1

6
4

文字

分享

1
6
4

阿茲海默症新藥 Aduhelm ,為阿茲海默治療帶來更多可能?

台灣科技媒體中心_96
・2021/06/22 ・4209字 ・閱讀時間約 8 分鐘

-----廣告,請繼續往下閱讀-----

去年(2020)年底,國際期刊「自然」《Nature》照例羅列了每年 10 大科學關注議題,其中提到「阿茲海默症藥物來到了關鍵時刻」。

今年 6 月 7 日,由美國製藥大廠百健(Biogen)生產的一種藥物「Aducanumab」,經過長期研發與臨床試驗,終於被美國食品藥品監督管理局(FDA)核准,成為阿茲海默症新藥。(未來可能販售的藥名為 Aduhelm)

這款藥物特別之處為何?是否有其他藥物研發方向也值得關注?目前臨床上已有哪些治療阿茲海默的藥物呢?

阿茲海默症的成因

阿茲海默症是一種大腦神經退化的疾病,目前學者認為,引發患者認知功能下降的主因,可能是 β-類澱粉蛋白(amyloid beta, Aβ)在腦中堆積。

阿茲海默症會使患者認知功能下降。圖/ENVATO ELEMENTS

除了主要致病因子 Aβ,阿茲海默症的病因還包括「不正常堆積的 Tau 蛋白」[1],和近來在 30-50% 阿茲海默症病人腦中發現的「TDP-43 蛋白堆積」[2][3]。

此外,阿茲海默症也受家族遺傳、腦內發炎反應[1]、高血糖與高膽固醇等慢性病的影響。

目前治療阿茲海默症的藥物與限制

陽明交通大學腦科學研究中心副教授 鄭菡若中央研究院細胞與個體生物學研究所副研究員 廖永豐說明,目前核准治療阿茲海默症的藥物,主要僅能「減緩部分患者心智功能退化的速度」,但無法阻止或逆轉病程。

-----廣告,請繼續往下閱讀-----

病人在服用阿茲海默症藥物初期,的確可顯著改善認知功能,可是在用藥三到五年後,又會出現認知功能急劇下降的情形。

主要原因是目前 FDA 批准的四種阿茲海默症藥物,都是減輕症狀,無法完全阻斷疾病繼續惡化。

目前治療阿茲海默症的藥物,都只能減輕症狀而無法完全根治。圖/ENVATO ELEMENTS

為了要突破這類藥物的治療瓶頸,各大藥廠及醫學研究單位都正在盡全力開發「改變疾病藥物」(disease-modifying drugs),藉由阻斷「β-類澱粉蛋白質」或「tau蛋白」這類致病因子的神經毒性,避免神經細胞因此而凋亡,達到真正阻斷疾病繼續惡化的機轉,才有機會開發出能治療甚至能夠預防阿茲海默症的藥物。

新藥 Aducanumab 的誕生

百健藥廠在 2016 年的前期臨床試驗發現 Aducanumab 能結合且清除 β-類澱粉蛋白(amyloid beta, Aβ),可能強化腦內微膠質細胞的功能、避免神經發炎,並改善認知功能[4]。後續的成果令人期待。

-----廣告,請繼續往下閱讀-----

中央研究院基因體中心副研究員 陳韻如說明,Aβ 的特性是會累積並從單體聚合成有毒的堆積物,沉積在神經細胞外會造成神經細胞死亡[1]。

Aβ 會累積並從單體聚合成有毒的堆積物,沉積在神經細胞外會造成神經細胞死亡。圖/ENVATO ELEMENTS

過去失敗的 Aβ 抗體藥物,如禮來藥廠(Eli Lilly)的「Solanezumab」,是由小鼠產生針對 Aβ 澱粉蛋白單體的抗體,再用基因工程的方法轉變為人類抗體,在臨床試驗第三期雖然可以降低 Aβ 堆積,但未能顯著改善或延緩病人的認知功能退化[4]。

而 Aducanumab 這款抗體藥物會特別受到青睞,是因為它是直接由健康人的免疫細胞中篩選針對 Aβ 堆積物的抗體而來,與先前由小鼠產生的抗體藥不同,是一株對 Aβ 堆積物有專一性的人類抗體。

廖永豐副研究員也補充,Aducanumab 是過去二、三十年來阿茲海默症藥物開發的歷程中,第一次有藥物能直接顯著的改善受測者的心智功能[5],而且改善的程度與腦中β-類澱粉蛋白沈積物下降的幅度成正相關,代表 Aducanumab 的療效是藉由清除腦中類澱粉蛋白沈積物所達成的。

-----廣告,請繼續往下閱讀-----
Aducanumab 是過去二、三十年來,第一次有藥物能直接顯著的改善受測者的心智功能。圖/ENVATO ELEMENTS

這結果也同時支持「β-類澱粉蛋白」的確在阿茲海默症的致病機轉中扮演一個非常重要的角色。

Aducanumab 峰迴路轉的臨床試驗結果

Aducanumab 臨床試驗第一期結果是,給藥組顯示出前所未見的、改善認知功能退化的效果。然而後來的臨床試驗第三期卻因看不出顯著改善而一度停止。

百健藥廠在 2016 年發表了 Aducanumab 於 164 例阿茲海默輕症患者的臨床研究,指出依投藥時間與劑量的多寡,Aducanumab 能減少患者腦中β-類澱粉蛋白並改善認知功能[4]。

Aducanumab 第一期的臨床試驗結果,曾對認知功能出現前所未見的改善效果。圖/ENVATO ELEMENTS

之後 78 週的臨床第三期期試驗中,分為 EMERGE 與 ENGAGE 兩組,2019 年初,因獨立監管委員會的期中分析評估認為可能無法達到主要臨床指標[6],百健宣布停止試驗。

-----廣告,請繼續往下閱讀-----

然而同年十月因為加入更多數據,百健指出 EMERGE 組接受高劑量 Aducanumab 的患者,認知能力比接受安慰劑者好[7]。雖然 Aducanumab 在 ENGAGE 組整體中沒有顯著的改善效果,但採最高 Aducanumab 劑量時,對 ApoE4 基因型的阿茲海默輕症患者有療效,他們的認知能力比接受安慰劑的好[8]。

因此,目前 Aducanumab 已被加速批准用於治療阿茲海默症引起的「輕度認知障礙」及「早期失智症」,但日後仍需進行第四期臨床試驗,證明其臨床成效。

圖/Aducanumab

新藥為阿茲海默治療帶來更多可能

由於阿茲海默症的致病機轉複雜,不同藥物的作用機轉皆不相同,鄭菡若副教授認為,未來若有多種藥物通過許可,可能會採取合併療法。

中研院副研究員陳韻如也補充,加上每個病理特徵可能在不同的年紀出現[9],將來的藥物可能無法只控制單一因子,必須朝多目標研發藥物,未來治療方向亦需將病人細分成不同的階段及種類,全方面依病人基因型[10]及病理特徵來考慮調控的方法。

廖永豐副研究員根據 Jeffrey Cummings 及幾位在克利夫蘭臨床醫學研究中心(Cleveland Clinic)的阿茲海默症專家合著的一篇論文中指出,從臨床試驗註冊網站 ClinicalTrials.gov 截至 2020 年 2 月 27 日止的統計資料顯示,目前仍然有 121 種阿茲海默症的候選藥物在人體臨床試驗的階段[11]。

-----廣告,請繼續往下閱讀-----
目前仍有多種阿茲海默症的藥物正在開發當中。圖/ENVATO ELEMENTS

有 17 種屬於緩解病程的藥物已進入到臨床試驗的第三期,其中占大宗的是屬於抑制 β-類澱粉蛋白毒性的藥物,有 6 種。其它 11 種不同藥理機轉的藥物也已順利進入第三期試驗,代表抗 Tau 蛋白[12] 沈積的藥物、抗神經發炎反應的藥物、提升能量代謝活性的藥物、以及活化神經傳導提供神經保護效果的藥物,都將有機會在未來五年內被證實對阿茲海默症的療效。

若分析臨床第一、第二期試驗階段的藥物之藥理機轉,的確可看出過去五年來開發阿茲海默症藥物的重點已從抑制 β-類澱粉蛋白神經毒性,轉移到其它致病機轉上,這些非 β-類澱粉蛋白致病機轉的藥物已占近八成的比例。

這個趨勢也反映,近年來轉譯醫學及臨床研究對阿茲海默症致病機轉的結論,都指向 Tau 蛋白沈積的神經毒性、異常的神經發炎反應、能量代謝的失恆、以及神經傳導的缺陷,可能在阿茲海默症致病機轉的不同階段,與 β-類澱粉蛋白的神經毒性以協同作用或獨立作用,加速阿茲海默症的病程。

所以持續開發這些「非 β-類澱粉蛋白致病機轉」的藥物,將可能達到阿茲海默症個人化精準醫療的目標。

-----廣告,請繼續往下閱讀-----

回過頭來,Aducanumab 開發成功的經驗,也帶動了各大藥廠持續投注可觀的資源,繼續推動阿茲海默症新藥研發。

近期也終於有其它成功的臨床試驗結果,包括羅氏藥廠(Roche)的「Gantenerumab」及衛采藥廠(Eisai)的「BAN2401」,兩個抗體藥物都可以有效減低阿茲海默症輕症患者或無症狀者腦部β-類澱粉蛋白沈積物的堆積量。

這也說明 Aducanumab 在阿茲海默症藥物開發的歷史意義,可以審慎樂觀地期望未來阿茲海默症藥物開發的前景,也可實質鼓舞阿茲海默症患者及照護者。

圖/ENVATO ELEMENTS

註釋

其它參考文獻

-----廣告,請繼續往下閱讀-----
  • Alzheimer’s Disease International. (2021).“About Alzheimer’s & Dementia.”Retreval Date: 2021/2/5
  • Sevigny, J. et al. (2016). “The antibody aducanumab reduces Aβ plaques in Alzheimer’s disease.Nature537(7618), 50-56.
  • Long, J. M., & Holtzman, D. M. (2019). Alzheimer disease: an update on pathobiology and treatment strategies. Cell179(2), 312-339.
  • Linse, Sara, et al. (2020). Kinetic fingerprints differentiate the mechanisms of action of anti-Aβ antibodies. Nature Structural & Molecular Biology27(12), 1125-1133.
  • Uhlmann, Ruth E., et al. (2020). Acute targeting of pre-amyloid seeds in transgenic mice reduces Alzheimer-like pathology later in life. Nature Neuroscience23(12), 1580-1588.

相關資料

  1. Holly Else (2020). “The science events to watch for in 2021Nature News, December 22.
  2. 陳祈典(2020)〈阿茲海默症新藥前景未卜〉,工商時報,11月30日。
  3. Aducanumab 前期試驗報告:Sevigny, Jeff, et al. (2016).“The antibody aducanumab reduces Aβ plaques in Alzheimer’s disease. ”Nature, 7618: 50-56.
  4. Aducanumab 試驗第三期分為 Emerge Engage 兩組,分別招募了 1,600 位 50 歲至 85 歲的患者,與對照組比較靜脈注射低、高劑量 Aducanumab 的結果。
文章難易度
所有討論 1
台灣科技媒體中心_96
46 篇文章 ・ 327 位粉絲
台灣科技媒體中心希望架構一個具跨領域溝通性質的科學新聞平台,提供正確的科學新聞素材與科學新聞專題探討。

1

8
3

文字

分享

1
8
3
阿茲海默症靠吃藥效果有限?關鍵基因找到了!
PanSci_96
・2023/08/13 ・5061字 ・閱讀時間約 10 分鐘

你身邊有人罹患失智症嗎?失智症和其他破壞身體的疾病很不一樣,它攻陷和摧毀心智,使我們最愛的人變成陌生人。其中,有六到七成的失智症患者都患有阿茲海默症,2023 年 5 月,對抗阿茲海默症的護腦基因研究出爐,有機會打破幾乎束手無策的現狀,催生出治病的新藥和新策略。而且,這是 6000 人、跨越 30 多年用他們的人生教給我們的一堂課。

為什麼整個世紀阿茲海默症都沒藥醫?

1906年德國一位醫師阿茲海默(Alois Alzheimer)發表一個病例,這名女性患者在生前接受治療的期間答非所問、時間感混亂,也不知道自己身在何處,這種導致大腦病變的疾病後來就稱為阿茲海默症(Alzheimer’s disease)。

這位病患過世後,阿茲海默醫師解剖她的大腦,發現腦部嚴重萎縮,而且腦組織的切片經過銀染色後,可以看到布滿許多斑塊,神經細胞也扭曲變形,這兩種腦部的變化到現在還是診斷阿茲海默症的重要依據。

後來的科學家接棒研究,檢驗出這些斑塊是由一類叫做類澱粉蛋白質(amyloids)的不可溶蛋白質所形成,這些蛋白質會沉澱在神經細胞外面,部分研究者猜想這些斑塊或許是導致神經細胞活性衰減或死亡的兇手。而這些異常蛋白質跟食物裡的澱粉沒有關係,只是因為染色以後看起來和澱粉染色類似,澱粉的拉丁語是 amylum,所以早期的科學家就把它叫做類澱粉蛋白質 amyloid,一直延用到今天。

-----廣告,請繼續往下閱讀-----
異常蛋白質染色以後看起來和澱粉染色類似。圖/PanSci YouTube

神經細胞的扭曲變形則是因為神經細胞裡面冒出了大量的 Tau 蛋白質,這種蛋白質會在細胞內部聚集成雜亂糾結的纖維狀結構,也可能因此造成神經細胞沒辦法正常運作。

抓到大腦異狀的可疑元凶了,離找到解藥就不遠了吧?沒想到焦急的病患和家人們這一等,就等了快要 90 年。

第一個阿茲海默症的藥一直到 1993 年才推出,而且只能延緩心智瓦解的速度,沒辦法逆轉病程。1993 到 2003 年之間,一共有 5 種藥上市,其中 4 種的功效是提高神經傳導物質乙醯膽鹼的濃度,使神經訊號能順利傳送;另一種藥作用在神經細胞膜上的 NMDA 受體(N-methyl-D-aspartate receptor),這種受體分布在腦部多個區域,可以接收神經訊號,和認知學習有關。打個比方,這些藥都像是給瀕臨油盡燈枯的腦神經細胞打強心針,再盡可能多傳遞一些訊號,只能暫時減輕症狀,沒辦法解除病因。

目前全球失智症患者估計已經超過五千五百萬人,估計 2050 年時會膨脹到將近一億四千萬人;臺灣更是現在進行式,推估 80 歲以上每 5 個人就有 1 個人失智。一個影響如此之大的疾病,卻只有少得可憐的解方。綜觀整部醫療史,這種山窮水盡的情況其實很少見,其他的病再怎樣難纏,或多或少總可以想出一些辦法,就算是萬病之王癌症,人類還是不斷做出新藥、新療法,不會落到這種兩手一攤無計可施的地步。

-----廣告,請繼續往下閱讀-----
臺灣五歲分年齡層失智症盛行率。圖/台灣失智症協會

2003 年以後又是一大段空白,到了 2021 年——距離發現阿茲海默症已經有 115 年之久——終於有新藥 Aducanumab 問世,它是第一種直接針對可能病因的藥物,鎖定的目標是清除類澱粉蛋白質。

爭議藥物強行通關,FDA委員憤而辭職

然而這款藥飽受爭議。大致來說,它最大的問題是雖然能減少類澱粉斑塊,但是只有部分受試患者的認知功能稍有改善。當時美國食品及藥物管理局(FDA)諮詢委員會的 11 名委員中 1 人棄權、10 個人投下反對票,可見得專家並不認同這款藥達到上市標準,但是 FDA 還是在病患人數多、有迫切醫療需求等等考量下強行核准過關。事後陸續有 3 名專家憤而辭職,掀起醫界不小的波瀾。

2023 年 1 月,第二種新藥 Lecanemab 推出,治療過程中可以把認知功能退化速度減少約四分之一;5 月上旬,第三種藥 Donanemab 公布第三期人體臨床試驗結果,減少認知退化速度約三分之一。兩種藥也都針對類澱粉斑塊,療效比第一種藥 Aducanumab 好了不少,但是使用上有限制,例如 Lecanemab 建議在疾病早期使用,效果可能比較好,然而很多阿茲海默症患者確診時已經是中晚期。兩種藥也有副作用,例如用藥後部分患者發生腦水腫或腦出血。

換句話說,現在寥寥無幾的藥都還有無法忽視的缺陷。找藥已經找到焦頭爛額的科學家,靈光一閃,另闢蹊徑從基因下手。而且,真的在陰霾中找到了一線亮光。

-----廣告,請繼續往下閱讀-----

害腦基因 VS. 護腦基因,腦部小宇宙裡的戰爭

過去兩三個世代的科學家費盡心思,上山下海去搜索和阿茲海默症罹病風險相關的基因,他們決定直球對決:想辦法抑制或清除掉致病基因產生的壞東西,大腦自然就沒事了。

比如說,第一型早老素(PSEN1)、第二型早老素(PSEN2),以及 APOE 脂蛋白(Apolipoprotein E)基因等等。早老素顧名思義,被認為和腦神經功能衰退相關;APOE 則是和人體代謝膽固醇及三酸甘油酯有關,也會影響腦部類澱粉蛋白質的沉積過程。

有會傷害大腦的基因,那有沒有能保護大腦的基因呢?

但是也有科學家偏要和別人逆向,他們問的問題很簡單:既然有會毒害大腦的基因,那有沒有能保護大腦的基因呢?他們認為,只要弄清楚這些基因是用什麼方式為腦細胞穿上金鐘罩鐵布衫,人類就可以效仿了。

但是這種研究非常困難。原因是如果要找壞基因,可以藉由比對病人和健康人的 DNA,先勾勒出一個模糊的輪廓。就好像拿癌細胞和健康細胞來互相比較,可以挖到深埋在 DNA 裡的致癌基因。但是要找護腦基因,卻沒有對照組可以當成參考的基準點。也因為這個主要障礙,這類研究推進得相當龜速。

-----廣告,請繼續往下閱讀-----

為什麼沒有對照組呢?因為最理想的受測者必須滿足三項條件。第一,他體內要攜帶能保護腦的基因,雖然科學家這時候還不知道這些基因是什麼;第二,他同時也帶有會傷害腦的基因;還有關鍵的第三點,那就是要可以觀察到護腦基因發功,壓過傷腦基因的破壞力道。

天啊,這也太困難了!不過科學家找到了理想的試驗對象,或許更精確的形容詞是,終於讓他們「等」到了。

尋找阿茲海默症致病基因——阿茲海默症家族

在南美洲哥倫比亞,有一個被早發型阿茲海默症魔咒纏身的大家族,人數約有 6 千人,其中許多人通常在 40 到 50 歲間就發病,遠比一般人早,病情惡化速度也更快。科學家追蹤這個家族 30 多年,鑑別出和腦部退化相關的多個遺傳因素。

2023 年 5 月,研究團隊在《Nature Medicine》發表成果,他們分析了大約一千兩百位帶有早發型致病基因的家族成員,從中找到一名特殊個案,這個男性首次接受認知功能測試的時候是 67 歲,已經超過發病年齡中位數 20 多年,但是卻只有輕度的認知障礙,沒有惡化成失智。

-----廣告,請繼續往下閱讀-----

之後,科學家掃描這個人的大腦,發現腦部堆積大量的類澱粉斑塊,還有 Tau 蛋白質造成的神經細胞纖維糾結,簡單來說,他的大腦就像一個嚴重失智病人的腦。不過,其中有一塊名叫內嗅皮質(entorhinal cortex)的腦區,只有少少的 Tau 蛋白質。

內嗅皮質緊貼著掌管記憶形成過程的海馬迴(hippocampus),它的角色有點像海馬迴的守門人,能把遠處腦區傳來的電訊號接力送進海馬迴,先前已知內嗅皮質和記憶及空間定位能力有關。

2014 年諾貝爾生醫獎得主歐基輔和穆瑟夫婦,因為發現動物利用腦中一組排列成六角形網格狀的特殊細胞來記住地圖和認路,因而獲得殊榮,網格細胞就是位在內嗅皮質。阿茲海默症患者的內嗅皮質通常在疾病早期就遭到破壞,因此導致頻繁迷路、出得了門回不了家的症狀。或許我們該幫索隆檢查一下內嗅皮質?

常常迷路的索隆。圖/tenor

研究團隊進一步分析這個男性的基因,發現他有一個稱為 RELN 的基因發生突變。RELN 基因已知和思覺失調症、躁鬱症等腦部變化有關聯,但科學家以往對這個基因和阿茲海默症的關聯了解得不多。

-----廣告,請繼續往下閱讀-----

RELN 基因和阿茲海默症的關聯

為了瞭解這種突變會觸發什麼後續效果,研究者改造小鼠的基因,試驗結果發現,突變 RELN 基因轉譯出來的蛋白質,會促使 Tau 蛋白質發生化學修飾,降低了某些腦區裡 Tau 蛋白質聚集形成纖維糾結的能力。

這項研究其實是史上第二例基因突變大幅延緩早發型阿茲海默症病程的報告,第一例是同一個家族的一位女性,2019 年發表在《Nature Medicine》,她比同家族人晚了將近 30 年才發病,不過她發生突變的地方是在 APOE 基因,突變後 APOE 脂蛋白的致病力減弱,比較難以造成腦部病變。

阿茲海默的新假設與新挑戰

這兩份研究報告帶出了一個假設,以及一個挑戰。新的假設是,用人為方式加強 RELN 的護腦效果,或是削弱 APOE 的傷腦能力,對於開發新藥和新療法來說可能是更好的目標。

不過,持平來說,目前這類護腦基因突變僅僅發現兩例,還太少了,只能用試驗結果建立假說,也不能確定是不是適用於所有患者,必須累積更多調查和試驗數據才能判斷。

-----廣告,請繼續往下閱讀-----

提出的新挑戰則是,現在 FDA 核准的藥物都是鎖定類澱粉蛋白質為目標,還有一大堆同類的藥正在燒鈔票試驗中,但是新研究對於類澱粉斑塊致病假說是一記強而有力的警鐘。或許 Tau 蛋白質的角色一直被誤解了,它才是真正的幕後黑手?又或許根本不需要保護整個腦,只要想辦法保住關鍵腦區或必要的神經元通道,就可以對抗阿茲海默症?這些問題都是接下來研究的重點。

腦真的是類澱粉蛋白質殺的?阿茲海默症研究風向轉變中

類澱粉蛋白質是主要致病元兇的說法在近幾年已經受到不少質疑。原因有好幾個,概略來說,主因是科學家陸陸續續看到一些當事人大腦裡有類澱粉斑塊沉積,但是心智沒有明顯受影響的案例;還有,長久以來全球許多研究團隊把類澱粉蛋白質當作開發藥物的目標,結果失敗率幾乎是 100%,也讓人對這個假說起疑。

就在 2022 年,阿茲海默症醫療史上一樁惡名昭彰的醜聞爆發,更把致病原因的爭議推上最高點。

事件導火線是一位神經科學家揭露 2006 年發表在《Nature》的一篇阿茲海默症經典論文涉嫌造假,這篇報告以及它後續的研究,提出某個類型的類澱粉蛋白質可能導致阿茲海默症的看法。2022 年 7 月《Science》刊出長篇報導,指出科學界調查認為有數百張論文圖片疑似有問題。

2006 年發表在《Nature》的一篇阿茲海默症經典論文涉嫌造假,調查認為有數百張論文圖片疑似有問題。圖/PanSci YouTube

這把火最直接燒出來的問題是,會不會整整十六年來大家都被誤導了?白白浪費了大批科學家的時間,連帶燒掉幾千萬甚至幾億美元。這裡我們沒辦法再多講細節,如果你想更詳細瞭解這場「阿茲海默之亂」和後續影響,想知道研發阿茲海默藥物的百年崎嶇路和未來進程的更多新知,或是想跟上失智症的其他最新研究,歡迎加入我們的頻道會員來投票喔!

不過,這並不是說類澱粉斑塊假說就此被一竿子打翻,畢竟很多患者大腦有明確的斑塊沉積是事實,而且醜聞裡牽涉到的只是類澱粉蛋白質之中的特定類型;再加上 2023 年針對類澱粉斑塊的 Lecanemab 和 Donanemab 兩款新藥的確有療效,也是有力的佐證。

目前生物醫學界的看法,逐漸轉向認為阿茲海默症很可能不是單一種疾病,而是應該再切分出多種亞型,類澱粉蛋白質斑塊是部分患者的病因但不是全部。打個比方,就好像同樣是肺癌,按照基因差異和疾病進程不同,醫師和科學家可以把患者再分成多個小群,每一群都有相對更適合的療法。

阿茲海默症很可能不是單一種疾病,而是應該再切分出多種亞型。圖/PanSci YouTube

舉例來說,前面說到的從阿茲海默症家族發現的傷腦和護腦基因,以及關鍵腦區有沒有受損,或許就有機會成為打開分型治療之門的幾把鑰匙。

如果這個多亞型的新觀點成立的話,那麼要怎麼樣為患者分型?有哪些生物標記可以用?每種亞型要怎麼治療?這些一連串問題勢必會變成接下來研究的重點,我們也可以想像得到,阿茲海默症的醫療即將出現百花齊放的局面,不過呢,這又是另一個故事了。如果你身邊有人也對這個議題好奇,歡迎分享給他,如果你就是阿茲海默症的患者跟照顧者,在此跟你說聲辛苦了。

歡迎訂閱 Pansci Youtube 頻道 獲取更多深入淺出的科學知識!

所有討論 1
PanSci_96
1219 篇文章 ・ 2197 位粉絲
PanSci的編輯部帳號,會發自產內容跟各種消息喔。

0

2
1

文字

分享

0
2
1
精神個案系列:以生酮飲食對抗阿茲海默症
胡中行_96
・2023/07/03 ・2704字 ・閱讀時間約 5 分鐘

警告:本文僅介紹單一個案,並非大型臨床試驗結果。基於個人體質差異,讀者若欲仿效,請先諮詢醫師。

她能講不到 3 個音節的字彙,自己如廁、洗澡、挑選衣服,並執行簡單的家務。這名罹患唐氏症(Down syndrome)的美國女子,會照顧家裡休閒農場的動物,清理馬房。通常 5 小時以下的行動,就是沒人督導,也不出亂子。[1]

縱軸為個案的體重(英磅)與 BMI;橫軸是年月。每日碳水化合物攝取量:橙色<100g;黃綠色<75g;草綠色<20g。圖/參考資料 1,Figure 1a(CC BY 4.0)

原始人飲食

2014 年的時候,39 歲的女子身體質量指數(BMI)高達 46.7 kg/m2[1]嚴重超過正常範圍 18.5-24.9。[2]家人擔心她過度肥胖,母親於是開始為她準備原始人飲食的餐點:每日攝取碳水化合物不及 100 公克,限用未加工的食材,並將碳水化合物、蛋白質、脂肪和卡路里的總量,記錄在手機軟體裡,以便追蹤。[1]

身體質量指數(Body Mass Index)的計算公式:[2]
BMI = 體重(公斤)÷ 身高2(米2

原始人飲食(paleo diet)的設計,假定人體不適合舊石器時代(Paleolithic Era)以後的食物類型,因此只吃採集和狩獵可得的食材。這涵蓋蔬果、瘦肉、魚肉、雞蛋與堅果;卻避免穀類、豆類、乳製品,以及加工食品等,容易有營養不均的風險。此假說的前提跟考古學的發現牴觸,畢竟在進入農耕社會前,人類已經會食用野生穀物。另外,從演化的角度來說,舊石器時代以降,人類關於消化榖類澱粉和乳糖的基因表現,其實早有改變。[3]

阿茲海默症

女子於 2016 年,也就是 41 歲時,出現記憶力衰退、焦慮、恐懼等症狀,還有強迫行為。她獨自出門,便回不來;重複穿同套衣服,討厭變化;害怕蓮蓬頭的水,而拒絕淋浴。整天待在家裡,時常疲倦,每天得小睡個一、二次。[1]

-----廣告,請繼續往下閱讀-----

相較於一般人口,阿茲海默症(Alzheimer’s disease)在唐氏症患者中更為普遍,發病的年紀也較早。其與肥胖所致的第二型糖尿病(type 2 diabetes),關係密不可分。關鍵的類澱粉蛋白(amyloid),不僅累積在患者腦部,也沉澱於胰臟。此外,腦部的胰島素訊號和對葡萄糖的運用,都會失常。[1]

不過,2018 年當家庭醫師將女子轉診給失智醫療中心,檢查不光排除甲狀腺異常、維他命 D 和 B12 不足等,可能導致痴呆症狀的因素;也確定她沒有未治療的糖尿病。然後開始投予對焦慮和強迫行為有效的 paroxetine、抵抗阿茲海默症的 memantine,還有須要鎮靜時才服用的 alprazolam。[1, 4-6]

失神性癲癇

2014 到 2020 年間,女子靠著原始人飲食,將 BMI 減到 27.2 kg/m2,但是認知功能等方面持續惡化。她不時眼神呆滯,手腳抽搐,膀胱失禁。施以抗癲癇藥物 lamotrigine 後,這種失神性癲癇(absence seizures)發作的頻率,降至每週 6 到 10次。[1]

2021 年 1 月,碳水化合物攝取量,已經低到每日 75 公克以下,BMI 則落至 24.8 kg/m2。然而女子的精神狀態每況愈下:不僅連隔著桌子遞東西,都要聽指令才做得到;還會從垃圾中挖生肉吃。她白天接受日間照護,無時無刻要人緊盯。[1]

是年 12 月,滿分 78 分的阿茲海默症合作研究–日常生活活動量表(ADCS-ADL),女子只拿到 34 分,表示嚴重失能。她成天穿著尿布,盥洗、如廁都需要協助。此時除了仰賴日間照護、社工服務、照顧者互助會,以及包括老年科醫師在內的記憶治療團隊等資源;她的居家環境也跟著調整:碗櫥、冰箱和垃圾桶都上鎖,以防亂翻;房間裝嬰兒監視器,好觀測睡眠;並在出入口設置感應門鈴,免得她無預警離家而走失。同時,她一週服用數次鎮靜劑 alprazolam,以舒緩焦慮。[1]

-----廣告,請繼續往下閱讀-----

生酮飲食

2022年1月,女子的母親為自身健康,嘗試生酮飲食,後來也拉女兒加入行列。[1]

生酮飲食(ketogenic diet)是Russel Wilder醫師於1921年,發明來對抗癲癇的飲食療法。其營養攝取的比例:脂肪佔55%到60%;蛋白質30%至35%;碳水化合物則介在5%到10%之間。以每天所需的2,000大卡來說,本是主要能量來源的碳水化合物,僅剩20到50公克。此時胰島素分泌下降,身體不得不進入分解代謝(又稱異化代謝;catabolism)的狀態,消耗備用的肝醣,以獲取熱量。如果情況持續,再來就會被迫進行下列兩個作用:[7]

  • 醣質新生(gluconeogenesis):主要在肝臟內,將乳酸甘油,以及丙胺酸(alanine)和麩醯胺酸(glutamine)這兩種胺基酸,轉化為葡萄糖。若能量還是不夠用,便會推動酮體生成。[7]
  • 酮體生成(ketogenesis):在此過程中,脂肪被分解成脂肪酸,又代謝成乙醯乙酸酯(acetoacetate),然後變為β-羥基丁酸(beta-hydroxybutyrate)和丙酮(acetone),這兩種酮體。[7]

生酮飲食的目的,是在營養性生酮(nutritional ketosis)的狀態下,以酮體取代葡萄糖,供應身體能量;同時小心防範酮體濃度超標,以免影響血液的酸鹼值,造成致命性的酮酸中毒(ketoacidosis)。[7]

女子母親所參加的生酮飲食團體,由醫師領導,成員每天透過指尖採血,監測血清中酮體的濃度。在諮詢過女子的醫師群後,母親將其飲食中的碳水化合物,縮減為不到 20 公克;脂肪增加至總熱量的 70%-80%;並控制血清酮體濃度於 0.8 至 3.0 mmol/L 之間。很快地,效果便出現了。[1]

個案歷年的體型變化。圖/參考資料 1,Figure 1b(CC BY 4.0)

生酮飲食的利弊

女子的癲癇和尿失禁,在 2 週內痊癒。到了第 3 週,她破天荒地講出「understand(理解)」,這個長達 3 個音節的英文字彙。不到 1 個月,所有精神症狀全數消失,獨立外出和照顧動物的能力也都恢復了。半年後,女子的 BMI 為 22.5 kg/m2,屬於正常範圍;而阿茲海默症的診斷,也就此解除。[1]

-----廣告,請繼續往下閱讀-----

報導此個案的作者,指出生酮飲食除了改善癲癇,還讓酮體成為腦部運作的替代性能量,因此促進了女子的認知功能。[1]不過,論文沒有提及,女子是否曾有想吐頭疼疲憊暈眩失眠便秘等短期副作用;而長期下來會不會產生肝臟脂肪變性(hepatic steatosis)、低蛋白血症(hypoproteinemia)、腎結石,以及維生素與礦物質缺乏,亦有待觀察。[7]

  

參考資料

  1. Bosworth A, Loh V, Stranahan BN, et al. (2023) ‘Case report: Ketogenic diet acutely improves cognitive function in patient with Down syndrome and Alzheimer’s disease’. Frontiers in Psychiatry, 13:1085512.
  2. Assessing Your Weight’. (03 JUN 2022) U.S. Centers for Disease Control and Prevention.
  3. Paleo diet: What is it and why is it so popular?’. (20 OCT 2022) Mayo Clinic, U.S.
  4. U.S. National Library of Medicine. (15 JAN 2022) ‘Paroxetine’. MedlinePlus.
  5. Kuns B, Rosani A, Varghese D. (11 JUL 2022) ‘Memantine’. In: StatPearls. Treasure Island (FL): StatPearls Publishing.
  6. George TT, Tripp J. (24 APR 2023) ‘Alprazolam’. In: StatPearls. Treasure Island (FL): StatPearls Publishing.
  7. Masood W, Annamaraju P, Uppaluri KR. (11 JUN 2022) ‘Ketogenic Diet’. In: StatPearls. Treasure Island (FL): StatPearls Publishing.
胡中行_96
169 篇文章 ・ 65 位粉絲
曾任澳洲臨床試驗研究護理師,以及臺、澳劇場工作者。 西澳大學護理碩士、國立台北藝術大學戲劇學士(主修編劇)。邀稿請洽臉書「荒誕遊牧」,謝謝。

0

15
2

文字

分享

0
15
2
大腦與骨骼的關係,比我們想像的還要深?!阿茲海默症最新病因假說
Y.L._96
・2023/06/12 ・2803字 ・閱讀時間約 5 分鐘

-----廣告,請繼續往下閱讀-----

本文翻自<Astrocyte Dysregulation and Calcium Ion Imbalance May Link the Development of Osteoporosis and Alzheimer’s Disease>一文

蔡依良 撰

加拿大的研究報告中指出,阿茲海默症患者罹患骨質疏鬆症和骨折發生率是同年齡神經正常成人的兩倍多 [1]。一項為期兩年的縱向研究也表明,與非失智症的患者相比,阿茲海默症患者的骨骼密度流失的更多 [2]。目前已有少量的實證證據,證明了阿茲海默症的神經病理生理學特徵可能導致骨質流失 [3, 4]。藥物方面,也有報告指出使用鈣離子通道阻滯劑和用於治療骨質疏鬆症的雙磷酸鹽類藥物,可以有效地緩解阿茲海默症的症狀。

為什麼骨質疏鬆與阿茲海默症會有關係呢?這就要從阿茲海默症是什麼開始說起。

阿茲海默症是五種失智症的一種

我們所說的阿茲海默症,只是失智症的其中一種。失智症主要可分為五大類型:路易氏體失智症、額顳葉失智症、血管型失智症、混合性癡呆,以及阿茲海默症。其中阿茲海默症為最常見的失智症,它是一種與年齡相關,認知能力下降的退化性疾病,包括記憶力改變和定向能力下降。

在阿茲海默症的病程中,有高達 70-80% 的患者會表現出非認知症狀,這會導致患者煩躁不安,表現妄想、抑鬱、幻覺、錯誤識別、睡眠障礙、冷漠、攻擊性、進食障礙、不適當的性行為或徘徊。

-----廣告,請繼續往下閱讀-----
70-80% 的患者會表現出非認知症狀。圖/envatoelements

因此我們有必要先強調,這些研究都只說明了其中一種失智症類型——阿茲海默症,與骨質疏鬆有關,不是所有失智症都跟骨質疏鬆有關係。

為什麼阿茲海默症會跟骨質疏鬆扯上關係?

在病理學上,阿茲海默症患者的典型症狀是澱粉樣蛋白-β (Aβ) 斑塊和 tau 過度磷酸化。然而,最近的研究表明,這些症狀並不是疾病的原因,而是發病後產生的。與其他類型的失智症相比,阿茲海默症具有明顯的松果體鈣化及體積縮小,和褪黑激素分泌減少的特徵。

而這幾個跟「松果體」有關的特徵,跟阿茲海默與骨質疏鬆症有密不可分的關係。

松果體是什麼?

松果體位於腦部中央的上視丘,介於兩個腦半球之間,藏在丘腦兩半連接處的凹槽中。是一個對光敏感的小型神經內分泌器官,透過眼球接受光的信息,調整褪黑激素的分泌量,進而控制動物的睡眠時間。它具有高度血管化的構造,不依賴血腦屏障(BBB)所提供的保護。由星狀膠質細胞、小膠質細胞、內皮細胞和釋放褪黑激素的松果體細胞所組成的器官。

-----廣告,請繼續往下閱讀-----

松果體的分泌能力與其體積大小成正比。因此當羥基磷灰石逐漸沉積在松果體形成鈣化時,成為我們俗稱的「腦砂」,勢必將減少褪黑激素的產生。這就是上面提到的「阿茲海默症具有明顯的松果體鈣化及體積縮小,和褪黑激素分泌減少」。

松果體鈣化是導致阿茲海夢症的特徵之一。圖/envatoelements

褪黑激素與骨細胞增殖有關

有趣的是,褪黑激素除了與腦的關聯外,其他研究還發現使用褪黑激素可增加正常人的骨細胞和成骨細胞的增殖。這即是一開始研究所說的「阿茲海默症與骨質疏鬆症有關係」的原因之一。

為什麼是之一呢?因為不只在褪黑激素上,找到阿茲海默症和骨質疏鬆症二種疾病的關聯性,也在其他骨鈣代謝激素,像是:腦雌激素、甲狀旁腺素、維生素 D3、降鈣素、骨鈣素…等,也都有研究找出該激素與兩種疾病之間的關聯性。

骨質疏鬆症。圖/envatoelements

骨鈣代謝激素對阿茲海默症的影響

腦雌激素由星狀膠質細胞合成,具有神經保護的功能,維生素 D3 除了可以保護骨骼,同時也是一種神經類固醇激素,在大腦中扮演保護和調節作用。Hana 等人研究則是發現「降鈣素基因相關肽拮抗劑(CGRP)」,具有成骨和維持骨穩態的作用,可能成為延緩人類認知衰退的治療靶點 [5]。

-----廣告,請繼續往下閱讀-----

還有,成骨細胞衍生的骨鈣素,發現可以改善與年齡相關的認知衰退、預防抑鬱和焦慮,以及減少星形膠質細胞和小膠質細胞的增殖。綜合上述,我們可以得知阿茲海默症和骨質疏鬆症之間,確實存在著某種相關性。

阿茲海默症與骨質疏鬆有關的可能原因

雖然有不少研究支持阿茲海默症與骨質疏鬆有關聯性,但兩者的因果關係,尚未有統一答案,不過,我們可以藉由以下幾點推測可能原因:

一、松果體中的星狀膠質細胞對鈣離子平衡作用

星形膠質細胞為組成松果體的重要細胞之一,它的功能有維持鈣離子濃度平衡,提供神經細胞營養,並可在體內遷移。鈣離子是人類重要的神經傳遞物質之一,一旦被觸發,星形膠質細胞之間就會形成鈣波,激活其他星形膠質細胞傳遞信息。

二、調節骨頭生長的骨細胞為星狀型態細胞

人體大多數的鈣質儲存在骨骼中,以維持一生的鈣穩態。骨組織主要由骨細胞、成骨細胞和蝕骨細胞組成。在骨重塑當中,成骨細胞是生成骨頭的細胞,蝕骨細胞則是分解骨頭的細胞,而骨細胞是調節蝕骨細胞和成骨細胞活性的星狀型態細胞。在成熟的骨骼中,骨細胞是數量最多的細胞類型,有著與生命體本身一樣長的壽命。

-----廣告,請繼續往下閱讀-----

雖然骨細胞的並非星形膠質細胞,但無論在形態或功能上,都有相似之處,同樣為星形,也都與鈣離子濃度的調節有關,只是松果體內的星狀細胞是直接調整鈣離子,骨細胞是藉由控制成骨與蝕骨細胞,來影響周圍鈣離子濃度。為了方便起見,我們假設骨細胞是星形膠質細胞的一種,而松果體主要也是由星形膠質細胞組成。

骨質疏鬆導致鈣離子被釋放到血液中,從而促進松果體鈣化。圖/envatoelements

在鈣波的影響下,那麼當蝕骨細胞有較高的細胞活性,加上星形膠質細胞逐漸失去功能時,鈣將從骨骼中逐漸流失,從而引發骨質疏鬆症。隨後被釋放到血液中的鈣離子可能在松果體中蓄積並導致異位鈣化,從而促進阿茲海默症的發生。

最後值得我們進一步思考的是,長期的慢性發炎時常伴隨著鈣化現象的發生。如果我們常常半夜不睡覺,或在睡前接收大量的光線刺激。長期不正常的光週期是否會導致松果體慢性發炎,誘發松果體鈣化增加罹患阿茲海默症的風險呢?

參考資料

  1. Weller I I. The relation between hip fracture and Alzheimer’s disease in the canadian national population health survey health institutions data, 1994-1995. A cross-sectional study. Ann Epidemiol. 2000;10(7):461. doi:10.1016/s1047-2797(00)00085-5
  2. Loskutova N, Watts AS, Burns JM. The cause-effect relationship between bone loss and Alzheimer’s disease using statistical modeling. Med Hypotheses. 2019;122:92-97. doi:10.1016/j.mehy.2018.10.024
  3. Dengler-Crish CM, Elefteriou F. Shared mechanisms: osteoporosis and Alzheimer’s disease?. Aging (Albany NY). 2019;11(5):1317-1318. doi:10.18632/aging.101828
  4. Minoia A, Dalle Carbonare L, Schwamborn JC, Bolognin S, Valenti MT. Bone Tissue and the Nervous System: What Do They Have in Common?. Cells. 2022;12(1):51. Published 2022 Dec 22. doi:10.3390/cells12010051
  5. Na H, Gan Q, Mcparland L, et al. Characterization of the effects of calcitonin gene-related peptide receptor antagonist for Alzheimer’s disease. Neuropharmacology. 2020;168:108017. doi:10.1016/j.neuropharm.2020.108017