0

0
0

文字

分享

0
0
0

一起來認識你的原核成分──《細菌:我們的生命共同體》推薦序

陳俊堯
・2016/03/14 ・1669字 ・閱讀時間約 3 分鐘 ・SR值 490 ・五年級

-----廣告,請繼續往下閱讀-----

文/陳俊堯

如果我是在二十年前講書裡的這些內容,一定有人會覺得我瘋了。因為以當時微生物學的知識來判斷,這些事是不可能會發生的,就像沒電話就不能跟國外的人講到話一樣。

在過去的那個世界裡,人和細菌是對立的,大部分人類認識的細菌都是危險而不懷好意的。而今天我們到底多知道了些什麼呢?腸道裡的細菌能影響健康,不意外。但是細菌居然可以影響肥胖神經內分泌系統也都會受細菌影響?影響情緒?連社會行為都要受到細菌左右?自閉症也可能是細菌造成的?原來腸子裡不起眼的細菌們竟然在某種程度上掌控了我們的生活!

177520063_7f21c38c83_z
你掌控著你的情緒?或許細菌才是幕後主謀。source:flickr

跟腸道細菌相關的研究及知識正以驚人的速度累積。在今天,談人體或動植物的共生微生物已經成為最熱門的話題,因為細菌似乎能以各種你想不到的方式影響你的生活。談人體微生物的科普書一本接一本問世,但還是填不滿人們對這些微形室友的好奇心。這群最貼近我們,但事實上我們卻對它們全然陌生的盟友們,到底會怎麼影響到我們的日常生活呢?這本書正好是本好玩而又有點深度的入門書。

-----廣告,請繼續往下閱讀-----

每個細胞裡都有一隻共生細菌

細菌跟很多生物都有著密切的共生關係。這現象其實也該是理所當然的,因為細菌比動物、植物都還早來到這個星球上,而且早了上億年。直到現在,我們身體的每一個細胞裡都還住著一隻改頭換面的細菌。在古早古早以前一隻細菌被招募進入另一隻古菌的細胞裡共生,組成了第一個真核細胞,而當年那隻細菌變成細胞裡的胞器粒線體。真核細胞有了粒線體的能量支持而變大,從單細胞變成多細胞的生物,體型逐漸巨大化。而它的那些在外闖蕩的野生同伴們,有些轉而進入這個巨大生物體裡,選擇共生或是成為敵人。其實想想這如果把主角換成人,這故事就會變成一群兒時玩伴在動盪的時代裡討生活,有的人在命運捉弄下成了拔刀相向的仇敵,有的人還默默在一旁守護著你,即使你根本沒注意到它的存在。

細菌的世界裡才沒有人類這些無聊又複雜的情感糾葛。但是它們唯利是圖,只要有利,總是會有細菌去嘗試然後用那種方式來生活。細菌發現共生對它們有利,就會有細菌去和動植物共生。最近十年來成堆的研究明確指出,不管你是動物還是植物,統統擺脫不了和細菌共生的命運。

有些細菌住在植物的組織裡面,製造植物荷爾蒙來影響植物的生長。昆蟲體內也有細菌,可以決定這隻蟲兒能不能成功養育出下一代。身為動物的我們,腸子裡也住著以各種方式影響我們健康的細菌。而且就像書裡說的,我們還是從媽媽那裡「繼承」了這些細菌。植物會把共生菌放進種子裡,昆蟲會把共生菌放在蟲卵邊,就是要讓自已的下一代一出生就沾上細菌,和它們建立合作關係。原來細菌也是種傳家寶呢。最近的研究結果還懷疑細菌可以從外面控制那隻困在我們細胞裡的同伴,來增進自已的利益。如果把這些細菌故事收一收來編劇本,我想可以再拍一部電影續集了吧。

Scanning electron micrograph of Escherichia coli
Scanning electron micrograph of Escherichia coli

為什麼該讀這本書

這本書是本值得推薦的入門書。書裡收集了這些年來引領腸道微生物研究的重要人物和研究,讓他們一個一個在書裡現身。作者巧妙地串起這些原本該是艱深的研究成果,將它們變成俏皮的故事,讓你輕鬆吸收進入這個領域所需要的知識與概念。這本書裡提到很多你不知道的真相,原來細菌是我們在這個世界第一個朋友,原來我們自以為能主宰意志,卻沒意識到細菌悄悄在影響我們的情緒及判斷。連你轟轟烈烈的愛情故事,可能也有細菌干政的痕跡呢。你還是你自以為的那個萬物之靈嗎?科學家逐漸接受生物體應該是這隻生物和附生微生物加起來的集合,這些微生物應該被視為一個器官那樣地參與這個生物的生活。所以你身上的細菌們該算是你的一部分,而你應該要一起來認識自已的原核成分。

-----廣告,請繼續往下閱讀-----

本文作者為慈濟大學生命科學系助理教授

showTakeLook

 

書名:《細菌:我們的生命共同體》

作者:哈諾.夏里休斯、里夏爾德.費里柏

譯者:許嫚紅

-----廣告,請繼續往下閱讀-----

出版社:商周出版

文章難易度
陳俊堯
109 篇文章 ・ 22 位粉絲
慈濟大學生命科學系的教書匠。對肉眼看不見的微米世界特別有興趣,每天都在探聽細菌間的愛恨情仇。希望藉由長時間的發酵,培養出又香又醇的細菌人。

0

0
0

文字

分享

0
0
0
人體吸收新突破:SEDDS 的魔力
鳥苷三磷酸 (PanSci Promo)_96
・2024/05/03 ・1194字 ・閱讀時間約 2 分鐘

本文由 紐崔萊 委託,泛科學企劃執行。 

營養品的吸收率如何?

藥物和營養補充品,似乎每天都在我們的生活中扮演著越來越重要的角色。但你有沒有想過,這些關鍵分子,可能無法全部被人體吸收?那該怎麼辦呢?答案或許就在於吸收率!讓我們一起來揭開這個謎團吧!

你吃下去的營養品,可以有效地被吸收嗎?圖/envato

當我們吞下一顆膠囊時,這個小小的丸子就開始了一場奇妙的旅程。從口進入消化道,與胃液混合,然後被推送到小腸,最後透過腸道被吸收進入血液。這個過程看似簡單,但其實充滿了挑戰。

首先,我們要面對的挑戰是藥物的溶解度。有些成分很難在水中溶解,這意味著它們在進入人體後可能無法被有效吸收。特別是對於脂溶性成分,它們需要透過油脂的介入才能被吸收,而這個過程相對複雜,吸收率也較低。

-----廣告,請繼續往下閱讀-----

你有聽過「藥物遞送系統」嗎?

為了解決這個問題,科學家們開發了許多藥物遞送系統,其中最引人注目的就是自乳化藥物遞送系統(Self-Emulsifying Drug Delivery Systems,簡稱 SEDDS),也被稱作吸收提升科技。這項科技的核心概念是利用遞送系統中的油脂、界面活性劑和輔助界面活性劑,讓藥物與營養補充品一進到腸道,就形成微細的乳糜微粒,從而提高藥物的吸收率。

自乳化藥物遞送系統,也被稱作吸收提升科技。 圖/envato

還有一點,這些經過 SEDDS 科技處理過的脂溶性藥物,在腸道中形成乳糜微粒之後,會經由腸道的淋巴系統吸收,因此可以繞過肝臟的首渡效應,減少損耗,同時保留了更多的藥物活性。這使得原本難以吸收的藥物,如用於愛滋病或新冠病毒療程的抗反轉錄病毒藥利托那韋(Ritonavir),以及緩解心絞痛的硝苯地平(Nifedipine),能夠更有效地發揮作用。

除了在藥物治療中的應用,SEDDS 科技還廣泛運用於營養補充品領域。許多脂溶性營養素,如維生素 A、D、E、K 和魚油中的 EPA、DHA,都可以通過 SEDDS 科技提高其吸收效率,從而更好地滿足人體的營養需求。

隨著科技的進步,藥品能打破過往的限制,發揮更大的療效,也就相當於有更高的 CP 值。SEDDS 科技的出現,便是增加藥物和營養補充品吸收率的解決方案之一。未來,隨著科學科技的不斷進步,相信會有更多藥物遞送系統 DDS(Drug Delivery System)問世,為人類健康帶來更多的好處。

-----廣告,請繼續往下閱讀-----
文章難易度

討論功能關閉中。

鳥苷三磷酸 (PanSci Promo)_96
197 篇文章 ・ 303 位粉絲
充滿能量的泛科學品牌合作帳號!相關行銷合作請洽:contact@pansci.asia

0

2
0

文字

分享

0
2
0
益生菌不只顧腸道還可抗 PM2.5?益生菌功效怎麼吃?
鳥苷三磷酸 (PanSci Promo)_96
・2024/03/19 ・2488字 ・閱讀時間約 5 分鐘

本文由 江欣樺營養師 委託,泛科學企劃執行。

健康是無價之寶,想要有好的健康,有很多種方法,像是規律作息、持續運動或是飲食管控,但在忙碌的生活之中,要做到以上這些,並不容易。益生菌或許是另一個解方,輕巧的小包裝,便於攜帶,沒有重量,沒有負擔。別小看這些益生菌,雖然外表不起眼,卻暗藏許多健康密碼。

2012 年,國衛院實驗團隊發現腸道菌和大腦發炎、神經退化、 阿茲海默症有關,腸道菌的健康可能影響大腦和各器官健康狀況,經更多實驗後,發現腸道菌健康與益生菌的使用,跟身體器官的運作有密切關聯。

益生菌、腸道健康與身體健康的關聯性

腸道是人體最大的免疫器官,存在許多共生細菌,以及僅次於大腦的神經細胞數量,全身近一半的淋巴球也分佈在此。

-----廣告,請繼續往下閱讀-----

淋巴球和神經元又與各器官產生相關的免疫及神經反應,像是常聽到腦-腸軸線、肺-腸軸線,都是指腸道與其他器官的連結。換句話說,腸道內的菌相,牽動的不只有腸道系統,而會透過腸道上的免疫及神經反應去影響其他器官。

腸道菌受飲食左右,像是亞洲人偏好澱粉,腸道用來分解醣類的普氏菌也較多;西方人喜好油炸物,腸道幫忙分解油脂的擬桿菌也較多。同理,補充益生菌也能改善菌相,進而影響身體健康。

腸道菌相與飲食習慣息息相關。 圖/Envato

益生菌?益生元?哪裡不一樣

益生菌可分為兩種:活菌、死菌,活菌能定殖在腸道,並不斷產生短鏈脂肪酸(如:乳酸、醋酸、丙酸、酪酸),能使腸道偏酸性,讓壞菌不易生存,有助於腸胃蠕動,降低腸道毒素。

死菌雖然不能像活菌一樣定殖在腸道,但有部分益生菌死掉之後所產生的代謝物,被研究證實是有幫助的,那麼這類型的死菌也可以被稱為後生元。
。腸道內存有好壞菌及伺機菌,益生菌的工作在於製造好菌、帶領伺機菌和抗衡壞菌,事實上益生菌並不會完全消滅壞菌,而是平衡好壞菌,讓菌相穩定,且適當的壞菌也有助於腸道健康。

在選購益生菌時,會發現市面上流通著許多種類,像是常見的 A 菌(嗜酸乳酸桿菌)、B 菌(比菲德氏菌)等,益生菌是以不同菌屬的開頭字母命名,不同的益生菌,就有不同的後生元,保健效果也不同。但這些菌都是指菌種,而菌種會因各廠商培育出的菌株產生差異,通常會以不同的專利名字區分(例如:TW01),效果當然也有差別。

-----廣告,請繼續往下閱讀-----

另外還會注意到,有些產品標示「益生質/益生元」,指的是益生菌的食物,益生元常見的成分為果寡醣、半乳寡醣等,由 2~10 個單醣所構成,不易被人體分解,能提供碳源成為益生菌的養分。益生菌與益生元結合的產品稱為合生素,兩者等同於補好菌加上養好菌,可大大提升保健效果。

益生菌怎麼吃

補充益生菌能夠維持腸胃道健康、幫助排便和調節過敏體質,但也須注意食用方法,否則就功虧一簣。為了確保益生菌能發揮作用,食用時不可搭配過熱的開水,避免失去效用。

吃益生菌時,一定要配冷開水。 圖/Envato

在選購益生菌時要注意!市面上常能看到各種口味的益生菌,希望透過豐富口味變化與繽紛的色彩來吸引消費者購買,但這類型的商品往往會添加大量的香料、甜味劑或者是果汁粉,但每條益生菌僅有兩公克的空間,你想吃的,是廉價添加物還是真正有幫助的好菌呢?

這類型的產品除了添加物的問題,還會養成小朋友嗜糖的習慣,糖類更是過敏的元凶之一,因此建議可以選擇有 100% 無添加認證的益生菌,來避免攝取不必要的人工添加物。基於健康考量,民眾可考慮選購含有益生元的產品。若是有服用抗生素的人,記得一定要使用益生菌恢復腸道菌相,但須與抗生素間隔 1-2 小時。

-----廣告,請繼續往下閱讀-----

益生菌功效有哪些

常見的益生菌功效為保持腸道健康、調整過敏體質,但益生菌功效遠不僅如此。目前台灣有一株三效合一益生菌 Lactobacillus acidophilus TW01 證實可降低大腸癌風險、抗 PM2.5、活化免疫平衡。

圖/江欣樺營養師提供

TW01 是由創辦人——江欣樺營養師領軍耗時三年開發,研發經費高達已高達 2 千萬台幣。於 2023 年獲得國家新創獎,獲得國家肯定,也是該年度益生菌品類中唯一獲獎者。

圖/江欣樺營養師提供

TW01 是從國人日常飲食所延伸的靈感,根據統計,台灣人平均每年喝掉 122 杯咖啡,TW01 則是從古坑咖啡豆發酵液裡的上千株菌中,發現的唯一有效菌株,符合台灣人的飲食習慣。

TW01 進行 TH1 和 TH2 的免疫調節,降低過敏反應,還能促使免疫球蛋白 IgA 分泌,阻擋細菌對上皮細胞破壞,減少腸漏現象,跑到呼吸道的 IgA 可以對抗細菌、病毒和 PM2.5。從科學實驗來看,TW01 還能抑制大腸癌並幫助傷口修復,效果十分廣泛。

-----廣告,請繼續往下閱讀-----
圖/ 江欣樺營養師 提供

益生菌的好處非常多,小至腸道順暢,大至身體機能,江欣樺營養師表示:「吃益生菌有一個很重要的目標就是占地盤,好菌越多,就可以壓制壞菌地盤,又影響伺機菌,往好的方向走,穩固整個腸道菌相。」

益生菌的重要性在於增加好菌,持續服用。在忙碌的生活中,找到適合自己的方式,養成健康的習慣是對身體最好的保障。找到將益生菌納入日常生活的方式,並保持適當的飲食、規律的作息和適量的運動,健康相伴左右。

延伸閱讀

重新定義益生菌功效!新創益生菌 TW01 可降低大腸癌、抗 PM2.5

討論功能關閉中。

鳥苷三磷酸 (PanSci Promo)_96
197 篇文章 ・ 303 位粉絲
充滿能量的泛科學品牌合作帳號!相關行銷合作請洽:contact@pansci.asia

0

1
1

文字

分享

0
1
1
發育中胚胎如何淘汰異常細胞?——《生命之舞》
商周出版_96
・2023/10/21 ・2937字 ・閱讀時間約 6 分鐘

為了理解染色體異常細胞對鑲嵌型胚胎的影響,我們必須要創造出數百個小鼠胚胎,並研究數千個胚胎不同部位的細胞。這麼龐大的工作量需要有一位專職的科學家,也需要資金。

在匯整如何測試這個假設的思緒時,我在絨毛膜採樣檢查後又進行了另一個羊膜穿刺檢查,這個檢查一樣在超音波影像的引導下,將針插入包圍發育胎兒的羊膜囊中,以取得少量的透明羊水樣本來進行分析。保護胎兒的羊水會帶有胎兒細胞,可以用來確認是否具有染色體問題。這次的檢查結果是沒有問題的,我們都鬆了一口氣。不過,得要到我把孩子抱在手上那時,我才能百分之百地放心。

圖/unsplash

還有其他的好消息是,我有了資源可以進行了解我檢查結果的研究。我在發現懷孕那天所進行的面試,讓我獲得惠康基金會的資深研究補助金。這筆補助金原本打算用在另一個計畫上,不過他們給我足夠的自由度,可以直接挪用其中部分資金來為鑲嵌型胚胎建立模型。

如何製造染色體異常的細胞?

我們有一大堆事情要做。首先,我們得要找到一種可信的方式(最好不只一種)來製造染色體異常的細胞。然後我們還要找到一種方式來標記這些細胞,好讓它們在正常細胞旁發育時,我們可以追蹤到它們。製造異常細胞比我們原先所想得更加困難。海倫測試許多種不同的方法來干擾染色體分離的過程,我們最後用到一種名為逆轉素(reversine)的藥物,這是我們實驗室中另一個研究計畫使用過的藥物。

-----廣告,請繼續往下閱讀-----

逆轉素是種小分子抑制劑。我們想要使用逆轉素來抑制染色體分離中的一個關鍵過程。那是一個分子檢查點,在正常情況下會暫停細胞分裂(有絲分裂),直到有正確數目的染色體(帶有 DNA)被拉開,並分離到兩個不同的子細胞間為止。逆轉素會阻斷名為單極紡錘體蛋白激酶(monopolar spindle 1 kinase)的酵素,而這種酵素會在細胞分裂時確保染色體公平分配。

圖/unsplash

為了確認逆轉素確實會造成染色體異常,我們經由標記隨機選出的三個染色體來分析有用藥及無用藥的胚胎。我們所使用的標記方法名為螢光原位雜合技術(fluorescence in situ hybridization, FISH),這種技術會外加一個探針(短 DNA 序列)及一個螢光標記。當探針在樣本中碰到類似的 DNA 片段時,就會在螢光顯微鏡下發光。經由螢光原位雜合技術的追蹤,確認了海倫使用逆轉素後,確實會增加染色體異常胚胎的數量。

逆轉素的效用是暫時性的,海倫一把藥劑洗掉,檢查點就恢復正常功能。這很重要,因為這表示我們可以將胚胎染色體異常的發生限制在特定的發育期間內。

染色體異常的胚胎能正常發育嗎?

確信可以製造出染色體異常的胚胎後,我們需要確定這些施用過逆轉素的胚胎是否會完全發育。海倫對四細胞胚胎施用逆轉素,並觀察到在發育 4 天後,它們的細胞數量比未施藥的胚胎要來得少。不過雖然細胞數量較少,還是可以形成三組基本的細胞世系。

-----廣告,請繼續往下閱讀-----

為了找出施用內逆轉素的胚胎是否可以長成小鼠,我們將這些胚胎植入母體中。這個時間點是在我們創造出體外培養胚胎的技術之前。每 10 個正常胚胎有 7 個會著床,而這個比例在施藥後的胚胎上則降了一半。最重要的是,施用逆轉素的胚胎沒有一個能夠成長為活生生的老鼠。這個實驗顯示,當胚胎中大多數的細胞都出現染色體異常時,它們的發育最終會以失敗收場,即使它們著床了、也發育了一陣子。

圖/unsplash

製造同時有異常與正常細胞的胚胎

現在我們可以進一步來探討那個重要的問題:若是只有部分胚胎細胞帶有染色體異常,發育又會受到何種程度的影響?為了找出答案,我們必須製造出鑲嵌型胚胎,也就是混合了染色體異常細胞與染色體正常細胞的胚胎。因此我們決定經由製造嵌合體來達到這個目的。

因為我們無法在對同個胚胎施用逆轉素時只讓其中一些細胞出現染色體異常,所以無法經由這個方式製造出鑲嵌型胚胎,因此我們想到了運用嵌合體的作法,將來自不同胚胎的細胞結合建構成嵌合體(鑲嵌型胚胎是由單顆受精卵生長發育而成的)。創造嵌合體而非鑲嵌型胚胎的好處是,我們可以系統性地去研究要具有多少異常細胞才會干擾到發育。很幸運地,這個作法成功了。

圖/unsplash

海倫在小鼠胚胎從兩細胞階段分裂到四細胞階段時,經由口吸管的方式施用逆轉素,並在八細胞階段將細胞一個個地分開。然後她將來自正常胚胎的四個細胞與來自施藥胚胎的四個細胞結合創造出八細胞嵌合體胚胎。

-----廣告,請繼續往下閱讀-----

我們要追蹤細胞的命運就需要標記。我朋友凱特.哈迪安東納基斯(Kat Hadjantonakis)與金妮.帕帕約安努在紐約對小鼠進行基因改良,讓牠們的細胞核具有綠色螢光蛋白,所以我們就採用了具有這種特性的小鼠。我們將這類小鼠胚胎施予逆轉素,施過藥的細胞會與未施過藥的細胞有不同的顏色,這樣我們就可以做出區別。具有綠色螢光蛋白的細胞讓我們可以明確看到新細胞是在何時與何處誕生以及新細胞的後續分裂,還有,若是細胞死亡了,我們也可以看到是在何時與何處死亡的。我們可用此種方式為個別細胞建立「譜系圖」。

染色體異常細胞在胚胎發育過程中會被清除嗎?

我們為這些鑲嵌型胚胎拍攝了影片,以精準追蹤每個細胞的命運。海倫在螢幕上看見,異常細胞數量的下降主要發生在產生新個體組織的那一部分胚胎,也就是上胚層。這些異常細胞會在凋亡的過程中死去,也就是經歷程序性的細胞死亡。在注定成為胚胎本體的那一部分胚胎中,施用過逆轉素的細胞經歷凋亡的頻率是未施藥細胞的兩倍以上。

圖/unsplash

這個結果表示,在注定成為胎兒的那一部分胚胎中,異常細胞有被清除的傾向。這支持了我的假設,也就是在這一部分的胚胎中,異常細胞競爭不過正常細胞,不過實際運用的機制跟我原來所想的不一樣。

我簡直不敢相信。這是我們真的會研究出重要成果的第一個徵兆,發育中的胚胎不僅可以自我建構,也同樣可以自我修復。幾年前當我懷著賽門那時,絨毛膜採樣檢查所檢測到的染色體異常細胞的後代,有沒有可能在成長為賽門的那部分胚胎中自我毀滅了呢?

-----廣告,請繼續往下閱讀-----
這張圖片的 alt 屬性值為空,它的檔案名稱為 0823--300.jpg

——本文摘自《生命之舞》,2023 年 9 月,出版,未經同意請勿轉載。

商周出版_96
119 篇文章 ・ 360 位粉絲
閱讀商周,一手掌握趨勢,感受愜意生活!商周出版為專業的商業書籍出版公司,期望為社會推動基礎商業知識和教育。