來自馬來西亞,畢業於台灣國立清華大學生命科學系學士暨碩士班,以及美國加州大學戴維斯分校(University of California at Davis)遺傳學博士班,從事果蠅演化遺傳學研究。曾於台灣中央研究院生物多樣性研究中心擔任博士後研究員,現任教於國立清華大學分子與細胞生物學研究所,從事鳥類的演化遺傳學、基因體學及演化發育生物學研究。過去曾長期擔任中文科學新聞網站「科景」(Sciscape.org)總編輯,現任台大科教中心CASE特約寫手、Readmoo部落格【GENE思書軒】、關鍵評論網專欄作家;個人部落格:The Sky of Gene;臉書粉絲頁:GENE思書齋。
1990 年,融合蛋白 CD4 免疫黏附素(CD4 immunoadhesin)誕生。這項設計,是為了對付令人類聞風喪膽的 HIV 病毒。
-----廣告,請繼續往下閱讀-----
我們知道 T 細胞是人體中一種非常重要的白血球。在這些 T 細胞中,大約有六到七成表面帶有一個叫做「CD4」的輔助受體。CD4 會和另一個受體 TCR 一起合作,幫助 T 細胞辨識其他細胞表面的抗原片段,等於是 T 細胞用來辨認壞人的「探測器」。表面擁有 CD4 受體的淋巴球,就稱為 CD4 淋巴球。
麻煩的來了。 HIV 病毒反將一軍,竟然把 T 細胞的 CD4 探測器,當成了自己辨識獵物的「標記」。沒錯,對 HIV 病毒來說,免疫細胞就是它的獵物。HIV 的表面有一種叫做 gp120 的蛋白,會主動去抓住 T 細胞上的 CD4 受體。
而另一端的 Fc 區域則有兩個重要作用:一是延長融合蛋白在體內的存活時間;二是理論上能掛上「這裡有敵人!」的標籤,這種機制稱為抗體依賴性細胞毒殺(ADCC)或免疫吞噬作用(ADCP)。當免疫細胞的 Fc 受體與 Fc 區域結合,就能促使免疫細胞清除被黏住的病毒顆粒。
不過,這裡有個關鍵細節。
在實際設計中,CD4免疫黏附素的 Fc 片段通常會關閉「吸引免疫細胞」的這個技能。原因是:HIV 專門攻擊的就是免疫細胞本身,許多病毒甚至已經藏在 CD4 細胞裡。若 Fc 區域過於活躍,反而可能引發強烈的發炎反應,甚至讓免疫系統錯把帶有病毒碎片的健康細胞也一併攻擊,這樣副作用太大。因此,CD4 免疫黏附素的 Fc 區域會加入特定突變,讓它只保留延長藥物壽命的功能,而不會與淋巴球的 Fc 受體結合,以避免誘發免疫反應。
從 DNA 藍圖到生物積木:融合蛋白的設計巧思
融合蛋白雖然潛力強大,但要製造出來可一點都不簡單。它並不是用膠水把兩段蛋白質黏在一起就好。「融合」這件事,得從最根本的設計圖,也就是 DNA 序列就開始規劃。
我們體內的大部分蛋白質,都是細胞照著 DNA 上的指令一步步合成的。所以,如果科學家想把蛋白 A 和蛋白 B 接在一起,就得先把這兩段基因找出來,然後再「拼」成一段新的 DNA。
許曉東,《中國古代琥珀藝術》 (Zhongguo gu dai hu po yi shu/Chinese Ancient Amber Art) (Beijing, 2011), p. 6.
Laufer, Historical Jottings, p. 219.
同上,p. 242.
這個英文譯本來自約翰.雅各布.韋克(Johann Jacob Wecker),Eighteen Books of the Secrets of Art and Nature (London, 1660), p. 233.
Laufer, Historical Jottings, p. 218.
‘Refashioning the Renaissance Team, Imittion Amber and Imitation Leopard Fur’, www.aalto.fi, accessed 19 September 2021; Sophie Pitman, ‘Una corona di ambra falsa: Imitating Amber Using Early Modern Recipes’, www.refashioningrenaissance.eu, 30 April 2020.
Johann Heinrich Zedler, Grosses vollständiges Universal Lexicon aller Wissenschafften und Künste (Halle and Leipzig, 1733), vol. III, col. 1401.
Johann Christian Kundmann, Rariora naturae (Wrocław and Leipzig, 1726), pp. 219–26.
John Houghton, A Collection for the Improvement of Husbandry and Trade (London, 1727), vol. II, p. 64.
Hugh Plat, The Jewell House of Art and Nature (London, 1594), pp. 67–8.
關於這些資料來源的進一步細節, 參考 Rachel King, ‘To Counterfeit Such Precious Stones as You Desire: Amber and Amber Imitations in Early Modern Europe’, in Fälschung, Plagiat, Kopie: künstlerische Praktiken in der Vormoderne, ed. Birgit Ulrike Münch (Petersburg, 2014), pp. 87–97.
Stanislaus Reinhard Acxtelmeier, Hokus-pokeria, oder, Die Verfälschungen der Waaren im Handel und Wandel (Ulm, 1703), p. 24.
D.R.S. Shackleton Bailey, trans., Martial: Epigrams, 3rd edn (Cambridge and London 1993), vol. I, bk III, epi. 65.
M. C. Bandy and J. A. Bandy, trans., Georgius Agricola: De natura fossilium (Textbook of Mineralogy) (New York, 1955), p. 77.
Adrian Christ, ‘The Baltic Amber Trade, c. 1500–1800: The Effects and Ramifications of a Global Counterflow Commodity’, MA thesis, University of Alberta, 2018, p. 112.
來自馬來西亞,畢業於台灣國立清華大學生命科學系學士暨碩士班,以及美國加州大學戴維斯分校(University of California at Davis)遺傳學博士班,從事果蠅演化遺傳學研究。曾於台灣中央研究院生物多樣性研究中心擔任博士後研究員,現任教於國立清華大學分子與細胞生物學研究所,從事鳥類的演化遺傳學、基因體學及演化發育生物學研究。過去曾長期擔任中文科學新聞網站「科景」(Sciscape.org)總編輯,現任台大科教中心CASE特約寫手、Readmoo部落格【GENE思書軒】、關鍵評論網專欄作家;個人部落格:The Sky of Gene;臉書粉絲頁:GENE思書齋。