的成就,卻是在各地區建立的教育學院。

耶穌會的教育體系中,原本並不特別注重數學,但在克拉維烏斯神父(Christopher Clavius,1538-1612)持續努力下,終於成為耶穌會的教育重心。耶穌會重視數學,因為數學是一種以邏輯步驟說出真理、無人能否定其證明結果的學科,但這時的數學,仍以歐幾里得數學理論為主。

1544 年,阿基米德作品的拉丁文版在瑞士巴賽爾出版,學者接觸到他對無限小的研究。十六世紀末至十七世紀初,歐洲數學家對無限小的興趣死灰復燃。

然而,耶穌會中負責裁決理論的「總校訂」(Revisors General)室,發表了一連串針對無限小的公開譴責。他們認為這個概念危險又具顛覆性,對世界是一個有秩序的地方,而且由一套嚴格而不變的規定所治理的這個信仰有威脅。如果接受了無限小,耶穌會害怕整個世界都將墮入混沌。

虔誠的教徒伽利略(Galileo Galilei,1564-1642),也是當時最偉大的科學家。他提出對無限小、不可分量的詮釋,槓上了耶穌會和教廷。伽利略的老友當上教宗烏爾班八世(Pope Urban VIII,1568-1644),他公開支持伽利略及其追隨者,1623-31年是伽利略在羅馬如魚得水的自由時期。然而1631年,瑞典新教國王古斯塔夫•阿道夫二世(Gustav II Adolf,1594-1632),與神聖羅馬帝國相爭開戰,節節獲勝,改變了歐洲勢力平衡。

在傳統主義者的節節進逼之下,烏爾班八世一改初衷,不再支持伽利略。耶穌會總校訂室,禁止了無限小的概念,宣布永遠不能教授這個理論,甚至連提都不准提。伽利略最終被送進宗教審判所,人生最後十幾年都在軟禁中度過。

伽利略的弟子卡瓦列里(Bonaventura Francesco Cavalieri,1598- 1647)與托里切利(Evangelista Torricelli,1608-1647)持續提出不可分量和無限小的理論證明,更持續增強耶穌會想要壓制這個矛盾理論的決心,耶穌會和支持伽利略的銳眼學會(Accademia dei Lincei)之間,為了維持歐幾里得幾何學理論或迎接新的無限小方式而開戰。

支持歐幾里得幾何學論點的耶穌會數學家,與支持無限小與不可分量學說的耶穌教團,雙方舌戰和筆戰不休。表面上是數學論戰,實際上耶穌會數學家還為了護衛神學上的論點。《無限小》揭示了這種禁令背後的深刻背景,通過耶穌會和銳眼學會之間交戰的驚心動魄故事,說明耶穌會如何拼命努力帶領飽受戰爭蹂躪的歐洲回到維穩和諧和天主教專制秩序,可是卻犠牲了義大利的藝術、數學和科學發展。

英國的崛起

由於耶穌會成功地禁止在義大利教授無窮小的概念,《無限小》的故事舞台,轉到原本比義大利落後的英國去。《無限小》指出,在義大利,無限小的挫敗預告了這個國家主導歐洲文化的朝代已經結束;而在英國,無限小的勝利則幫助了這個原本落後的島國走向了世界首個現代國家之路。

英國內戰和空位期當時的民不聊生與內部動亂,令卡文迪許家族的家臣,威權主義的十七世紀的哲學家霍布斯(Thomas Hobbes,1588-1679),寫下哲學傑作《巨靈論》(Leviathan),是法律、秩序的有力倡導者。和天主教神權專制不同的,霍布斯的解決空位無政府狀態的方法,是要人民交出權力給專制君主,來保護他們免受戰爭和混亂。但與天主教的專制相同的,霍布斯的目標是維穩和諧以維護和平。無論霍布斯和耶穌,都把自己的政治理想訴諸歐幾里得幾何,試圖以其有序的演繹證明產生絕對真理。

但在數學家瓦里斯(John Wallis,1616-1703)的眼中,數學毫無貴族氣息,徹頭徹尾就是一個得到有用結果的實用工具。瓦里斯是第一個使用 ∞ 這個符號的數學家。也因如此,他和「隱形大學」的夥伴使用數學的方式與霍布斯大相逕庭。「隱形大學」後來收到英王查理二世的許可狀,成為聲譽卓越非凡的「皇家學會」(Royal Society)。

《無限小》指出,歸納法和實驗數學,讓皇家學會的會員與英國菁英分子逐漸將這種開放討論與有彈性的態度應用到學術與政治立場上,無限小的理論終於成為微積分與許多現代數學、現在科學理論與科技的基礎。英國邁上君主立憲之途,各種科學研究和科技也不斷開花結果,於是英國成為歐洲最先現代化的國家。

4726717261_d45960733f_z
無限小的理論終於成為微積分與許多現代數學、現在科學理論與科技的基礎。圖 / By fdecomite @ flickr

牛頓(Sir Isaac Newton,1643-1727)以無限小的理論做實驗,發展出微積分的技法,和萊布尼茲(Gottfried Wilhelm Leibniz,1646-1716)共同創立了微積分。牛頓出版了《自然哲學的數學原理》(Philosophiæ Naturalis Principia Mathematica),徹底改變了物理學的樣貌,也從此讓所有理科生飽受微積分的折磨。剛讀《無限小》時,我壓根兒忘光了微積分和無限小的關係,只有讀到後來才依稀想起老師提到的「極限」等等。

雖然,我還是讀不懂《無限小》裡的數學,可是《無限小》仍是本很具啟發性的好書,從中可見我們人類在認識自然時,那些偏見與固執,是何等強大。政治師和宗教為了維穩及和諧干預學術發展,只能取得一時的和平,然後換來長久的落後。還有,科學的發展中,常常是柳暗花明又一村,保持一個開闊的心胸是多麼困難但重要的。

本文原刊登於閱讀‧最前線【GENE思書軒】,並同步刊登於The Sky of Gene


數感宇宙探索課程,現正募資中!

文章難易度
Gene Ng_96
295 篇文章 ・ 20 位粉絲
來自馬來西亞,畢業於台灣國立清華大學生命科學系學士暨碩士班,以及美國加州大學戴維斯分校(University of California at Davis)遺傳學博士班,從事果蠅演化遺傳學研究。曾於台灣中央研究院生物多樣性研究中心擔任博士後研究員,現任教於國立清華大學分子與細胞生物學研究所,從事鳥類的演化遺傳學、基因體學及演化發育生物學研究。過去曾長期擔任中文科學新聞網站「科景」(Sciscape.org)總編輯,現任台大科教中心CASE特約寫手Readmoo部落格【GENE思書軒】關鍵評論網專欄作家;個人部落格:The Sky of Gene;臉書粉絲頁:GENE思書齋


0

0
0

文字

分享

0
0
0

遲來報到的質數——《數學,這樣看才精采》

天下文化_96
・2022/05/20 ・2868字 ・閱讀時間約 5 分鐘

2013 年國際數學界最轟動的新聞,應屬中國留美學者張益唐在孿生質數問題上所作出的突破。他個人的經歷更增加了整件事的傳奇性。

數學家張益唐。圖/VOA, 公有領域

張益唐雖然是北大數學系的高材生,但是 37 歲從美國普渡大學拿到博士學位之後,因與指導教授意趣不合,一時在學界無法發展,多年靠打工餬口。1999 年才好不容易至新罕布夏大學數學系任講師。在張益唐長期不得意的歲月裡,他雖然沒有發表什麼數學論文,但是也不曾喪失志氣,還是堅持研究自己喜歡的數學問題。

張益唐在 58 歲暴得大名,各種獎項與頭銜接踵而來,在最是少年逞英豪的數學世界裡,真成為一個異數。英國數學家哈代在他著名的小冊子《一個數學家的辯白》裡曾說:「我不知道有任何一項數學的主要進展,是由超過五十歲的人所啟動。」張益唐正好給哈代的偏見一個反例。

張益唐研究的是關於質數的性質。

一個自然數 p 是質數(也稱為素數)的條件有二:其一,p 大於 1;其二,除了 1 與 p 自己之外,沒有別的自然數能整除 p。全體質數可以從小到大排成一個數列 2, 3, 5, 7, 11, 13, …,通常把排在第 n 個位置的質數記作 pn。如果 pn 與 pn+1 相差為2,則稱質數對 (pn, pn+1) 為一對孿生質數,例如 3 與 5,5 與 7,11 與 13。

圖/envato elements

「孿生質數猜想」就說這樣的質數對有無窮多組。因為古希臘的歐幾里得在他的巨著《原本》裡,曾經證明質數有無窮多個,所以有人以為也是歐幾里得最先提出孿生質數猜想。其實不然,目前從文獻中所見, 1879 年英國數學家格萊舍(James Whitbread Lee Glaisher)在《數學信使》(Messenger of Mathematics)雜誌上的一篇文章,才是第一次將孿生質數猜想見諸文字。

張益唐的大突破是證明有無窮多組質數對 (pn, pn+1) 使得 pn 與 pn+1 相距不超過 7 千萬。

為什麼這是一個大突破呢?因為在張益唐之前,不管給出什麼固定數 m,完全不知道相差在 m 之內的質數對,到底是有限多個還是無窮多個。自從 2013 年 5 月他的成就在國際媒體上廣為流傳之後,世界上很多數學家努力要把 7千萬的差距往下壓縮,目前已經改善到 246 之內。但是距離孿生質數猜想所需的 2,還有巨大而艱困的鴻溝。

一般人從媒體得知張益唐對數學做出了重大貢獻,可能會好奇問他的結果有什麼用?這裡「用」當然是指實際的應用。其實,他的成果目前還只有純學術價值,與國計民生毫不相干。自從古希臘人辨識出質數,在兩千多年的時間裡,除了數學家關心質數外,質數一直缺乏任何應用價值。二十世紀電腦發達之後,才利用因數分解成質數的超級困難特性,產生了某些幾乎無法有效破解的密碼系統,廣泛的應用到金融、通信、資料保密上。

圖/envato elements

在中國古算裡缺席?

一個基本的數學概念,經歷了兩千多年的滄桑,才顯現出它的實用價值,這不是一件平凡的成就。因此,我們不得不佩服希臘人研究質數的真知灼見,並且感嘆十八世紀前的中國傳統數學裡卻不見質數的蹤跡。質數為什麼會在中國遲來報到?實在是一個令人費解的現象。

歐幾里得的《原本》約在西元前 300 年左右成書,是古希臘數學集大成之作。第七卷討論數的性質,是使用幾何的觀點來理解數。也就是從「單位」的概念出發,以度量直線段的方式引入「數」。第七卷定義 2 說「一個數是由許多單位合成的。」因此,1 代表單位而不算作「數」。定義 11 說「質數是只能為一個單位所量盡者。」定義 16 說「兩數相乘得出的數稱為面,其兩邊就是相乘的數。」所以質數只能是線,而不能稱為面。

歐幾里德畫像。圖/wiki, 公有領域

從這些定義可看出來,古希臘人所謂的「數」是依附在幾何的體系裡而得以操作。中國古代缺乏像《原本》這種按照邏輯次序鋪陳結果的數學書,通常是以解決實際問題的風貌來書寫,因此不太可能探討與闡述「數」的純粹性質。

例如,以《九章算術》為代表的中國古算裡,數字是與矩形、直角三角形的面積緊密相連結,但卻沒有像希臘人那樣分辨,有些數是可以表現為面,而有些數卻不可以。

也許古代中國缺乏一項歐幾里得所擁有的知識背景,因而造成了雙方關注問題的差異。古希臘有一位重要的哲人德謨克利特(Democritus),他主張萬物皆由不可分割的「原子」所構成。在「原子論」的知識背景下,數目 1 就不會與其他數目等量齊觀了,1 是「單位」,是數的「原子」。

圖/envato elements

中國古代沒有明確的「原子論」,《墨子.經說下》所說:「非半,進前取也。前,則中無為半,猶端也。」其中切得不能再切的「端」在《墨子.經說上》解釋為「端,體之無序而最前者也。」也只是類似「原子」的概念,並未發展到德謨克利特的思想程度。「原子論」思想的欠缺,或許是質數在中國古算裡缺席的因素之一。

難以望其項背

康熙敕編的《御製數理精蘊》(簡稱《數理精蘊》)是融合中西數學的百科全書,其中將質數譯為「數根」,並且在附表〈對數闡微〉中列有質數表。雖然質數已經在中國現身,但是數學家並沒有感到相見恨晚而深入探討。

晚清數學名家李善蘭在翻譯歐幾里得《原本》後九卷時,第一卷第一界說為:「數根者唯一能度而他數不能度」,也把質數翻譯成「數根」。

數學家李善蘭。圖/傅任敢 《中華教育界》 1936 -1937年, 公有領域

李善蘭很可能受《數理精蘊》的影響,而去研究判別給定數是否為質數的方法。英國傳教師偉烈亞力(Alexander Wylie)將其中一法,以給編輯的信公布在香港一家英文雜誌上,其敘述為「以 2 的對數乘給定的數,求出其真數,以 2 減同數,以給定數除餘數,若能除盡,則給定數為質數;若不能除盡,則不是質數。」

此命題常被稱為「中國定理」,其實是歐洲早已知道的「費馬小定理」的逆命題,該定理斷言若 p 為質數,則 2p − 2 ≣ 0 (mod p)。

其實李善蘭的方法並不永遠正確,例如:2341 − 2 是 341 的整倍數,但是 341 = 11 × 31 並不是一個質數。1872 年李善蘭在《中西聞見錄》報刊發表了〈考數根法〉一文,成為清末關於質數研究的重要成果,但是他並沒有收錄「中國定理」,應該是他已經知道命題並不為真。

要知道李善蘭與高斯的生命是有重疊的時期,因此當西方以質數為基礎所建立的數論,已經繁複深刻美不勝收之時,也許連李善蘭都不曾完全清楚中國落後的程度是多麼巨大!


數感宇宙探索課程,現正募資中!

天下文化_96
9 篇文章 ・ 7 位粉絲
天下文化成立於1982年。一直堅持「傳播進步觀念,豐富閱讀世界」,已出版超過2,500種書籍,涵括財經企管、心理勵志、社會人文、科學文化、文學人生、健康生活、親子教養等領域。每一本書都帶給讀者知識、啟發、創意、以及實用的多重收穫,也持續引領台灣社會與國際重要管理潮流同步接軌。