2

0
0

文字

分享

2
0
0

揭開帝王斑蝶遷徙的神秘面紗

cacbug
・2011/12/14 ・1439字 ・閱讀時間約 2 分鐘 ・SR值 633 ・十年級

-----廣告,請繼續往下閱讀-----

Photograph by Joel Sartore, National Geographic

每年的秋天,百萬隻帝王斑蝶(Danaus plexippus)使用具有時間補償性的太陽羅盤指針 (time-compensated sun compass) 從美東地區飛往美國南部,穿越兩千英哩到達墨西哥中部的杉樹林度過寒冬。

科學家長久以來深深地著迷於究竟是怎麼樣的生物機制,能夠讓這些纖巧的小生物世世代代經歷這麼長距離的旅程,抵達一個大約300平方英哩的地區。

為了解開這趟讓人驚豔的旅程裡面扮演重要調控角色的遺傳因子,麻省醫學大學的神經生物學家們率先對帝王斑蝶的基因體進行解序。

帶領這項研究的神經生物學教授史蒂芬‧瑞伯特 (Steven M. Reppert),他提到:「遷徙的帝王斑蝶從前一年的秋天開始至少要歷經三個世代才能夠成功完成這趟遷徙之旅,前幾代的蝴蝶從來都沒有到過越冬的地區,也沒有親屬領導他們前往。這必定有一種遺傳的機制在調控這些蝴蝶的遷徙行為。我們想要知道這個機制並且瞭解它如何運作。」

-----廣告,請繼續往下閱讀-----

了解帝王斑蝶的基因、行為與生理上適應的關聯性將能夠提供新的觀點來瞭解人類身上同樣的關聯性。例如,約日時鐘 (circadian clocks) 是具有時間補償性的太陽羅盤系統中主要的元件,用來控制帝王斑蝶能夠在長距離的旅程中找到方向;而約日時鐘現在已經知道在人類身上扮演重要的角色。從一日內賀爾蒙濃度的變化、藥物動力學、疾病發生過程–如心臟病最常發生於清晨時間,都透露著約日時鐘對於人類生理學有關鍵性的影響。了解約日時鐘的分子機制,已經證實有助於知道這些時鐘基因的突變對於造成睡眠時間混亂的機制,而且也有助於解開時鐘基因突變怎麼造成憂鬱症與季節性情緒失調。

發表在《細胞》期刊的這份研究,由瑞伯特博士與麻省醫學院的同儕詹帥博士 (Shuai Zhan) 和克麗絲汀‧梅林博士後研究員(Christine Merlin),以及基因體計畫解決方案的執行長傑弗瑞‧波爾博士 (Jeffrey L. Boore) 共同合作,提出利用次世代定序技術 (next-generation sequencing technology) 解開二億七千三百萬個鹼基 (273 Mb) 的帝王斑蝶基因體草圖。經過分析這些遺傳訊息組共找到大約 16,866個能轉譯成蛋白質的基因,其中有數個基因家族與帝王蝶季節性遷徙有主要的關聯性。瑞伯特與研究同儕從剛出爐的帝王斑蝶基因體中找到的基因群包括:

•太陽羅盤系統的視覺接收與腦內處理訊息相關的基因;
•帝王斑蝶約日時鐘的分子組成中全部的基因;
•調控青春激素(juvenile hormone)生合成途徑的基因群,青春激素對於遷徙行為扮演關鍵性的角色而且發現非預期的調控關係;
•指向性飛行行為的附加基因群;
•帝王斑蝶專一性嗅覺受器的廣泛特化,可能與長距離遷徙有重要的關係;
•以及多種鈉鉀幫浦產生重要的化學防禦機制,在遷徙時用來擊退捕食者。

勞立‧湯普金斯博士(Laurie Tompkins)負責監督國家衛生院的大眾醫學研究所在行為遺傳學上的研究經費,他提到:「為什麼要針對另一個物種進行解序呢?因為帝王蝶斑季節性遷徙超過千餘英哩的距離是非常特殊的。基因體的序列資訊能夠提供我們線索,解開這些蝴蝶是怎麼在行為與生理上適應長距離遷徙。」

-----廣告,請繼續往下閱讀-----

瑞伯特說:「關於大腦處理訊息的基本機制中,參與長距離遷徙的定向系統的奧秘是非常難破解的,藉由剖析帝王斑蝶那長距離遷徙的遺傳基礎,將會不僅幫助我們認識帝王斑蝶本身,更能夠應用到其他遷徙動物,包括候鳥與海龜。」

這個研究計畫的經費是由國家衛生院的大眾醫學研究所贊助的美國復甦與再投資法案基金,以及希金斯家族的共同支持。

翻譯來源:  UMassMED

-----廣告,請繼續往下閱讀-----

論文原文:Shuai Zhan, Christine Merlin, Jeffrey L. Boore, Steven M. Reppert. The Monarch Butterfly Genome Yields Insights into Long-Distance MigrationCell, 2011; 147 (5): 1171 DOI: 10.1016/j.cell.2011.09.052

-----廣告,請繼續往下閱讀-----
文章難易度
所有討論 2
cacbug
25 篇文章 ・ 0 位粉絲
研究昆蟲的人,腦袋不時地轉來轉去,對於這個世界充滿好多想像與疑問。

0

1
0

文字

分享

0
1
0
海廢問題怎麼解?竟然有人回收漁網做筆電!?
鳥苷三磷酸 (PanSci Promo)_96
・2024/09/17 ・4433字 ・閱讀時間約 9 分鐘

-----廣告,請繼續往下閱讀-----

本文由 HP 委託,泛科學企劃執行。 

海廢問題怎麼解?竟然有人回收漁網做筆電!?

你知道嗎?地球上最大的垃圾場,就是我們的大海。全世界一般依據位置,將海洋廢棄物分為海岸、海漂與海底三大類。英國麥克阿瑟(Ellen MacArthur)基金會曾預測,我們的海洋,到 2050 年會變成垃圾比魚多的塑膠濃湯。其中,最有名的就是太平洋垃圾帶(Great Pacific Garbage Patch),它的面積有 3 個法國和 44 個台灣那麼大。

到底是誰在亂丟垃圾?垃圾與它們的產地在哪裏?

科學家發現,漁業大國貢獻了不少垃圾,台灣更是榜上有名!雖然從陸地而來的垃圾量也很可觀,但來自漁業活動、源於海洋的廢棄物如漁網漁具,更難回到岸邊,因此成為海上最主要的垃圾。科學家推算,每年大概總計有四成的漁網漁具會掉到海中。

從太平洋垃圾帶撈回來的垃圾分析,其中 46% 就是廢棄漁網。科學家還一一檢視垃圾上的標籤字眼,發現源頭是五個北太平洋的漁業大國——日本、中國、韓國、美國及台灣。更別説全球還有另外四個海洋垃圾帶,所有垃圾量加起來勢必會更驚人。

-----廣告,請繼續往下閱讀-----

但也先別急著怪漁業從業人員,因為他們也不一定是故意要亂丟垃圾的。瞬息萬變的大海,本來就不是一個好作業的地方,破壞、遺失設備是常有的事。不過海洋垃圾問題如此棘手,難道就沒有解決方案嗎?

圖/shutterstock

人類與垃圾帶的對決,勝算到底有多大?

其實已經有不少人投身清除海洋垃圾的工作。大家還記得太平洋上的海洋吸塵器嗎?這個由「海洋清理行動( The Ocean Cleanup )」發起、號稱史上最大海廢清除計劃,雖然一開始出師未捷身先死,下水沒幾個月就故障,但後來升級調整後,已在今年 5 月完成執行第 100 次的任務。

除了清除海上的垃圾,從河川攔截也很重要。The Ocean Cleanup 還研發了攔截者(The Interceptor),它是一艘太陽能自動船,船頭設有一道垃圾集中屏障,能將垃圾引導進入船上的收集系統再集中處理。

其他活躍在海洋垃圾清除前線的,還有來自澳洲的全自動海洋垃圾桶 Seabin,被裝設在港口碼頭的它,透過底部幫浦製造水流,讓海廢可以從水面被吸入,小至 2 毫米的微塑膠也可被收集到其纖維網袋內。印度的 AlphaMERS 團隊,則設計了攔截漂浮垃圾的柵欄與串聯清掃系統,可以清除河川與湖泊表面的廢棄物。有標誌性大眼、水車造型的 Mr. Trashweel,被設置在美國巴爾的摩港口,結合太陽能與水力發電,使用清除海上油污的攔油索,將垃圾引導到它的垃圾箱中,每年可攔截 500 噸垃圾。荷蘭的泡泡屏障 the Bubble Barrier ,設計原理也相當聰明,它會從水底產生「氣泡簾」,引導塑料垃圾到水面上,再利用水流把垃圾推向捕獲系統,克服了大型撈網會阻擋船隻或海底生物,以及高維護更替成本的問題。

-----廣告,請繼續往下閱讀-----

廢漁網改頭換面?

不過要讓海廢界的奪命殺手——廢棄漁網「洗心革面」,在技術上有一大難關,因為漁網主要是以尼龍製作的。尼龍是聚硫胺高分子(Polyamide),在分子主鏈上因為有大量高極性的化學基,分子鏈間作用力較强,還能在產生氫鍵的同時,使結構排列整齊,造就了它優秀的韌性强度。

圖/HP

但如果用回收寶特瓶的「物理回收」,即沒有改變其聚合型態的方式來回收尼龍,尼龍的分子鏈就會斷裂,大幅影響纖維的機能性,走上被降級使用一途。好在如今已有廠商研發出「化學回收」尼龍的技術。收集來的廢棄漁網先被清洗、切碎成段,接著被高溫熔融,再透過像「術式反轉」的解聚(depolymerization)、分解、精煉及純化工序,讓尼龍從聚合物還原到單體狀態。這些原料單體會再被聚合,製造成尼龍再生粒子。被混煉改質、强化性能的粒子重新進行紡絲後,會形成全新的尼龍纖維,就可以被無限循環利用啦!

這種做法,可以大大節省原本用來製作原生尼龍的石化資源、減少碳排放,還可以讓廢棄漁網重獲新生。再生尼龍可以拿來做衣服、眼鏡,甚至可以搖身一變,變成你桌上的筆電!

「親愛的,我把漁網做成筆電了!」是誰這麼瘋?

是誰想到要把廢棄漁網做成筆電?早在 2019 年,HP 就領先全球,推出全球第一款使用海洋回收塑料的筆記型電腦,打破我們對海洋廢棄物的想象。在 2023 年,更進一步海洋垃圾中難以忽視的狠角色廢棄漁網,打造出 HP EliteBook 1040 G11頂級輕薄商務筆電!

-----廣告,請繼續往下閱讀-----

HP EliteBook 1040 G11 貫徹環保永續理念,是世界上第一款採用從海洋中回收的廢棄漁網製作成鍵盤的筆電。除了讓廢棄漁網重獲新生,外殼也採用部分回收鎂合金製作,外盒包裝 100% 採用可回收材質。而且我敢保證大家絕對想不到,這台筆電的材質,竟然還包括回收的家庭用油!

是的,你沒聽錯,就是 cooking oil!食用油經過回收,可以製成生質材料聚羥基烷酸酯 (Polyhydroxyalkanoates,PHA)。PHA 是目前市面上唯一可在海洋分解之生質塑膠,可謂是新興生質塑膠材料中的明日之星!雖然使用回收材質會提高成本,但 HP 持續以實際行動,支持減碳、森林復育及循環經濟,創造永續發展。

圖/HP

你也許有疑問,用海洋廢棄物製作的筆電,性能靠不靠得住?別擔心,HP 重視環境保護,效能也不馬虎!HP EliteBook 1040 G11 完美展現 AI 潮流下劃時代的超效能,搭載 Intel® Core™ Ultra7 H 處理器,再搭配 Intel® Arc™內顯,3 大 AI 引擎實現高效能低功耗,大大提升生產力。

使用筆電時最怕遇到兩大痛點,第一是筆電太重,第二就是續航力。如果為了縮小電池、減輕筆電重量,又不得不犧牲筆電的續航力。不過這些問題,在 HP EliteBook 1040 G11 身上能同時迎刃而解,兩全其美。AI 效能與電力的平衡密不可分,透過 HP Smart Sense 智慧軟體,搭配優秀的散熱功能管理,再加上全新高密度渦輪電扇,筆電續航力不僅大大提升,更能降低機身溫度 40%,機身還能維持 1.18 KG 的優雅輕薄,讓你無論通勤出差,都輕鬆隨行。

-----廣告,請繼續往下閱讀-----

這台筆電,還有什麽神奇的地方?

你是不是還在擔心電腦被駭客入侵、行蹤被偷窺,所以逼不得已,在筆電的視訊鏡頭上貼上醜醜又黏糊糊的膠帶呢?那一定是因為你還不認識 HP 全新的防窺功能!

HP EliteBook 1040 G11 搭載了全新的 Sure View Gen 5 Panel,它經過五個 Generation 的進化,終於達成完美防窺使用體驗。一鍵防窺的功能,只要一 off 就可以分享視訊,一 on 就可以確實防窺,成為你個人隱私的最佳守衛。

除了駭客病毒,你可能也害怕筆電上沾染讓你生病的病毒!這台全新冰川白配色的筆電,不只是外形設計靚麗,更採用防污油墨塗層技術,可以抗指紋沾附,而且全機殼都可以使用酒精擦拭,中看又中用,還是筆電界的衛生扛壩子!

圖/HP

HP EliteBook 1040 G11  還不止這些!

想了解更多商品 ► https://www.hp.com/tw-zh/laptops/business/elitebooks/1000-series.html
它可以搭配操作體驗超直覺觸控面板,讓你一 Touch 即通,用過的人都説他們再也回不去了。
不僅如此,HP EliteBook 1040 G11 還是你拼事業的好夥伴!標配 5 百萬畫素IR人臉辨識鏡頭,完全是為了專業會議協作而生。無論你在什麼地方、什麼時候進行線上會議,它的動態色彩調校功能,可以在背光或低光源時,自動追蹤取景,配置 Poly Studio 及 HP 的 AI 降噪技術,最佳化你的視訊會議體驗。你再也不必擔心那些視訊會議畫面模糊、聲音不清楚的尷尬時刻,可以在客戶或老闆面前自在表現。

步入 5G 萬物聯網的時代,HP EliteBook 1040 G11 也搭載 5G 廣域無線網路 (Wireless Wide Area Network,WWAN),使用者可以透過 SIM 卡或是 eSIM 服務直接連網。5G WWAN 的內建,讓整套資訊安全迴路更加穩健,是你追求資安的最安心選擇。

參考資料:

-----廣告,請繼續往下閱讀-----
文章難易度

討論功能關閉中。

鳥苷三磷酸 (PanSci Promo)_96
206 篇文章 ・ 312 位粉絲
充滿能量的泛科學品牌合作帳號!相關行銷合作請洽:contact@pansci.asia

0

2
0

文字

分享

0
2
0
生物基因的未來 ──《基因諾亞方舟》
Gene Ng_96
・2019/02/01 ・2592字 ・閱讀時間約 5 分鐘 ・SR值 541 ・八年級

-----廣告,請繼續往下閱讀-----

隨著科技發達,各種社群網路與監控、氣候危機、機器人與人、優生學是我們必須正視的議題,更多有關科學、生物、科技的精彩電影,請見 Giloo 紀實影音與台北當代合作,「未來近了」片單

蘋果出了史上最貴的 iPhone XS Max,一支要價 NT$52,900。可是,如果把一支智慧手機的所有化學元素都分開再賣給你,價錢還會這麼高嗎?蘋果公司出這價錢合理嗎?我們是不是該抵制一下這黑心的商業行為?

別急,如果把你身體分解成元素,不過也就主要是一堆碳、氮、磷、氧、氫等等的元素,加起來的價格又是多少?

製造一部蘋果手機並不是把一堆化學元素隨意混合而已,而是依一大堆零件的設計藍圖,在眾多工廠裡頭用精妙複雜的機器生產再組合起來。不管智慧手機多昂貴或多便宜,我們所買的,是用非常多資訊和知識製造組合,然後用軟韌體運行的高科技產品。

而要製造出一個像你我他一樣的人類驅體,也要有大量的設計藍圖,然後在各種細胞和發育的作用下,長成我們現在這個樣子,並按照類似軟韌體邏輯的運作藍圖來控制日常的生理、生化運行,這些生命藍圖編碼了奈米小機器人的資訊。我們人類正常來說,大概有兩萬多個這樣的藍圖,它們就是我們的基因,奈米小機器人就是蛋白質。

-----廣告,請繼續往下閱讀-----

《基因諾亞方舟》劇照。圖/Giloo紀實影音提供

豐富多樣的藍圖庫

每個物種,都有一個獨特的藍圖庫,就是基因體。不同物種之間,有許多基本藍圖頗相似,也有不少藍圖內容不太一樣,甚至有新的藍圖,或者份數不同。其中一些動植物種,經過人類上千年甚至上萬的選拔,不同品系間的藍圖庫也有差異,其中好些藍圖有了新的資訊,造就出多樣的品種。

這些多姿多彩的藍圖庫,無論是改進人類食物食材的生產效率和品質上,或是提供天然的藥物上,都有著舉足輕重的影響。不過很不幸的,在氣候變遷下,或者資本主義講求的極致效率下,很多野生的藍圖庫也好,人工培育出的藍圖庫也好,都面臨著滅頂之災。而這部紀錄片《基因諾亞方舟》,談的就是演化生物學家、遺傳學家、動物學家、植物學家、微生物學家、農學家、生物物理學家、細胞生物學家、生化學家、病理學家、流行病學家等等 ⋯⋯ 合力為守護地球上繽紛多彩的生命歷經試煉一路演化來的藍圖庫而作出的努力。

《基因諾亞方舟》劇照。圖/Giloo紀實影音提供

-----廣告,請繼續往下閱讀-----

死都要保護的種子庫

我們人類其實是種子控,不信你數數今天吃了多少種子:米飯、麵條、麵餅、麵包、豆製品等等,全都是用植物的種子做的。這些糧食多樣性的喪失,讓農作物曝露在疾病、氣候變遷等危脅中。蘇聯在納粹德軍圍城時,守護多樣種子庫的科學家,坐視滿室的食物仍寧可餓死,真是令人不勝唏噓和感動。

《基因諾亞方舟》的開頭,帶我們到挪威只有兩千多住戶的斯瓦巴群島 (Svalbard)。為了延續我們糧食的未來,科學家在那蓋了一個全球最大的種子庫  — — 斯瓦爾巴全球種子庫 (Svalbard globale frøhvelv),利用極地天然的寒氣保存了來自全球兩百多個國家的各種作物種子,最多可以容納廿二億顆種子,現今已收藏超過一百萬份種子樣本。

《基因諾亞方舟》劇照。圖/Giloo紀實影音提供

生物組織蒐藏庫

生命的多樣性也取決於個體擁有多樣的組織器官。保存在細胞核的 DNA 存有各種生命藍圖,但就像工程師施工時不需要把整本工程藍圖都搬到工地或工廠一樣,轉錄作用把 DNA 上的生命藍圖拷貝成一份信使 RNA 的藍圖副本再送到核醣體去製造蛋白質,就像工程師影印奈米機器人製造藍圖副本到工廠施工,工作完成後就銷毀副本資源回收。透過窺視細胞中有哪些和有多少藍圖副本,我們能夠猜測生命的運作。

-----廣告,請繼續往下閱讀-----

《基因諾亞方舟》同時也介紹德國野生生物的細胞銀行,用液態氮的超低溫保存各種生物組織,為我們凍結了不同物種的不同組織的藍圖副本。而在南台灣,屏東高樹鄉的辜嚴倬雲植物保種中心,植物學家也把植物的各部分小心剪下裝入小試管瓶中,再放入裝滿液態氮的大型鐵桶中,為後世子孫保存各種植物的生命運作秘密。這個自然科學博物館、國立清華大學及保種中心合作向科技部申請的「冷凍保種計畫」,目標是要在三年內完成三萬種植物的液態氮保存計畫,每個物種至少八份組織樣本,完成後將是世界最具規模的蒐藏庫。

《基因諾亞方舟》劇照。圖/Giloo紀實影音提供

很科幻又不科幻的基因資料庫

過去要定序一個人類的生命藍圖,也就是人類基因體,耗費了幾百億美元,還有三千多位科學家十幾年的寶貴時間。拜 DNA 定序成本比 IT 產業的晶片成本下降速度更快許多所賜,如今定序你我的基因體,費用快要比 iPhone XS Max 還便宜了!於是中國野心勃勃的華大基因 BGI,單單一家機構,正以佔全球定序總量六成的大規模,日夜不停機地要為上萬種脊椎動物的基因體定序。

《基因諾亞方舟》劇照。圖/Giloo紀實影音提供

-----廣告,請繼續往下閱讀-----

但我們也別忘了,除了物種和作物品系的多樣性,你我也都是獨一無二的,即使是同卵雙胞胎也有表觀遺傳的差異,就像同一本教科書被不同學生劃的重點有差一樣,不同的後天環境會在相同的 DNA 上做出不同的標記。為了保存和研究個體間的遺傳異同,影片訪問中國、英國和奧地利的生物資料庫或基因銀行,這些基因資料庫或許有一天能幫助我們破解疾病和藥物代謝差異的遺傳因素。臺灣人體生物資料庫也基於臺灣獨特的生活型態和致病因素而成立,為生物醫學研究蒐集龐大的生物檢體與健康資訊,迄今已收集超過九萬人的樣本。而在不久的未來,科學家甚至可能試圖用基因體編輯的技術來修正我們的生命藍圖以治療疾病,或者改造人類,甚至把已滅絕的生物復活,我們將進入一個很科幻但實際上不再科幻的世界!

《基因諾亞方舟》劇照。圖/Giloo紀實影音提供

線上觀看《基因諾亞方舟 Golden Genes》

《基因諾亞方舟》劇照。圖/Giloo紀實影音提供

-----廣告,請繼續往下閱讀-----
Gene Ng_96
295 篇文章 ・ 32 位粉絲
來自馬來西亞,畢業於台灣國立清華大學生命科學系學士暨碩士班,以及美國加州大學戴維斯分校(University of California at Davis)遺傳學博士班,從事果蠅演化遺傳學研究。曾於台灣中央研究院生物多樣性研究中心擔任博士後研究員,現任教於國立清華大學分子與細胞生物學研究所,從事鳥類的演化遺傳學、基因體學及演化發育生物學研究。過去曾長期擔任中文科學新聞網站「科景」(Sciscape.org)總編輯,現任台大科教中心CASE特約寫手Readmoo部落格【GENE思書軒】關鍵評論網專欄作家;個人部落格:The Sky of Gene;臉書粉絲頁:GENE思書齋

2

0
0

文字

分享

2
0
0
揭開帝王斑蝶遷徙的神秘面紗
cacbug
・2011/12/14 ・1439字 ・閱讀時間約 2 分鐘 ・SR值 633 ・十年級

Photograph by Joel Sartore, National Geographic

每年的秋天,百萬隻帝王斑蝶(Danaus plexippus)使用具有時間補償性的太陽羅盤指針 (time-compensated sun compass) 從美東地區飛往美國南部,穿越兩千英哩到達墨西哥中部的杉樹林度過寒冬。

科學家長久以來深深地著迷於究竟是怎麼樣的生物機制,能夠讓這些纖巧的小生物世世代代經歷這麼長距離的旅程,抵達一個大約300平方英哩的地區。

為了解開這趟讓人驚豔的旅程裡面扮演重要調控角色的遺傳因子,麻省醫學大學的神經生物學家們率先對帝王斑蝶的基因體進行解序。

-----廣告,請繼續往下閱讀-----

帶領這項研究的神經生物學教授史蒂芬‧瑞伯特 (Steven M. Reppert),他提到:「遷徙的帝王斑蝶從前一年的秋天開始至少要歷經三個世代才能夠成功完成這趟遷徙之旅,前幾代的蝴蝶從來都沒有到過越冬的地區,也沒有親屬領導他們前往。這必定有一種遺傳的機制在調控這些蝴蝶的遷徙行為。我們想要知道這個機制並且瞭解它如何運作。」

了解帝王斑蝶的基因、行為與生理上適應的關聯性將能夠提供新的觀點來瞭解人類身上同樣的關聯性。例如,約日時鐘 (circadian clocks) 是具有時間補償性的太陽羅盤系統中主要的元件,用來控制帝王斑蝶能夠在長距離的旅程中找到方向;而約日時鐘現在已經知道在人類身上扮演重要的角色。從一日內賀爾蒙濃度的變化、藥物動力學、疾病發生過程–如心臟病最常發生於清晨時間,都透露著約日時鐘對於人類生理學有關鍵性的影響。了解約日時鐘的分子機制,已經證實有助於知道這些時鐘基因的突變對於造成睡眠時間混亂的機制,而且也有助於解開時鐘基因突變怎麼造成憂鬱症與季節性情緒失調。

發表在《細胞》期刊的這份研究,由瑞伯特博士與麻省醫學院的同儕詹帥博士 (Shuai Zhan) 和克麗絲汀‧梅林博士後研究員(Christine Merlin),以及基因體計畫解決方案的執行長傑弗瑞‧波爾博士 (Jeffrey L. Boore) 共同合作,提出利用次世代定序技術 (next-generation sequencing technology) 解開二億七千三百萬個鹼基 (273 Mb) 的帝王斑蝶基因體草圖。經過分析這些遺傳訊息組共找到大約 16,866個能轉譯成蛋白質的基因,其中有數個基因家族與帝王蝶季節性遷徙有主要的關聯性。瑞伯特與研究同儕從剛出爐的帝王斑蝶基因體中找到的基因群包括:

•太陽羅盤系統的視覺接收與腦內處理訊息相關的基因;
•帝王斑蝶約日時鐘的分子組成中全部的基因;
•調控青春激素(juvenile hormone)生合成途徑的基因群,青春激素對於遷徙行為扮演關鍵性的角色而且發現非預期的調控關係;
•指向性飛行行為的附加基因群;
•帝王斑蝶專一性嗅覺受器的廣泛特化,可能與長距離遷徙有重要的關係;
•以及多種鈉鉀幫浦產生重要的化學防禦機制,在遷徙時用來擊退捕食者。

-----廣告,請繼續往下閱讀-----

勞立‧湯普金斯博士(Laurie Tompkins)負責監督國家衛生院的大眾醫學研究所在行為遺傳學上的研究經費,他提到:「為什麼要針對另一個物種進行解序呢?因為帝王蝶斑季節性遷徙超過千餘英哩的距離是非常特殊的。基因體的序列資訊能夠提供我們線索,解開這些蝴蝶是怎麼在行為與生理上適應長距離遷徙。」

瑞伯特說:「關於大腦處理訊息的基本機制中,參與長距離遷徙的定向系統的奧秘是非常難破解的,藉由剖析帝王斑蝶那長距離遷徙的遺傳基礎,將會不僅幫助我們認識帝王斑蝶本身,更能夠應用到其他遷徙動物,包括候鳥與海龜。」

這個研究計畫的經費是由國家衛生院的大眾醫學研究所贊助的美國復甦與再投資法案基金,以及希金斯家族的共同支持。

-----廣告,請繼續往下閱讀-----

翻譯來源:  UMassMED

論文原文:Shuai Zhan, Christine Merlin, Jeffrey L. Boore, Steven M. Reppert. The Monarch Butterfly Genome Yields Insights into Long-Distance MigrationCell, 2011; 147 (5): 1171 DOI: 10.1016/j.cell.2011.09.052

-----廣告,請繼續往下閱讀-----
文章難易度
所有討論 2
cacbug
25 篇文章 ・ 0 位粉絲
研究昆蟲的人,腦袋不時地轉來轉去,對於這個世界充滿好多想像與疑問。

0

0
0

文字

分享

0
0
0
語言還在血緣卻消失了,萬那杜島上發生了什麼事?──《科學月刊》
科學月刊_96
・2018/04/30 ・3118字 ・閱讀時間約 6 分鐘 ・SR值 568 ・九年級

-----廣告,請繼續往下閱讀-----

  • 林翰佐/銘傳大學生物科技學系副教授,科學月刊總編輯。

萬那杜的首都是維拉港,也是萬那杜最大的城市。圖/Phillip Capper@wikipedia

萬那杜(Vanuatu)是指位於新幾內亞島東南方與斐濟(Fuji)西方海域上的島嶼,目前為萬那杜共和國的治權範圍。先前的考古學研究顯示,這個深入太平洋中心、由 80 餘個島嶼所組成的區域上,有關人類的活動僅能追溯到 3000 年前,幾乎可算是地球上最晚發現人類活動的區域,是地球上最後一塊被人類觸碰到的淨土。

萬那杜的居民從何處而來?

拉匹達文明的地理位置。圖/Christophe cagé @wikipedia

這是一個人類學上相當有趣的研究議題。語言學家們的研究發現,當地居民的語言根源於東南亞語系,透過與鄰近區域考古學證據顯示,第一批到達萬那杜的居民,跟其他遠大洋洲(Remote Onceania)島嶼上落地生根的先驅者應該同屬於拉匹達(Lapita)文明。

-----廣告,請繼續往下閱讀-----

拉匹達文明最早發現於位於新幾內亞島東北部的俾斯麥群島(Bismarck Archipelago),是一個生活於沿岸,以採集為主的新石器文明。從已出土的文物當中發現,拉匹達文明已經具備相當精緻的製陶技術,並能利用貝殼製作大量的生活工具。

目前的考古學者認為,拉匹達文明源自東南亞,從文明特徵以及在大洋洲相關文明發現的時間序列來看,整個拉匹達文明可能源自於臺灣早期的原住民,在距今5000~6000 年前經海路逐步擴散到大洋洲的諸島。

拉匹達文明擁有相當精緻的製陶技術。圖/Torbenbrinker@wikipedia

這樣的人口擴散方式又是以何種形式發生呢?是逐步的擴散,每到一個地區便與當地人種通婚產生子代,落地生根以後再向其他島嶼擴散?或者是像有目的的旅行一般,在很短的時期不斷移動所造成?

-----廣告,請繼續往下閱讀-----

在 2016 年發表的研究中,考古學家透過分子生物學技術,研究 3 具發現於萬那杜與東加群島的先祖遺骸,發現這些迄今 2600~3000 年前的遺骸身上鮮少有鄰近新幾內亞島上人種的 DNA 特徵,反而跟東南亞的人種在血緣上更為接近。顯示這些遠古先祖在遷徙的過程,可能鮮少與當地居民通婚以致沒有血統混合的現象,或者是因為這樣的遷徙是發生於短時間的,並非經歷數代所造成。一段源自臺灣原住先民透過海上旅行到達地球最後一塊淨土的傳奇故事就這樣被發表出來。

即便透過考古學以及語言學的深入研究勾勒出一段如史詩般的故事,但仍難以完美解釋我們目前所觀察到的現象;現今的萬那杜居民雖仍以南島語(Austronesian)作為主要的語言,然而從血緣的角度來看,現在的萬那杜居民,不論在骨骼型態的角度以及基因學上的表現,均已幾乎找不到先民們的血緣。這種語言與血統上錯位(mismatch)的現象更增添了這傳說中的神祕色彩。

圖/Graham Crumb@wikipedia

全基因體定序用於考古學研究

分子生物學技術用於考古學上的研究其實至少有 3、40 年的歷史。透過位於染色體上基因序列的相似程度,來推算動物物種之間或是先祖遺骸與現代人之間血緣關係的問題。

-----廣告,請繼續往下閱讀-----

傳統的研究當中,基因標的(target gene)的選擇相當重要,科學家們需要選擇適當的基因,以這些基因在不同來源材料之間的序列(sequence)差異,做為比較的基礎;通常這類基因需要具備「適當的變異,但又不能太有變異」的微妙特性,來符合判斷不同時間尺規(scale)中對親源性分析的要求。

像是利用分子生物學技術鑑定魚種間親緣關係(可能有數千萬年以上的差別)與人類人種之間的研究(數千到數萬年),所選擇用來比較的基因標的就會有所不同。

根據粒線體DNA之群體遺傳學推斷出的早期人類遷徙路線。圖/Chronus @wikipedia

在眾多指標之中,粒線體DNA 是較為人所熟知的一個標的。粒線體是細胞當中的一種胞器(organelles),被認為是古代細菌寄生於細胞後共生的結果,稱作內共生學說(endosymbiotic theory)。

-----廣告,請繼續往下閱讀-----

在高等哺乳動物當中,我們認為子代的粒線體皆源自母親的卵子,故粒線體DNA 可作為母系遺傳的重要指標。在早先的研究中,粒線體DNA的定序與比對數據提供了我們在形塑現代人類起源的概念上相當有利的參考,包括提出「粒線體夏娃(Mitochomdrial Eve)」的概念。

研究表明,目前世界人口中最接近的共同女性先祖,也被稱作是「幸運的母親」為非洲的單一人口,推測存活於距今14~20萬年前。

圖/C. Rottensteiner @wikipedia

相對於先前需要以特定 DNA序列進行分析比對的研究方式,全基因體定序是截然不同的做法。所謂基因體(genome),就是人體所有的遺傳訊息,目前已知是包含有 32 億個鹼基對(base pair,DNA的單位)的龐大資料庫。

-----廣告,請繼續往下閱讀-----

隨著電腦科技的進步與基因定序方法上的演進,針對研究標的進行全基因體定序並比對分析已成為可能,雖然這類研究的成本仍然相當的高(現今約新臺幣 30 萬元/每個人類基因體樣本)。由於並非針對單一與數個基因進行 DNA序列上的比對,全基因體的研究可以避免像是盲人摸象式的狹隘觀點,使得研究的結果更為可信。

這裡所提到有關萬那杜人口來源的相關研究,就是用全基因體定序分析的方式進行。

像這樣的遺傳分析儀使基因組測序的早期工作得以自動化。圖/Mark Pellegrini@wikipedia

發生於距今約2300年的人種改變事件

今(2018)年2月,2 篇學術性論文的發表,分別對萬那杜人種之謎提出新的證據與看法。其中瑞克(David Reich)發表於《當代生物學》(Current biology)的研究當中,特別針對 14 具發現於萬那杜的先祖遺體以及 185 名現居於萬那杜的居民檢體進行全基因體定序以及分析,結果揭露出幾項更為明確的推測。研究團隊認為,最早到達萬那杜的第一批先祖應該是拉匹達文明,在距今約 2900 年前左右到達萬那杜群島。

-----廣告,請繼續往下閱讀-----

但到了距今約 2300 年前,這些遠大洋洲先祖的 DNA 特徵便從現存的遺骨中消失,完全由生活於新幾內亞的種族所取代,這個現象一直到距今約 150 年前的遺骨中均有相同的現象,跟現代萬那杜人的基因體中同時具有 3 種新幾內亞人種特徵以及遠大洋洲人種特性的現象有截然不同的對比。

另一篇近期登載於《自然生態學與演化》(Nature Ecology & Evolution)的文章當中也提出相同的觀察結果。科學家們對於這樣的研究結果進行多種猜測,例如瑞克的研究團隊就認為,由於新幾內亞種族的移入,迫使原本生活餘萬那杜的那些屬於拉匹達文明的先祖們離開了這些島嶼。

圖/Phillip Capper @wikipedia

先祖可能在附近區域進一步與新幾內亞的人種進行通婚,並將語言保留了下來。

這種可能性或許可以從萬那杜人所使用的南島語中發現,其實仍含有新幾內亞種族語言的特徵,例如雙脣顫音的使用,代表兩種文化間的一些交流,不過,這樣的語言特徵並未受到所有語言學家的認同;也有學者認為基因特徵的突然改變可能是一場滅族式的屠殺所造成,首批跨海而來的遠大洋洲先祖在這場種族間的爭鬥中消滅殆盡。

-----廣告,請繼續往下閱讀-----

到底真相為何?依舊是人類學者持續想要解答的問題。更多先祖遺骨的發現與全基因定序研究的投入,或許能針對這個謎團有更進一步的發現。

延伸閱讀

  1. Ewen Callaway, Ancient DNA offers clues to remote Pacific islands’ population, Nature, 2018/3/1.
  2. Lipson et al., Population Turnover in Remote Oceania Shortly after Initial Settlement, Current Biology, Vol. 28:1-9, 2018.

 

〈本文選自《科學月刊》2018年4月號〉

什麼?!你還不知道《科學月刊》,我們48歲囉!

入不惑之年還是可以當個科青

 

-----廣告,請繼續往下閱讀-----
科學月刊_96
249 篇文章 ・ 3695 位粉絲
非營利性質的《科學月刊》創刊於1970年,自創刊以來始終致力於科學普及工作;我們相信,提供一份正確而完整的科學知識,就是回饋給讀者最好的品質保證。