0

0
0

文字

分享

0
0
0

救命!我的大腦縮水了:談滲透壓去髓鞘症候群

朱 淯銘
・2016/08/23 ・3504字 ・閱讀時間約 7 分鐘 ・SR值 542 ・八年級

突如其來的風暴

300547929_c330f90646_z
圖/Erich Ferdinand@flickr

賴先生自從兩周前的一場感冒之後就覺得渾身不對勁,這兩個禮拜以來幾乎都吃不下任何東西,原先安排好的旅遊行程全部都被打亂了。到了這天晚上甚至覺得胸口悶悶的,勉強自己吃下一點東西,但是過一會兒就全都吐了出來。後來實在覺得太不舒服,於是掛了急診就醫。

急診陳醫師來來回回問了好些問題,發現很難從一堆症狀當中判斷賴先生生了什麼病,於是安排抽血。檢驗數據當中有一項數字特別的引人注意:賴先生血液中的鈉離子濃度很低,只有 105 mmol/L。納離子的正常值應該介於 135 到 145 之間,105 真是低到嚇人!

回顧賴先生的過去病史,他服用高血壓藥物已經有十年左右的時間,一直以來都服用同一種名叫 Natrilix 的藥物,十年來都沒有換過藥,也從未感覺到不舒服。陳醫師很快就從這當中理出頭緒:Natrilix 是一種 thiazide 類的利尿劑,幫助從腎臟排出過多的水份,進而使血壓降低。它的原理是從腎臟的遠端腎小管增加鈉離子的排出,副作用就是容易造成低血鈉的情形。(Natrilix 的中文名稱十分傳神,叫做鈉催離。)

賴先生長期服用 Natrilix,可能平常就有無症狀的低血鈉現象。兩周前的一場感冒,導致食欲變差,攝取的鹽巴變少了,但是卻同時喝進大量的水,一來一往之間,稀釋了體內的鈉離子,濃度變低,於是造成了噁心嘔吐、全身虛弱等症狀。

-----廣告,請繼續往下閱讀-----

陳醫師為賴先生施打了生理食鹽水做為治療,生理食鹽水鈉離子的濃度是 154 mmol/L,恰好可以補充賴先生體內的低血鈉症(105 mmol/L)。但是經過四個小時之後再次檢測賴先生的血液,發現鈉離子濃度只些微上升到 106 mmol/L,上升的幅度不如預期,而賴先生仍然抱怨著全身不舒服。於是陳醫師改成使用高張的食鹽水溶液,鈉離子濃度高達 513 mmol/L,可以快速的矯正低血鈉。

當天晚上賴先生就被安排住院觀察,隔天早上抽血檢驗,鈉離子已經回升到 120 mmol/L。賴先生的症狀改善許多,精神奕奕的看著報紙,滑著手機,彷彿昨天的陰霾已經一掃而空,甚至還詢問是不是能夠出院了!主治醫師吳醫師告訴他,目前的血鈉濃度還是偏低,建議住院再治療幾天。

隔天早上八點,病房傳來一陣騷動。「張醫師,72 房的賴先生有狀況,請你去看一下!」病房的住院醫師張醫師走進病房裡,只見賴先生一臉驚恐,嘴巴張的大大的,但是卻一句話也說不出來!旁邊的妻子和女兒一臉焦急的模樣,女兒說爸爸幾分鐘前突然表示自己什麼也聽不見,後來就再也說不出話來了。

張醫師試著請賴先生舉起雙手、轉動眼球,但是賴先生一副似懂非懂的表情,沒有辦法溝通,也不遵照指示,他只是一臉惶恐,緊緊抱著女兒不放。緊急腦部電腦斷層顯示沒有急性腦出血的現象,抽血的數據看起來十分正常,鈉離子的濃度是 126 mmol/L,甚至比起昨天還改善了許多…

-----廣告,請繼續往下閱讀-----

細胞也會膨脹收縮

鈉離子(Na+)是血液及細胞外液裡成份最多的陽離子。從計算血清滲透壓的公式:

血清滲透壓(Plasma osmolality) = 2[Na+] + [Glucose]/18 + [BUN]/2.8

  • 註:BUN為尿素氮,Blood urea nitrogen的縮寫

可以得知血液中的鈉離子貢獻了大部份的滲透壓。另一方面,細胞內液的成份可就大不相同了,細胞內液裡成份最多的陽離子變成了鉀離子,鈉離子反而少,和細胞外液剛好相反。

細胞膜的構造是雙層脂質結構,上面漂浮著許多通道蛋白,一般的物質和離子是不能隨意通過細胞膜的,但是水分子可以經由兩邊的濃度差「擴散」通過細胞膜。當低血鈉發生的時候,會造成細胞「外」液的滲透壓減少,水分子就開始往滲透壓較高的細胞「內」液移動,於是細胞就滲水膨脹了起來。

-----廣告,請繼續往下閱讀-----
553px-Osmotic_pressure_on_blood_cells_diagram.svg
圖片以紅血球細胞顯示細胞內外滲透壓變化的狀況。圖/By LadyofHats, Public Domain, wikimedia commons.

如果水份一直往細胞裡灌,可是會把細胞給撐破呢!細胞當然不會坐以待斃,於是開始利用主動運輸把細胞裡的溶質往外頭運送,藉以降低細胞內液的滲透壓,讓水不要再滲進來了。終於,細胞內外兩邊的滲透壓重新回到了平衡,細胞也瘦身到原來的形狀。這樣的過程稱為「適應」,大約需要兩天左右的時間。

如果這時候突然給予大量的生理食鹽水,甚至是高鈉溶液,會發生什麼事呢?低血鈉會被快速的矯正,血清和細胞「外」液的滲透壓會急劇上升。這下子變成細胞裡的水份開始向外擴散了!因為細胞「內」液的滲透壓相對來說變低了。這時細胞可要反其道而行,把丟出去的溶質趕快回收回來!不然細胞一直縮水下去,也難逃破裂的命運!

身體裡大部份的細胞都能夠迅速反應這兩種情況,運輸、回收,不會造成太大的問題。只有一群細胞在這方面不大擅長——那就是大腦裡的細胞!

脆弱的腦細胞

為了讓大腦的神經細胞能在穩定的狀態下工作,大腦的微血管外頭多了一層「血腦屏障」,由內皮細胞緊密連結所構成,就像是手拉著手一樣。血腦屏障幾乎阻擋了所有東西進入腦部,除了少數的必要物質以外。當血液納離子濃度快速上升,細胞一旦開始縮水,構成血腦屏障的內皮細胞間就出現了縫隙,一些血液中的發炎物質就可以進到腦中大肆進行破壞了!

-----廣告,請繼續往下閱讀-----
640px-Blood_vessels_brain_english
腦中的血管構造。圖/By Armin Kübelbeck, CC BY 3.0, wikimedia commons.

另一方面,大腦充滿了高度分化的精細細胞,無法承受快速的膨脹或縮小,比起一般細胞更容易受傷。寡突細胞(Oligodendrocyte)負責製造神經細胞的外牆——「髓鞘」,如果他受傷了,神經細胞一旦失去了髓鞘,就不能正常運作了!於是乎,腦細胞縮水造成了大腦當機,病人的意識就出現變化了!這就是——「滲透壓去髓鞘症候群」(Osmotic demyelination syndrome)。

Saltatory_Conduction
有髓鞘(右)與沒有髓鞘的神經細胞,傳遞動作電位的速度差很多。圖/By Dr. Jana, CC BY 4.0, wikimedia commons.

當一天血清鈉離子濃度上升超過 8 mmol/L 的時候,就有可能會產生「滲透壓去髓鞘症候群」,病人會發生意識不清、無法說話、吞嚥困難等等症狀,甚至還會產生癲癇!神奇的是,這些症狀經常會延遲兩天左右才發生,這時往往血液鈉離子濃度檢驗起來已經「挺正常的」,當醫生和病人認為低血鈉已經被矯正回來的時候,可能惡夢才正要開始!

和時間賽跑

回到第一天住院時的情景,剛到院時的血清鈉離子濃度是 105 mmol/L,使用等張食鹽水溶液四小時後上升到 106 mmol/L 在使用高張食鹽水溶液補充的 12 小時後,鈉離子濃度上升到 119 mmol/L。在這 12 個小時內快速地從 106 上升到 119 mmol/L 恐怕就是關鍵!因為鈉離子濃度上升過快,造成賴先生的大腦受損。如果放任下去不管的話,恐怕神經損傷就會無法回復,和時間賽跑顯得刻不容緩!

吳醫師和陳醫師制定了一個計畫:將賴先生的血清鈉離子濃度從目前的 126 重新降回 117 mmol/L,讓水份重新回到腦細胞內,或許還能夠逆轉這一切。

-----廣告,請繼續往下閱讀-----

675px-Infuuszakjes

首先將點滴換成低滲透壓的 5% 葡萄糖溶液,也就是糖水。葡萄糖進入身體之後很快會因為胰島素的作用進入細胞當中,所以溶液的滲透壓幾乎可以忽略,等於是輸入純水進入身體,如此一來就能夠稀釋血中鈉離子的濃度,降低整體細胞外液的滲透壓。

但是光這樣還不夠,因為腎臟會自動把多餘的水份排掉,所以必須同時施打人工合成的「抗利尿激素」(Desmopressin),讓腎臟回收大部份的水份回到身體裡,使小便變少,才能夠營造快速降血鈉的效果。

雙管齊下之後,就是密集監測血清的鈉離子濃度了。小便很快就變少了,但是鈉離子濃度下降的還不夠快,將 5% 葡萄糖溶液的輸注速率從每小時 60 ml 上升到 120 ml 之後,終於達到目標–血清鈉離子濃度每小時下降 1 mmol/L。27 個小時後,終於在隔天下午一點鐘達到目標值 117 mmol/L,陳醫師於是將 5% 葡萄糖溶液停止輸注。經過了一天,病人還是說不出話來,但是情緒比較沒那麼激動了,在家屬的親餵下,勉強吃了點東西,現在能做的事情,恐怕也只有祈禱了……

當天晚上七點,護理紀錄上面記載著令人振奮的消息:「精神可,可坐於床邊使用手機,可與家屬對談。」隔天早上吳醫師和陳醫師去看他的時候,賴先生不僅可以回答問題,而且對於人事時地物都很清楚,只是說話還有點兒慢,而且還無法進行減法的計算。

-----廣告,請繼續往下閱讀-----

挽救療法奏效了!賴生生說他實在記不得前兩天發生了什麼事,但是一旁的妻子和女兒高興的眼淚流了滿面。

 

參考資料:

  • Richard H Sterns. (2016). Osmotic demyelination syndrome (ODS) and overly rapid correction of hyponatremia. In T.W. Post, M. Emmett, & J.P. Forman (Eds.), UptoDate

___________
你是國中生或家有國中生或正在教國中生?
科學生跟著課程進度每週更新科學文章並搭配測驗。來科學生陪你一起唸科學!

文章難易度
朱 淯銘
5 篇文章 ・ 1 位粉絲
目前是一名內科住院醫師,為了專科醫師執照努力打拼。最討厭文書作業和醫院評鑑,但對於內科疾病的多樣變化和醫病間生與死的溝通感到興趣。每周工時 80 小時還是努力找時間來寫作,最懷念在非洲布吉納法索擔任外交替代役的時光,並著有《下一站,布吉納法索》一書。

0

3
3

文字

分享

0
3
3
圖形處理單元與人工智慧
賴昭正_96
・2024/06/24 ・6944字 ・閱讀時間約 14 分鐘

  • 作者/賴昭正|前清大化學系教授、系主任、所長;合創科學月刊

我擔心人工智慧可能會完全取代人類。如果人們能設計電腦病毒,那麼就會有人設計出能夠自我改進和複製的人工智慧。 這將是一種超越人類的新生命形式。

——史蒂芬.霍金(Stephen Hawking) 英國理論物理學家

大約在八十年前,當第一台數位計算機出現時,一些電腦科學家便一直致力於讓機器具有像人類一樣的智慧;但七十年後,還是沒有機器能夠可靠地提供人類程度的語言或影像辨識功能。誰又想到「人工智慧」(Artificial Intelligent,簡稱 AI)的能力最近十年突然起飛,在許多(所有?)領域的測試中擊敗了人類,正在改變各個領域——包括假新聞的製造與散佈——的生態。

圖形處理單元(graphic process unit,簡稱 GPU)是這場「人工智慧」革命中的最大助手。它的興起使得九年前還是個小公司的 Nvidia(英偉達)股票從每股不到 $5,上升到今天(5 月 24 日)每股超過 $1000(註一)的全世界第三大公司,其創辦人(之一)兼首席執行官、出生於台南的黃仁勳(Jenson Huang)也一躍成為全世界排名 20 內的大富豪、台灣家喻戶曉的名人!可是多少人了解圖形處理單元是什麼嗎?到底是時勢造英雄,還是英雄造時勢?

黃仁勳出席2016年台北國際電腦展
Nvidia 的崛起究竟是時勢造英雄,還是英雄造時勢?圖/wikimedia

在回答這問題之前,筆者得先聲明筆者不是學電腦的,因此在這裡所能談的只是與電腦設計細節無關的基本原理。筆者認為將原理轉成實用工具是專家的事,不是我們外行人需要了解的;但作為一位現在的知識分子或公民,了解基本原理則是必備的條件:例如了解「能量不滅定律」就可以不用仔細分析,即可判斷永動機是騙人的;又如現在可攜帶型冷氣機充斥市面上,它們不用往室外排廢熱氣,就可以提供屋內冷氣,讀者買嗎?

CPU 與 GPU

不管是大型電腦或個人電腦都需具有「中央處理單元」(central process unit,簡稱 CPU)。CPU 是電腦的「腦」,其電子電路負責處理所有軟體正確運作所需的所有任務,如算術、邏輯、控制、輸入和輸出操作等等。雖然早期的設計即可以讓一個指令同時做兩、三件不同的工作;但為了簡單化,我們在這裡所談的工作將只是執行算術和邏輯運算的工作(arithmetic and logic unit,簡稱 ALU),如將兩個數加在一起。在這一簡化的定義下,CPU 在任何一個時刻均只能執行一件工作而已。

-----廣告,請繼續往下閱讀-----

在個人電腦剛出現只能用於一般事物的處理時,CPU 均能非常勝任地完成任務。但電腦圖形和動畫的出現帶來了第一批運算密集型工作負載後,CPU 開始顯示心有餘而力不足:例如電玩動畫需要應用程式處理數以萬計的像素(pixel),每個像素都有自己的顏色、光強度、和運動等, 使得 CPU 根本沒辦法在短時間內完成這些工作。於是出現了主機板上之「顯示插卡」來支援補助 CPU。

1999 年,英偉達將其一「具有集成變換、照明、三角形設定/裁剪、和透過應用程式從模型產生二維或三維影像的單晶片處理器」(註二)定位為「世界上第一款 GPU」,「GPU」這一名詞於焉誕生。不像 CPU,GPU 可以在同一個時刻執行許多算術和邏輯運算的工作,快速地完成圖形和動畫的變化。

依序計算和平行計算

一部電腦 CPU 如何計算 7×5+6/3 呢?因每一時刻只能做一件事,所以其步驟為:

  • 計算 7×5;
  • 計算 6/3;
  • 將結果相加。

總共需要 3 個運算時間。但如果我們有兩個 CPU 呢?很多工作便可以同時(平行)進行:

-----廣告,請繼續往下閱讀-----
  • 同時計算 7×5 及 6/3;
  • 將結果相加。

只需要 2 個運算時間,比單獨的 CPU 減少了一個。這看起來好像沒節省多少時間,但如果我們有 16 對 a×b 要相加呢?單獨的 CPU 需要 31 個運算的時間(16 個 × 的運算時間及 15 個 + 的運算時間),而有 16 個小 CPU 的 GPU 則只需要 5 個運算的時間(1 個 × 的運算時間及 4 個 + 的運算時間)!

現在就讓我們來看看為什麼稱 GPU 為「圖形」處理單元。圖一左圖《我愛科學》一書擺斜了,如何將它擺正成右圖呢? 一句話:「將整個圖逆時針方向旋轉 θ 即可」。但因為左圖是由上百萬個像素點(座標 x, y)組成的,所以這句簡單的話可讓 CPU 忙得不亦樂乎了:每一點的座標都必須做如下的轉換

x’ = x cosθ + y sinθ

y’ = -x sinθ+ y cosθ

-----廣告,請繼續往下閱讀-----

即每一點均需要做四個 × 及兩個 + 的運算!如果每一運算需要 10-6 秒,那麼讓《我愛科學》一書做個簡單的角度旋轉,便需要 6 秒,這豈是電動玩具畫面變化所能接受的?

圖形處理的例子

人類的許多發明都是基於需要的關係,因此電腦硬件設計家便開始思考:這些點轉換都是獨立的,為什麼我們不讓它們同時進行(平行運算,parallel processing)呢?於是專門用來處理「圖形」的處理單元出現了——就是我們現在所知的 GPU。如果一個 GPU 可以同時處理 106 運算,那上圖的轉換只需 10-6 秒鐘!

GPU 的興起

GPU 可分成兩種:

  • 整合式圖形「卡」(integrated graphics)是內建於 CPU 中的 GPU,所以不是插卡,它與 CPU 共享系統記憶體,沒有單獨的記憶體組來儲存圖形/視訊,主要用於大部分的個人電腦及筆記型電腦上;早期英特爾(Intel)因為不讓插卡 GPU 侵蝕主機的地盤,在這方面的研發佔領先的地位,約佔 68% 的市場。
  • 獨立顯示卡(discrete graphics)有不與 CPU 共享的自己專用內存;由於與處理器晶片分離,它會消耗更多電量並產生大量熱量;然而,也正是因為有自己的記憶體來源和電源,它可以比整合式顯示卡提供更高的效能。

2007 年,英偉達發布了可以在獨立 GPU 上進行平行處理的軟體層後,科學家發現獨立 GPU 不但能夠快速處理圖形變化,在需要大量計算才能實現特定結果的任務上也非常有效,因此開啟了為計算密集型的實用題目編寫 GPU 程式的領域。如今獨立 GPU 的應用範圍已遠遠超出當初圖形處理,不但擴大到醫學影像和地震成像等之複雜圖像和影片編輯及視覺化,也應用於駕駛、導航、天氣預報、大資料庫分析、機器學習、人工智慧、加密貨幣挖礦、及分子動力學模擬(註三)等其它領域。獨立 GPU 已成為人工智慧生態系統中不可或缺的一部分,正在改變我們的生活方式及許多行業的遊戲規則。英特爾在這方面發展較遲,遠遠落在英偉達(80%)及超微半導體公司(Advance Micro Devices Inc.,19%,註四)之後,大約只有 1% 的市場。

-----廣告,請繼續往下閱讀-----
典型的CPU與GPU架構

事實上現在的中央處理單元也不再是真正的「單元」,而是如圖二可含有多個可以同時處理運算的核心(core)單元。GPU 犧牲大量快取和控制單元以獲得更多的處理核心,因此其核心功能不如 CPU 核心強大,但它們能同時高速執行大量相同的指令,在平行運算中發揮強大作用。現在電腦通常具有 2 到 64 個核心;GPU 則具有上千、甚至上萬的核心。

結論

我們一看到《我愛科學》這本書,不需要一點一點地從左上到右下慢慢掃描,即可瞬間知道它上面有書名、出版社等,也知道它擺斜了。這種「平行運作」的能力不僅限於視覺,它也延伸到其它感官和認知功能。例如筆者在清華大學授課時常犯的一個毛病是:嘴巴在講,腦筋思考已經不知往前跑了多少公里,常常為了追趕而越講越快,將不少學生拋到腦後!這不表示筆者聰明,因為研究人員發現我們的大腦具有同時處理和解釋大量感官輸入的能力。

人工智慧是一種讓電腦或機器能夠模擬人類智慧和解決問題能力的科技,因此必須如人腦一樣能同時並行地處理許多資料。學過矩陣(matrix)的讀者應該知道,如果用矩陣和向量(vector)表達,上面所談到之座標轉換將是非常簡潔的(註五)。而矩陣和向量計算正是機器學習(machine learning)演算法的基礎!也正是獨立圖形處理單元最強大的功能所在!因此我們可以了解為什麼 GPU 會成為人工智慧開發的基石:它們的架構就是充分利用並行處理,來快速執行多個操作,進行訓練電腦或機器以人腦之思考與學習的方式處理資料——稱為「深度學習」(deep learning)。

黃仁勳在 5 月 22 日的發布業績新聞上謂:「下一次工業革命已經開始了:企業界和各國正與英偉達合作,將價值數萬億美元的傳統資料中心轉變為加速運算及新型資料中心——人工智慧工廠——以生產新商品『人工智慧』。人工智慧將為每個產業帶來顯著的生產力提升,幫助企業降低成本和提高能源效率,同時擴大收入機會。」

附錄

人工智慧的實用例子:下面一段是微軟的「copilot」代書、谷歌的「translate」代譯之「one paragraph summary of GPU and AI」。讀完後,讀者是不是認為筆者該退休了?

-----廣告,請繼續往下閱讀-----

GPU(圖形處理單元)和 AI(人工智慧)之間的協同作用徹底改變了高效能運算領域。GPU 具有平行處理能力,特別適合人工智慧和機器學習所需的複雜資料密集運算。這導致了影像和視訊處理等領域的重大進步,使自動駕駛和臉部辨識等技術變得更加高效和可靠。NVIDIA 開發的平行運算平台 CUDA 進一步提高了 GPU 的效率,使開發人員能夠透過將人工智慧問題分解為更小的、可管理的、可同時處理的任務來解決這些問題。這不僅加快了人工智慧研究的步伐,而且使其更具成本效益,因為 GPU 可以在很短的時間內執行與多個 CPU 相同的任務。隨著人工智慧的不斷發展,GPU 的角色可能會變得更加不可或缺,推動各產業的創新和新的可能性。大腦透過神經元網路實現這一目標,這些神經元網路可以獨立但有凝聚力地工作,使我們能夠執行複雜的任務,例如駕駛、導航、觀察交通信號、聽音樂並同時規劃我們的路線。此外,研究表明,與非人類動物相比,人類大腦具有更多平行通路,這表明我們的神經處理具有更高的複雜性。這個複雜的系統證明了我們認知功能的卓越適應性和效率。我們可以一邊和朋友聊天一邊走在街上,一邊聽音樂一邊做飯,或一邊聽講座一邊做筆記。人工智慧是模擬人類腦神經網路的科技,因此必須能同時並行地來處理許多資料。研究人員發現了人腦通訊網路具有一個在獼猴或小鼠中未觀察獨特特徵:透過多個並行路徑傳輸訊息,因此具有令人難以置信的多任務處理能力。

註解

(註一)當讀者看到此篇文章時,其股票已一股換十股,現在每一股約在 $100 左右。

(註二)組裝或升級過個人電腦的讀者或許還記得「英偉達精視 256」(GeForce 256)插卡吧?

(註三)筆者於 1984 年離開清華大學到 IBM 時,就是參加了被認為全世界使用電腦時間最多的量子化學家、IBM「院士(fellow)」Enrico Clementi 的團隊:因為當時英偉達還未有可以在 GPU 上進行平行處理的軟體層,我們只能自己寫軟體將 8 台中型電腦(非 IBM 品牌!)與一大型電腦連接來做平行運算,進行分子動力學模擬等的科學研究。如果晚生 30 年或許就不會那麼辛苦了?

-----廣告,請繼續往下閱讀-----

(註四)補助個人電腦用的 GPU 品牌到 2000 年時只剩下兩大主導廠商:英偉達及 ATI(Array Technology Inc.)。後者是出生於香港之四位中國人於 1985 年在加拿大安大略省成立,2006 年被超微半導體公司收購,品牌於 2010 年被淘汰。超微半導體公司於 2014 年 10 月提升台南出生之蘇姿豐(Lisa Tzwu-Fang Su)博士為執行長後,股票從每股 $4 左右,上升到今天每股超過 $160,其市值已經是英特爾的兩倍,完全擺脫了在後者陰影下求生存的小眾玩家角色,正在挑戰英偉達的 GPU 市場。順便一題:超微半導體公司現任總裁(兼 AI 策略負責人)為出生於台北的彭明博(Victor Peng);與黃仁勳及蘇姿豐一樣,也是小時候就隨父母親移居到美國。

(註五)

延伸閱讀

  • 熱力學與能源利用」,《科學月刊》,1982 年 3 月號;收集於《我愛科學》(華騰文化有限公司,2017 年 12 月出版),轉載於「嘉義市政府全球資訊網」。
  • 網路安全技術與比特幣」,《科學月刊》,2020 年 11 月號;轉載於「善科教育基金會」的《科技大補帖》專欄。
文章難易度

討論功能關閉中。

賴昭正_96
43 篇文章 ・ 56 位粉絲
成功大學化學工程系學士,芝加哥大學化學物理博士。在芝大時與一群留學生合創「科學月刊」。一直想回國貢獻所學,因此畢業後不久即回清大化學系任教。自認平易近人,但教學嚴謹,因此穫有「賴大刀」之惡名!於1982年時當選爲 清大化學系新一代的年青首任系主任兼所長;但壯志難酬,兩年後即辭職到美留浪。晚期曾回台蓋工廠及創業,均應「水土不服」而鎩羽而歸。正式退休後,除了開始又爲科學月刊寫文章外,全職帶小孫女(半歲起);現已成七歲之小孫女的BFF(2015)。首先接觸到泛科學是因爲科學月刊將我的一篇文章「愛因斯坦的最大的錯誤一宇宙論常數」推薦到泛科學重登。

2

2
1

文字

分享

2
2
1
奠定現代通信基礎的克勞德.香農(Claude Shannon)
數感實驗室_96
・2024/06/06 ・743字 ・閱讀時間約 1 分鐘

本文由 國立臺灣師範大學 委託,泛科學企劃執行。 

以前小時候如果調皮不聽話,就會被大人叫去跪算盤,現在的家長家裡沒算盤了,反而會拿出電路板讓小孩跪。

咦?為什麼總是拿算數工具來懲罰小孩呢?

電路板上看似複雜電路板密密麻麻的,是電腦進行邏輯計算的關鍵。這小小的薄片能執行驚人的運算功能,背後的奧秘離不開一位傳奇科學家的貢獻。他不僅奠定了現代通信的基礎,還開創了人工智慧研究,這可不是一般人一生能做到的成就,但克勞德.香農(Claude Shannon)卻一次搞定。

-----廣告,請繼續往下閱讀-----

這位非凡的科學家是如何改變了我們的時代?

他讓我們今天能享受高效的通訊技術和智慧生活。如果你也覺得現在生活離不開手機和電腦,那你應該感謝這位數學和電機工程的天才。

對於 2000 年後出生的人而言,或許覺得用手機傳訊息、用電腦看影片再平常不過。但在 Shannon 出現之前,沒有人能系統性地定義「資訊」和「通訊」。他以其對動手實驗的熱忱,將這些看似無形的概念轉化為實際的理論,為世界帶來了一場資訊革命。

正是因為 Shannon 的卓越貢獻,我們才能享受如此便捷的現代通信技術。他不僅改變了科學的面貌,還深刻地影響了我們的日常生活。

Shannon 的故事也提醒我們,熱愛與好奇心是推動進步的核心力量。他用智慧和創造力,為我們打造現代通信的基礎,並開啟未來的無限可能。

-----廣告,請繼續往下閱讀-----

更多、更完整的內容,歡迎上數感實驗室 Numeracy Lab 的 YouTube 頻道觀看完整影片,並開啟訂閱獲得更多有趣的資訊!

所有討論 2
數感實驗室_96
76 篇文章 ・ 49 位粉絲
數感實驗室的宗旨是讓社會大眾「看見數學」。 數感實驗室於 2016 年 4 月成立 Facebook 粉絲頁,迄今超過 44,000 位粉絲追蹤。每天發布一則數學文章,內容包括介紹數學新知、生活中的數學應用、或是數學和文學、藝術等跨領域結合的議題。 詳見網站:http://numeracy.club/ 粉絲專頁:https://www.facebook.com/pg/numeracylab/

0

0
0

文字

分享

0
0
0
古人用的超大型手機?從烽火臺到智能手機:通信科技的演進
數感實驗室_96
・2024/05/13 ・883字 ・閱讀時間約 1 分鐘

-----廣告,請繼續往下閱讀-----

本文由 國立臺灣師範大學 委託,泛科學企劃執行。 

現代人手機普及率極高,你可能正在用手機閱讀這篇文章。

仔細想想,我們每天使用的手機真的很厲害。只需幾下操作,就能傳訊息、視訊通話,還能上網看影片、玩遊戲、使用社群網路等。

你可能知道全世界的第一支手機是 Motorola 在 1973 年 4 月 3 日推出的黑金剛,重達 2 公斤的程度。不過,早在幾千年前,其實已經有「手機」存在了。

-----廣告,請繼續往下閱讀-----

當時的手機不只兩公斤重或兩公升水壺大,甚至是有好幾層樓那麼高,那這些手機的傳輸速率也超級慢,看影片一定是不可能,連打電話聊天都辦不到。超級陽春,基本上只能傳遞「有」或「沒有」這樣的是非題。

應該有些人猜到了,其實就是「烽火臺」。

烽火臺是中國古代為了傳遞軍情所設計的通信系統。一座烽火臺上有幾位士兵,備有大量的稻草與木柴,如果看到敵人侵犯,或是前後的烽火臺燃起狼煙,士兵們就會立刻燃燒乾柴,釋放狼煙,傳遞攸關國家存亡的重要資訊。雖然,烽火臺的尺寸大小與現今我們常用的手機差很多,傳輸能力也差很多,但烽火臺還真是上古時代標準的通信設施哦!

接下來還會推出一系列「通信科技」相關的節目,內容囊括了通信發展的歷史故事、重要的通信科學家、通信相關的技術知識。

-----廣告,請繼續往下閱讀-----

讓你認識新聞報導中,常聽到的一些通信專有名詞,什麼是頻帶、頻寬?現代通信技術如此厲害的關鍵又在哪裡?甚至,這些技術跟我們平常在學校裡學到的各科知識,又有怎樣的連結呢?

這系列將用影片帶領大家進入這個有趣、改變全人類生活的通信世界,敬請期待哦!有更多想法也可以留言分享喔!

更多、更完整的內容,歡迎上數感實驗室 Numeracy Lab 的 YouTube 頻道觀看完整影片,並開啟訂閱獲得更多有趣的資訊!

討論功能關閉中。

數感實驗室_96
76 篇文章 ・ 49 位粉絲
數感實驗室的宗旨是讓社會大眾「看見數學」。 數感實驗室於 2016 年 4 月成立 Facebook 粉絲頁,迄今超過 44,000 位粉絲追蹤。每天發布一則數學文章,內容包括介紹數學新知、生活中的數學應用、或是數學和文學、藝術等跨領域結合的議題。 詳見網站:http://numeracy.club/ 粉絲專頁:https://www.facebook.com/pg/numeracylab/