0

0
0

文字

分享

0
0
0

奈米銀:形狀決定毒性

NanoScience
・2012/07/16 ・747字 ・閱讀時間約 1 分鐘 ・SR值 577 ・九年級

-----廣告,請繼續往下閱讀-----

美國加州大學洛杉磯分校的科學家研究不同形狀的銀奈米材料對彩虹鱒細胞及斑馬魚胚胎的影響,結果發現碟狀奈米銀比其他形狀如球狀或線狀的奈米銀毒性更高。幸好銀奈米碟(nanoplate)只有在直接接觸細胞時,毒性才會顯現。

圖片來源:FORTOX

這個由 Andre Nel 領導的團隊採用由彩虹鱒魚及斑馬魚胚胎分離出來的細胞為測試對象,研究了銀奈米球(nanosphere)、奈米線(nanowire)及奈米碟在不同劑量下的毒性。實驗結果顯示銀奈米碟的毒性最高,銀奈米球只有在高濃度下才有毒性,而銀奈米線則毒性最低。

銀奈米碟的毒性來自於它會產生具有毒性的過氧化物(superoxide),在細胞內製造氧化壓力(oxidative stress),因此若事先以具有抗氧化作用的 N-乙醯基半胱氨酸(N-acetylcysteine, NAC)處理細胞,可保護細胞不受奈米碟的影響。此外,研究人員也發現銀奈米碟必須與細胞直接接觸,才會有毒性。

令研究人員意外的是,相較於參與測試的其他形狀銀奈米材料,奈米碟反而釋放出較少的銀離子進入培養基中,而目前學界認為這些銀離子就是銀奈米材料的毒性來源。該團隊以高解析穿透式電子顯微術(HRTEM)仔細檢查銀奈米微粒的表面,發現表面缺陷會增加微粒的反應活性,而在粒子表面鍍上半胱胺酸(cysteine)遮蓋缺陷則能降低毒性。不過,由於上述結果是在孵育介質(incubation media)中得到的,其缺乏蛋白質的環境可能有助於奈米碟與細胞表面的接觸。

-----廣告,請繼續往下閱讀-----

該團隊指出,這項研究顯示奈米微粒的形狀對於其是否具有毒性有重大的影響,這個發現可望用來協助提升奈米科技應用的安全性,同時他們正計畫研究銀奈米碟一旦被吸入哺乳動物的肺部是否會造成危害。詳見 ACS Nano 6, pp.3745–3759 (2012) | DOI: 10.1021/nn204671v。

譯者:蔡雅芝(逢甲大學光電學系)
責任編輯:蔡雅芝
原文網址:Silver nanoparticle shape affects toxicity—nanotechweb.org [2012-05-11]

本文來自 NanoScience 奈米科學網 [2012-06-30] 

文章難易度
NanoScience
68 篇文章 ・ 3 位粉絲
主要任務是將歐美日等國的尖端奈米科學研究成果以中文轉譯即時傳遞給國人,以協助國內研發界掌握最新的奈米科技脈動,同時也有系統地收錄奈米科技相關活動、參考文獻及研究單位、相關網站的連結,提供產學界一個方便的知識交流窗口。網站主持人為蔡雅芝教授。

1

1
1

文字

分享

1
1
1
超壓縮的水會變成冰?!二維奈米薄冰能在室溫下穩定存在嗎?有什麼用途?——專訪中研院原分所謝雅萍副研究員
研之有物│中央研究院_96
・2024/03/10 ・4907字 ・閱讀時間約 10 分鐘

-----廣告,請繼續往下閱讀-----

本文轉載自中央研究院「研之有物」,為「中研院廣告」

  • 採訪撰文|張琬婷
  • 責任編輯|簡克志
  • 美術編輯|蔡宛潔

水能被擠壓成冰?

水在攝氏零度以下會結冰。然而,當水被擠壓到極限時,會形成二維的奈米薄冰,不僅室溫下穩定存在,還有從未見過的鐵電特性(Ferroelectricity),而石墨烯則是實現這種擠壓條件的關鍵。中央研究院「研之有物」專訪院內原子與分子科學研究所的謝雅萍副研究員,她與我們分享了實驗室如何意外發現這層特殊的二維薄冰,以及團隊如何利用二維薄冰的鐵電特性製作有記憶電阻功能的奈米元件,研究成果發表在科學期刊《自然通訊》(Nature Communications)。

奈米尺度下,物質特性會跟著改變?

謝雅萍的主要研究題目之一就是合成新穎的二維材料,這是奈米科技的領域。奈米是什麼?奈米(nanometer)是長度單位,即 10-9 公尺,一根頭髮的直徑長度約為 1 奈米的十萬倍。奈米尺度之下,很多物質的特性會隨之改變,最常見的例子是「蓮花效應」,因為蓮花葉上具有奈米等級的表面結構,為蓮葉賦予了疏水與自我清潔的特性,髒污與水珠都不易附著在蓮葉上。

電腦模擬圖(左)和實際照片(右),蓮葉上密集的微小突起,讓大顆的水珠和灰塵不易附著,這讓蓮葉具有疏水與自我清潔的特性。
圖|William ThielickeGJ Bulte

奈米材料(nanomaterial)是指三維尺寸的材料,至少有一個維度的尺寸小於 100 奈米。只縮小一維,就是平面的二維材料(2D),例如石墨烯;縮小兩個維度,就是奈米線(1D);三維都縮小,就是零維的奈米顆粒(0D)。

奈米科技(nanotechnology)的概念最早可追溯到 1959 年美國物理學家理查費曼(Richard Feynman)在演講中提出的願景「為什麼我們不能把大英百科全書全部寫在一根針頭上呢?」。1974 年日本科學家谷口紀男則是首度創造「奈米科技」這個詞的人,他認為奈米科技包括原子與分子層次的分離、固定與變形。

-----廣告,請繼續往下閱讀-----

過去有不少科學家嘗試奈米材料的研發,但受限於製造技術不成熟,而無法順利製作出精細製程的奈米材料。1981 年,在掃描隧道顯微鏡(Scanning Tunneling Microscope, STM)發明之後,不僅有助於材料的微觀分析,操縱單個原子和分子也成為可能,奈米科技也逐漸實現。

2013 年 IBM 研究人員使用 STM 顯微鏡將上千個一氧化碳分子製作成原子等級的動畫「男孩與他的原子」,目前是金氏世界紀錄最小的定格影片。

無處不在的奈米科技?

我們生活周遭的奈米科技俯拾即是,從大賣場商品到半導體產業的電子元件都有。謝雅萍舉例:防曬霜之所以是白色,是因為裡面有二氧化鈦的奈米顆粒;許多塗料與噴漆亦會以奈米添加物,來增進耐蝕、耐磨、抗菌與除汙的特性,例如汽車鍍膜或奈米光觸媒;羽球拍或牙醫補牙會使用奈米樹脂,讓球拍和補牙結構更堅固。

至於半導體產業,奈米科技更是關鍵。透過縮小元件尺寸以及調整奈米元件的幾何形狀,以便於在單一晶片上乘載更多電晶體。「當今的電晶體大小皆是奈米等級,製作電子元件就等同在處理奈米科技的問題」,謝雅萍說道。

IBM 展示 5 奈米技術的矽奈米片電晶體(nanosheet transistors),圖中堆疊起來的一顆顆橢圓形結構是電子通道的截面,IBM 設計立體結構以因應愈來愈小的元件尺寸。
圖|IBM

實驗中的難題,反而促成驚奇發現?

鐵電性是什麼?二維奈米薄冰有哪些可能的應用方式?

對謝雅萍來說,發現二維的奈米薄冰是個意外的驚喜。最初謝雅萍團隊其實是要製作以石墨烯為電極的開關,畢竟石墨烯是實驗室的主要研究項目,理論上當兩層石墨烯很靠近時,分別給予兩端電壓會是導通的「ON」狀態,沒電時就是斷開的「OFF」狀態。

-----廣告,請繼續往下閱讀-----

然而,實驗過程中團隊卻發現當電壓為零時,石墨烯開關仍會導通,甚至要給予負電壓時才會成為 OFF 狀態。這個奇特的現象讓研究團隊苦惱許久,嘗試思考了各種可能性,但都無法完善的說明此現象。

「原本以為實現石墨烯開關應該是一件能夠很快完成的題目,沒想到過程中卻出現了這個意料之外的難題,因此這個研究比預期多花了一兩年」,謝雅萍無奈地笑道。

靈感總是突如其來,某次謝雅萍在與朋友討論研究時,突然想到一個可能的方向:「一直以來都有人猜測水是否為鐵電材料,但都沒有真正證實。臺灣氣候潮濕,開關關不緊會不會就是水的影響?」

設計實驗跑下去之後,謝雅萍團隊終於擺脫了一直以來的疑雲。原來,兩層石墨烯結構中,真的有水分子的存在!「一般水分子用手去捏,還是會維持液體的狀態。但是我們發現,當水被兩層石墨烯擠壓到剩下原子厚度時,水分子就會變成具有鐵電特性的二維薄冰!」,謝雅萍開心地說道。

-----廣告,請繼續往下閱讀-----

換句話說,當極限擠壓之下,水會結成冰,而這層超薄的平面奈米薄冰會轉變成鐵電材料,而且可以在室溫下穩定存在!

示意圖,當水受到兩層石墨烯的極限擠壓之下,會形成單原子厚度的二維奈米薄冰,這層薄冰是鐵電材料,而且可以在室溫下穩定存在。
圖|之有物(資料來源|謝雅萍)

鐵電材料乍聽之下很抽象,謝雅萍表示:「相較於會吸磁鐵的鐵磁材料,大多數人對鐵電材料比較不熟悉,其實概念十分相似」。她說,鐵磁材料經過外加磁場的「磁化」之後,即使不加磁場仍可維持原本的磁性。相對地,鐵電材料經過外加電場的「極化」之後,即使不加電場仍可維持原本的電荷極化方向。

謝雅萍團隊發現的二維冰具有鐵電性,這意味著水分子的正負極在外加電場之下會整齊排列,形成一個永久的電偶極,並且在電場消失後保持不變。

鐵電材料經過外加電場的「極化」之後,即使不加電場仍可維持原本的電荷排列方向。圖片顯示為順電狀態,極化方向和外加電場相同,箭頭表示每一小塊區域(Domain)的平均極化方向。
圖|之有物(資料來源|Inorganics

接著,謝雅萍發現,二維冰的鐵電性只存在於單層原子,增加多層原子之後,鐵電性會消失,變成普通的冰,這是因為多層原子的交互作用會打亂原本的極化排列。因此研究團隊發現的二維冰,是非常特殊的固態水,不是手搖飲加的冰塊那麼簡單。

因為石墨烯的擠壓和固定,二維冰可以在室溫下穩定存在,不會蒸發。謝雅萍團隊實驗發現,要升溫到攝氏 80 度,被夾住的二維冰才會變成水。如此大範圍的操作溫度,這讓謝雅萍開始思考將二維冰作為鐵電材料使用的可能性。

-----廣告,請繼續往下閱讀-----

於是,謝雅萍團隊嘗試開發新型的電子元件,他們將二維冰與石墨烯整合成機械式的奈米開關。由於二維冰具有鐵電特性,在施加不同外加電壓之後,元件可以維持上次操作的電阻值,並保留至下次操作,有這種特性的元件稱為「憶阻器」(memristor)。

憶阻器這個詞是由記憶體(memory)與電阻(resistor)組合而成,字面上的解釋便是:具備記憶先前電阻值的能力。

謝雅萍表示:「我們可以藉由不同的外加大電壓寫入電阻值,再以微小電壓讀取之前的電阻值,允許快速存取」。而單獨一個二維冰奈米開關可以記住 4 個位元的資料,具備未來記憶體的發展潛能。

此外,二維冰奈米開關也是很好的開關裝置,團隊驗證導通電流和截止電流的比值可以達到 100 萬,開路和斷路的功能極佳,並且允許雙向操作。而開關的功能經過 1 萬次循環還不會衰減,相當穩定。

謝雅萍團隊是全世界第一個證實二維薄冰鐵電性的團隊,並實現第一個以石墨烯為架構的二維冰機械式憶阻器。她的團隊將往新穎二維材料的方向繼續邁進,目前實驗室有和台積電(TSMC)合作,希望透過產學合作,將更多奈米技術的應用落地實現。

-----廣告,請繼續往下閱讀-----
謝雅萍與研究團隊用意外發現的二維奈米薄冰,以石墨烯為架構,做出了全世界第一個機械式的憶阻器。
圖|之有物

與二維材料實驗的相遇?

謝雅萍目前除了是中研院原分所的副研究員,同時也是國立臺灣大學 MY Lab 實驗室的共同主持人,她和人生伴侶 Mario Hofmann 教授共同指導的 MY Lab 發揮了 1+1>2 的效果,創意與想法的激盪和交流,是產生傑出研究的關鍵。

回到碩博士時期,謝雅萍都在臺大物理所,鑽研材料的光電性質與新穎光電元件的機制。她回憶:「當時我們都要向化學系要材料,他們給什麼我們就得用什麼,但難以了解整個材料製造的細節。」後來她體認到,擁有製造材料的調控能力才能真正突破元件設計上的侷限。

謝雅萍在博士班時申請到了千里馬計畫,讓臺灣博士生獲得國科會補助前往國外頂尖研究機構,進行為期約半年至一年的研究。「我認為這個計畫非常好,也可以幫助學生建立重要人脈!」在指導教授引薦下,謝雅萍因緣際會進入美國麻省理工學院(MIT)的二維材料實驗室,自此與二維材料結下不解之緣,她認為:「好材料與好元件是相輔相成的,前瞻材料更是如此。」

「我到了 MIT 之後,深刻體悟到他們做研究的態度與臺灣學生的不同。臺灣學生像是把研究當作一份工作,然而我在 MIT 時就感受到他們學生對於自身研究的熱忱。討論風氣也非常盛行,學生之間會互相分享自己的研究內容,互相幫忙思考、激盪出新想法」,謝雅萍分享自己在 MIT 時期的觀察。

-----廣告,請繼續往下閱讀-----

當年二維材料還在萌芽階段,她所在的 MIT 實驗室已是此領域的佼佼者,她也因此立下了目標:「希望未來我有能力時,能夠自己掌控自己的材料做出好元件!」如今,謝雅萍正走在自己目標的道路上,過去認識的朋友也都是各頂尖大學的二維材料實驗室主持人,直到現在都還會互相幫忙。

從物理到二維材料,身處這些男性為主的學術環境,謝雅萍顯得自在,而且積極參與討論和交流。「我發現女科學人會把自己變得較中性,讓自己融入整個以男性居多的環境中,才不會在團體中有突兀的感覺」,她分享道。

謝雅萍的實驗室 MY Lab,是與臺大物理系 Mario Hofmann 教授共同主持的奈米科技實驗室,他們除了是工作上的夥伴,更是人生中的最佳拍檔!當初兩人就是在美國麻省理工大學 MIT 相識,再一起回到臺灣。

讓「研之有物」團隊好奇的是:這種共同主持的模式與一般實驗室相比,是否有特別之處?

-----廣告,請繼續往下閱讀-----

「從多個面向而論,我認為都是 1+1>2 的」,謝雅萍說道,「實驗室會有兩倍的資源、儀器、計畫與兩倍的人脈。遇到一個題目,兩個人思考時會從不同的觀點切入。即便是夫妻,我們在研究上看的面向也都不一樣,因此可以激盪出許多有趣的想法」。

她補充,不僅對實驗室本身而言,對學生也有很大的好處,「因為學生的研究必須同時說服我們兩個人,代表學生的研究成果會非常扎實,也可以為學生帶來信心。」重要的是,「學生也會得到兩倍的照顧與關愛,我覺得我們的學生是蠻幸福的」,謝雅萍笑笑地說。

所有討論 1
研之有物│中央研究院_96
296 篇文章 ・ 3404 位粉絲
研之有物,取諧音自「言之有物」,出處為《周易·家人》:「君子以言有物而行有恆」。探索具體研究案例、直擊研究員生活,成為串聯您與中研院的橋梁,通往博大精深的知識世界。 網頁:研之有物 臉書:研之有物@Facebook

0

0
1

文字

分享

0
0
1
這樣吃安全嗎?用科學去看「劑量」與「食安」
衛生福利部食品藥物管理署_96
・2023/10/06 ・2743字 ・閱讀時間約 5 分鐘

-----廣告,請繼續往下閱讀-----

本文轉載自食藥好文網

  • 文/黃育琳 食品技師

你喜歡吃香腸嗎?香腸嚐起來不但鹹甜多汁,飄散出來的香氣更是令人口水直流,是日常的菜色之一。

然而,香腸的內部環境容易滋生肉毒桿菌,並產生對人類最強的毒素「肉毒桿菌毒素(botulinum toxin)」,只需要 1 克便能毒死一百萬人。

為了避免吃香腸出人命,則需要在香腸內添加亞硝酸鹽以抑制肉毒桿菌生長,但亞硝酸鹽碰到二級胺(通常不新鮮的肉類或海鮮因產生發酵作用或腐敗而生成)可能會產生致癌物質亞硝胺(nitrosamines),一種經動物實驗結果顯示會導致腫瘤的致癌物質。

-----廣告,請繼續往下閱讀-----

天啊!聽起來加與不加,兩邊都很不妙,那我們為什麼還繼續吃下去呢?

這裡忽略了一個很重要的資訊,若導致亞硝酸鹽中毒,需要有一定「劑量」。我們應該去思考,人類如何在不會導致中毒的劑量下,有效運用亞硝酸鹽這個物質 [1]

毒理學中最重要的概念「劑量」

亞硝酸鹽是衛生福利部食品藥物管理署正面表列的合法食品添加物,只要按《食品添加物使用範圍及限量暨規格標準》限量添加(劑量遠低於導致中毒的劑量),那它對人體不但沒有危害,反而能讓我們免於受到肉毒桿菌毒素的威脅。

若是選擇完全不使用亞硝酸鹽,那麼肉毒桿菌毒素中毒的風險則會大大增加。相較之下,使用亞硝酸鹽必然安全許多,既然這樣,世界上還有無毒物質的存在嗎?

-----廣告,請繼續往下閱讀-----

毒理學之父 Paracelsus 先生(西元 1493-1541 年)曾說:「所有化學物質都有毒,世界上沒有不毒的化學物質,但依使用劑量的多寡,可區分為毒物或藥物。」這也是毒理學最重要的基礎概念 [註]

所有化學物質都有毒,差別僅在「劑量」。 圖/envato.elements

所以世界上並不存在完全無毒的食品,只要過量都可能會導致中毒甚至致死,單純用致癌物、有害物質來區分所有物質其實並不正確,而是要注意它的「劑量」。

當然,加工食品也是同樣的道理。

加工食品吃了不好?也是由劑量決定

常聽大家說,常吃加工食品會對人體有害,對健康造成負擔,但是真的完全都不能吃嗎?

-----廣告,請繼續往下閱讀-----

適量吃加工食品對身體是不會造危害的,大家所認為天然非加工食品吃太多也一樣會出事。如維繫人體生命的必需物質「水」,這個看似無害的物質,喝太多卻會造成水中毒。

或者是「母乳」這個直接來自人體的物質,也都可能含有微量抗生素、重金屬或塑化劑等,因為人體在長久接觸整個大環境中的污染後,多少會有毒素累積,要完全無毒是不可能的 [2]

許多人說加工食品之所以不好,是因為有部分加工食品,如早餐加糖的穀片、汽水、零食餅乾、罐裝高湯或熱狗等,糖份、鹽份和脂肪含量通常很高,也沒有其它營養價值,吃太多確實會對身體帶來負擔。

另一方面,前面提到的肉毒桿菌毒素,現在已廣泛應用於去除皺紋、瘦臉或瘦腿等醫學美容;人人聞之色變的劇毒「砒霜」,還可以應用在急性前骨髓細胞白血病(APL)的治療 [2]

-----廣告,請繼續往下閱讀-----

只要使用正確的「劑量」,毒藥也可以變仙丹。

要如何判別毒性大小?看半數致死劑量

如此重要的劑量該怎麼看呢?在毒理學觀察物質毒性大小時,有一項很常用的工具——半數致死劑量 LD50

不同用量的化學物質,實驗動物死亡率亦各不相同,通常物質的劑量與實驗動物的死亡率呈現正比。而半數致死劑量(lethal dosage 50%, LD50),指的就是在動物實驗中,使實驗動物產生 50% 死亡率所需要的化學物質之劑量,值愈小表示毒性愈強。

如肉毒桿菌毒素 LD50 約為 100 ng/kg(毒素重量/實驗動物重量),小白鼠的體重為 0.02 公斤,所以只需要 2 奈克(10-9 克),就可以使一半的實驗小白鼠死亡;日常生活中的食鹽(氯化鈉) LD50 約為 40 g/kg,需要 0.8 克才能使一半的實驗小白鼠死亡,兩者的毒性可說是天差地遠 [3]

-----廣告,請繼續往下閱讀-----

不過在日常生活中,若要妥善運用食品添加物、農藥等物質,就先得找出不會導致中毒的劑量,也就是「無明顯不良反應劑量(no-observed-adverse-effect-level, NOAEL)」。

它是指在動物實驗中,統計上未觀察到任何不良反應的最大劑量,在後續制定容許量時,NOAEL 是很重要的參考指標 [1]

化學物質的毒性大小,要看它半致死劑量的多寡。 圖/envato.elements

「每日可接受攝取量」v.s.「最大殘留容許量」或「使用限量」

若是要找出「人」即使長期每天攝取,也不會對健康造成危害的量,科學家們會根據動物實驗,計算出「每日可接受攝取量(acceptable daily intake, ADI),這個數值將作為政府單位作為安全評估的界線,於此界線下會再考量到飲食習慣或田間施藥測試結果,訂定更嚴格的使用限量(如:食品添加物)或最大殘留容許量(maximal residue level, MRL)作為行政執法的依據,超標的廠商將受到懲罰。

但是超標並不代表會中毒,使用限量或 MRL 是依據一般飲食習慣設定,每日的「總曝露量」遠低於 ADI,對人體不會有不良影響。使用限量或 MRL 皆是在科學的基礎下所計算出的管制劑量,對於在管理食品添加物或農藥殘留是非常重要的 [1]

-----廣告,請繼續往下閱讀-----

毒物學所熟知的「劑量」,大眾也應瞭解

有了劑量的觀念即可明白,即使不小心喝到一杯某一農藥殘留超標 MRL 5 倍的茶飲料,雖然聽起來很可怕,但其農藥總暴露量可能仍遠低於 ADI,更低於 NOAEL,故不需為此感到恐慌。

當大眾看到不認識的毒物名稱時,很容易被恐懼帶著走。而食品安全無法僅靠科學去維護,也需要消費者、媒體、政府和食品業界一起努力,才能做好安全把關。

購買時,建議詳閱食品標示。 圖/envato.elements

因此我們應該了解到食品安全資訊,是需要培養深入認知與討論議題的能力,才能避免流於情緒的宣洩或受到媒體的操弄。

註解

原文為 “All substances are poisons; there is none which is not a poison. The right dose differentiates the poison from a remedy.” [3]

-----廣告,請繼續往下閱讀-----

參考資料

  1. 陳亭瑋,2022。這是毒還是藥?先搞懂「每日容許攝取量」和「最大殘留安全容許量」吧!。行政院環境保護署毒物及化學物質局。
  2. 李霜茹,2017。怎麼決定多少「劑量」對人體有害?── 「PanSci TALK:食品安全基本功」──「PanSci。食藥好文網 TFDA。
  3. Shibamoto, T. and Bjeldanes, L. F. 2009. Introduction to food toxicology.
衛生福利部食品藥物管理署_96
65 篇文章 ・ 22 位粉絲
衛生福利部食品藥物管理署依衛生福利部組織法第五條第二款規定成立,職司範疇包含食品、西藥、管制藥品、醫療器材、化粧品管理、政策及法規研擬等。 網站:http://www.fda.gov.tw/TC/index.aspx

0

4
1

文字

分享

0
4
1
想吃牠卻反被殺!如何解決甘蔗蟾蜍對澳洲的威脅?——《在大滅絕來臨前》
臉譜出版_96
・2022/02/05 ・4877字 ・閱讀時間約 10 分鐘

-----廣告,請繼續往下閱讀-----

位於吉朗(Geelong)的澳洲動物健康實驗室(The Australian Animal HealthLaboratory)是世界上受到最嚴密控管的實驗室之一。這座實驗室位於兩座大門之後,而第二道門是專為抵擋卡車炸彈而設計的。有人跟我說,這座水泥牆的厚度禁得起飛機撞擊。設施內有 520 道氣密門,並有四種安全等級。「若殭屍來襲,你會希望自己能待在這裡。」一位工作人員跟我說。在最高安全層級管制區內——四級生物安全等級——處理的是裝有地球上最棘手的動物傳播病原體的小玻璃瓶,其中也包含伊波拉病毒(Ebola)病毒。(電影《全境擴散》(Contagion)的台詞就曾點名過這座實驗室。)

在四級生物安全等級單位工作的人不能在實驗室中穿自己的衣服,而且在回家至少三分鐘以前,必須先淋浴。對他們來說,設施裡的動物全都不能離開這裡。「離開的唯一途徑只能經由焚化爐。」有位員工這樣跟我說。

四級生物安全等級實驗室的必要功能。圖/維基百科

吉朗位於墨爾本的西南方,車程約為一小時。在我見到范.歐朋的同一次行程中,我也造訪了這座縮寫為 AAHL(與「maul」同韻腳)的實驗室。我聽說那裡正在進行基因編輯實驗,為此大感興趣。由於生物防治手段再度失敗的關係,一種名為甘蔗蟾蜍(cane toad)的大型蟾蜍成了澳洲人的心頭大患。AAHL 的研究者延續著不斷自我重覆的人類世邏輯,希望能用新一輪的生物控制手段來解決這場災難。他們的計畫也包含用 CRISPR 技術修改蟾蜍的基因組。

負責這項計畫的生物化學家馬克.提薩(Mark Tizard)同意帶我去現場參觀。提薩的身材高瘦,留著有瀏海的白髮,一雙藍眼睛炯炯有神。一如我在澳洲遇到的許多科學家,他也不是本國人,而是來自倫敦。

-----廣告,請繼續往下閱讀-----
在 CRISPR 的技術中,嚮導 RNA(guide RNA)用來鎖定要被剪掉的DNA 段。在細胞試圖修補損傷時,經常會發生錯誤,導致基因失去功能。如果這時提供「修復的範本」,就能引入新的基因序列。※出處:MGMT. design

在蛋殼裡就能分辨小雞性別

在研究兩棲類之前,提薩主要研究的是家禽。幾年前,他跟一些 AAHL 的同事將水母的基因嵌入母雞體內。這種基因跟我準備要嵌入酵母菌的一樣,帶有會發出螢光的蛋白。因此,擁有此基因的雞會在紫外燈下發出詭異的光芒。提薩接著又找出一種嵌入基因的方法,得以使會發光的基因只傳給雄性後代。這麼一來,即便小雞還在蛋殼裡,就能讓人辨別出性別。

提薩知道很多人對經過基因改造的生物感到害怕。他們認為吃這些生物非常噁心,也極度厭惡讓這些生物問世的做法。雖然他不像是柴納那樣的煽動者,但卻也深信這些人的看法大錯特錯。

「我們有一種雞會發出綠光,」提薩跟我說,「某次有個學校團體來訪,當他們看到綠色雞的時候,有些小朋友說:『哇,太酷了。請問如果吃了這些雞,我會變綠色嗎?』

我回答:『你本來就會吃雞肉對嗎?那你有長出羽毛跟雞嘴嗎?』」

-----廣告,請繼續往下閱讀-----

無論如何,按照提薩的看法,現在才在擔心這一小部分的基因問題未免為時已晚。

編輯基因是為了讓受損的生態系獲得改善

「在澳洲的自然環境裡,你會看到尤加利樹、無尾熊、笑翠鳥(kookaburras)等生物,」他說,「在我這個科學家眼中,看到的是多重版本的尤加利樹基因組、多重版本的無尾熊基因組,以此類推。這些基因組都在互相交流。接著,突然之間——『碰』一聲,你把別的基因組放過來,也就是甘蔗蟾蜍的基因組,而因為過去牠從未出現在這裡,所以與其他基因組的交流成了大災難——牠把其他基因組給消滅殆盡了。」

「大家沒看到的是,這已經是個基因修改過的環境。」他接著說道。入侵物種會改變環境,因為牠們帶來完全不屬於這裡的基因組。相較之下,基因工程師不過是在東一點、西一點改變一小部分的 DNA。

「我們做的事可能只是在蟾蜍兩萬個基因之中,加上約莫十個原本不存在的基因,但那十個基因會破壞其他的基因、把蟾蜍從生態系統中移出並回復平衡,」提薩說,「一般人對分子生物學(molecular biology)最經典的問題就是:『你們在扮演上帝嗎?』

-----廣告,請繼續往下閱讀-----

「嗯,當然不是。我們是利用對生物體的理解,摸索著該如何讓受損的生態系獲得改善。」甘蔗蟾蜍的學名是 Rhinella marina,身上有棕色斑點、粗壯的四肢與凹凸不平的外皮。要形容這種動物的外觀,很難不強調尺寸。「甘蔗蟾蜍是體型巨大、長著疣的蟾蜍科生物。」美國魚類與野生動物管理局寫道。「坐在路邊的大型甘蔗蟾蜍容易讓人誤以為是圓石。」美國地質調查局也評道。

紀錄上最大的甘蔗蟾蜍身長約 38.1 分,重達 2.7 公斤——跟吉娃娃一樣重。1980 年代,在布里斯本的昆士蘭博物館中,有一隻名為貝堤.戴維斯(Bette Davis)的蟾蜍,牠長度約為 24 公分,幾乎跟餐盤一樣寬。只要是能塞進牠大嘴裡的東西,這隻蟾蜍幾乎什麼都吃,從老鼠、狗糧以及其他的甘蔗蟾蜍——統統沒問題。

甘蔗蟾蜍的原生地是中南美洲與德州的最南端。有人在 19 世紀中將其引進加勒比海地區。原先的想法是要讓蟾蜍去應付對當地經濟作物甘蔗造成危害的甲蟲幼蟲。(甘蔗也是外來物種;原本生長於新幾內亞。)這些蟾蜍從加勒比海地區被人送到了夏威夷,再從夏威夷送到澳洲。1935 年,有 102 隻蟾蜍被裝上開往檀香山的蒸汽船,其中 101 隻活了下來,最後來到澳洲東北海岸某個種植甘蔗的鄉村研究站。在一年內,牠們產出超過 150 萬顆卵。這些小蟾蜍被人刻意放入該區的河川與池塘中。

自從甘蔗蟾蜍被人引入之後,牠們已經擴散至澳洲多處。目前估計牠們
還會持續拓展地盤。出處:MGMT. design

許多人質疑蟾蜍對甘蔗是否真的有益。因為吃甘蔗的幼蟲棲息在離地很高的地方,這種體型相當於圓石大小的兩棲類碰不到牠們。但這並沒有打倒蟾蜍,因為牠們又找到許多其他東西吃,並且持續繁衍大量的小蟾蜍。從昆士蘭海岸的一小塊地方開始,牠們往北擴散至約克角半島(Cape York Peninsula),往南挺進新南威爾斯州(New SouthWales)。在 1980 年代的某個時間點,蟾蜍進入了北領地(Northern Territory)。在 2005 年,牠們抵達位於北領地西部,離達爾文(Darwin)不遠處的中點區(MiddlePoint)。

-----廣告,請繼續往下閱讀-----

這一路上發生了有趣的事情。在蟾蜍攻城掠地的前期,牠們的入侵速度大概是每年 9.6 公里。幾十年後變成每年約 19.2 公里。當牠們抵達中點區時,已經加速到每年 48 公里。研究人員在測量最前線的蟾蜍大小時,他們找到了原因。最前線的這些蟾蜍的腿與昆士蘭的蟾蜍相比明顯長了許多,而且這項特質是會遺傳的。《北領地新聞》(Northern Territory News)將這則消息放在頭版,標題是〈超級蟾蜍〉。文章的配圖是一張穿著披風的甘蔗蟾蜍合成圖。「這些入侵北領地的可惡甘蔗蟾蜍仍在持續演化中。」報導大嘆。此現象跟達爾文的說法不同,演化的過程似乎「能」讓人類觀察得到。

澳洲一開始其實沒有蟾蜍!

甘蔗蟾蜍不僅體積大得惱人;從人類的角度來看,外觀還很醜:突出的頭骨,外加那一臉鄙夷的神情。但這種動物真正「討人厭」之處,其實是其身體的毒性。若成年蟾蜍被咬到或感覺受威脅,就會釋放出一種乳白色黏液,裡面有足以導致心臟停止的化合物。甘蔗蟾蜍的毒性時常讓狗遭殃,症狀從口吐白沫到心跳停止都有。笨到去吃甘蔗蟾蜍的人,通常最後都死了。

海蟾蜍(學名:Bufo marinus),又名美洲巨蟾蜍、甘蔗蟾蜍。圖/維基百科

澳洲原先沒有有毒的蟾蜍;事實上,這裡最初根本沒有蟾蜍。所以當地的動物都尚未演化到懂得提防牠們。甘蔗蟾蜍的案例有點像美國鯉魚案例的翻版,但角度又有些不同。鯉魚在美國之所以造成麻煩,是因為沒有生物要吃牠們;但甘蔗蟾蜍成為澳洲的威脅,是因為所有生物都想吃牠們。

因捕食甘蔗蟾蜍而導致數量銳減的物種清單長度相當長,並且包羅萬象。其中包含澳洲人稱為「freshies」的澳洲淡水鱷(freshwater crocodile);身長可達 1.5 公尺長的斑巨蜥(yellow- spottedmonitor lizard);其實就是一種小蜥蜴的北部藍舌蜥蜴(blue-tongued lizards);看起來像小型恐龍的橫紋長鬣蜥(water dragon);在英文中蛇如其名、帶有毒性的南棘蛇(common death adder);以及也有毒性的巨棕蛇(king brown snake)。目前,這份受害者名單裡的冠軍,是長相可愛的有袋目動物:北部袋鼬(northern quoll)。北部袋鼬體長約三十公分,有尖尖的臉和長了斑點的棕色皮毛。當袋鼬寶寶離開母親的育兒袋之後,母親會揹著小袋鼬四處走。

-----廣告,請繼續往下閱讀-----

為了要減緩甘蔗蟾蜍的侵略速度,澳洲想出各種巧妙與笨拙程度不一的對策。

蟾蜍終結者(Toadinator)是一種搭載行動式喇叭的陷阱,能播放甘蔗蟾蜍的鳴叫聲(有人覺得聽起來像電話撥號聲,有人則認為像馬達的嗡嗡聲。)昆士蘭大學的研究人員研發出一種誘餌,能夠引誘甘蔗蟾蜍的蝌蚪並消滅牠們。還有人會用空氣步槍去射蟾蜍、用錘子重擊、用高爾夫球桿暴打、故意開車輾壓、把牠們黏在冷凍庫直到結凍、對牠們噴一款名為「止跳(HopStop)」的化合物(這項產品保證「能在幾秒內讓蟾蜍癱瘓」,並在一小時內送牠們上西天)。

各地社區也會招募「蟾蜍剋星」義勇軍。有個名為「金百利蟾蜍剋星(the Kimberley Toad Busters)」的團體建議,澳洲政府應該為捕獵蟾蜍提供獎金。該團體的訴求精神是:「如果人人都是蟾蜍剋星,那蟾蜍會被剋到死!」

一位澳洲小女孩與她的寵物甘蔗蟾蜍「冰雪皇后(Dairy Queen)」。
※出處:Photo: Arthur Mostead Photography, AMPhotography.com.
au

讓甘蔗蟾蜍失去毒性與對澳洲的威脅

當甘蔗蟾蜍開始引起提薩的興趣時,他其實沒親眼看過這種動物。吉朗位於維多利亞州南部,蟾蜍尚未進犯。但在某一天的會議上,他隔壁坐著研究兩棲類的分子生物學家。她對他說,雖然大家不斷努力打擊蟾蜍,但牠們仍在持續擴散。

-----廣告,請繼續往下閱讀-----

「她說,這實在很惱人,若能有什麼新的解決方法就好了,」提薩回憶道,「然後,我坐下來抓了抓頭。」

「我心想:毒素是透過代謝產出的,」他又說道,「也就是酵素,而酵素的產生必然有相關的基因編碼。嗯,我們有能毀掉基因的工具,或許也能毀掉生成毒素的基因。」

提薩找了博士後研究員凱特琳.庫柏(Caitlin Cooper)來幫忙處理這個技術。庫柏有頭及肩的棕長髮,笑聲很有感染力。(她也不是本地人,而是來自麻薩諸塞州。)過去沒有人對甘蔗蟾蜍做過基因改造,所以庫柏需要自己找出方法。她發現,蟾蜍的卵不僅要先洗過,還得用非常細的移液器快速刺穿,否則卵就會開始分裂。「我花了一點時間精進顯微注射技術。」她跟我說。

庫柏先著手改變甘蔗蟾蜍的體色,她把這件事當成某種暖身活動。某個關鍵的色素基因裡含有能讓蟾蜍(人類也一樣)製造酪胺酸酶(tyrosinase)的編碼,而酪胺酸酶能控制黑色素的生成。庫柏推測,若是讓這個色素基因失去作用,就能產出淡色而非深色的蟾蜍。她在培養皿中混合了一些精子與卵子,並在生成的胚胎中,以顯微注射技術注入數種 CRISPR 的相關混合物,並靜待結果。最先出現了三隻有奇怪斑點的蝌蚪——其中一隻死掉了,而另外兩隻(都是雄性)順利長成小蟾蜍。牠們被取名為小花與金金。「結果出爐時,我簡直欣喜若狂。」提薩跟我說。

-----廣告,請繼續往下閱讀-----

庫柏接著把焦點轉向「破壞」蟾蜍的毒性。甘蔗蟾蜍將毒素存在肩膀上的腺體中。

若光憑毒素本身,那只會讓人作嘔。但蟾蜍遭到攻擊的時候,會產生一種蟾蜍毒鹼水解酶(bufotoxin hydrolase),能將毒素的毒性提升一百倍。透過 CRISPR 的技術,庫柏編輯出第二批胚胎的基因,她刪掉了帶有蟾蜍毒鹼水解酶編碼的基因,結果一批沒有毒性的小蟾蜍就誕生了。

——本文摘自《 在大滅絕來臨前:人類能否逆轉自然浩劫?》,2022 年 1 月,臉譜出版