0

0
0

文字

分享

0
0
0

企鵝家族大合照

陸子鈞
・2012/05/27 ・478字 ・閱讀時間少於 1 分鐘 ・SR值 528 ・七年級

計算有幾隻企鵝也許沒有很難,只要牠們別亂動的話(聽起來很簡單是吧?)。或許可以拍一張相,標記出照片中的每一隻企鵝,就可以確保不會算錯,不過誰能到企鵝棲息的遙遠地方(比方南極)拍照呢?

所以科學家現在嘗試利用衛星空照企鵝族群,並且已經能運用在研究中。計算的結果發現,皇帝企鵝(Aptenodytes forsteri)的數量大概是先前所估算的兩倍之多,約有59萬9千隻(誤差約8萬1千隻)。研究團隊還發現了七個新族群,使總族群數量達到44個。

為了要計算企鵝最新的數量,科學家使用全景銳化技術(pansharpening),能辨識影像中究竟是影子、鳥糞堆還是企鵝。華盛頓大學的企鵝專家P. Dee Boersma表示,這項研究成果是重要的突破,雖然企鵝的數量比預期的多,但仍不會改變對皇帝企鵝或其他物種的保育政策

壞消息是,因為全球暖化和氣候變遷,企鵝可能正逐漸消失中。但透過衛星影像,我們能知道哪些區域的企鵝正在減少,以及減少的幅度。

-----廣告,請繼續往下閱讀-----

資料來源:ScienceShot: Counting Penguins From Space [13 April 2012]

文章難易度
陸子鈞
294 篇文章 ・ 4 位粉絲
Z編|台灣大學昆蟲所畢業,興趣廣泛,自認和貓一樣兼具宅氣和無窮的好奇心。喜歡在早上喝咖啡配RSS,克制不了跟別人分享生物故事的衝動,就連吃飯也會忍不住將桌上的食物作生物分類。

0

0
1

文字

分享

0
0
1
為什麼腿短短,走路還搖搖晃晃?解密企鵝賣萌的背後真相!——《鴿子為什麼要邊走邊搖頭?》
晨星出版
・2023/10/24 ・1652字 ・閱讀時間約 3 分鐘

企鵝搖搖晃晃地走路

圖/giphy

說到用兩隻腳走路的鳥類,就不得不提企鵝。企鵝用兩隻腳在冰上搖搖晃晃走路的樣子非常可愛。在水中卻可以自由自在地高速游泳、追捕魚,這兩種樣子帶給人的印象有非常大的不同。

話說,企鵝意外地可以走很長一段距離。牠們會在地上蒐集石頭來作巢,所以當然要可以走到築巢的地點。通常企鵝類的繁殖群會位在距離海岸線幾百公尺的地方,但有時會在距離海岸 3 公里以上的內陸,想像企鵝排成一列搖搖晃晃地走 3 公里,實在是可愛至極。

說是這樣說,但是走 3 公里,我們人類都覺得有點遠了,企鵝真的可以搖搖晃晃走過去嗎?

牠們的走路方式感覺效率很差,好像很累。企鵝走路時腳會使用的力量以及計算其所需能量的研究顯示,企鵝的走路方式一如外表印象,效率很差。大概所有人都會覺得「我想也是」吧,但我們不妨來仔細思考為什麼會效率很差。

-----廣告,請繼續往下閱讀-----
圖/giphy

鵝生好累!企鵝其實一直蹲著?

在討論企鵝的步行時,首先得要知道的是其獨特的體型。企鵝看起來是用兩隻腳站著,腳感覺極端的短。大概因為身上的毛色彷彿穿著燕尾服一樣,總覺得像是人類的喜劇演員一般。

但是牠嚴格說來並不是「站著」。看企鵝的骨骼圖(圖一)就很清楚。髖關節跟膝關節強烈彎曲的姿勢,以人類來說就是「蹲著」。換言之,企鵝時時刻刻都是蹲著的,連走路時也是蹲著的狀態。試著自己蹲著走路看看,就會像企鵝那樣搖搖晃晃地。牠們搖搖晃晃的姿態,背後的祕密就是體型與姿勢。

而由此延伸,企鵝的步行方式非常沒效率的理由,可能就是身體橫向搖擺和轉動幅度非常大。搖擺跟旋轉的動作,對前進而言怎麼看都是不必要的舉動,但是根據之前的研究,其實企鵝不搖晃反而效率會更差。之前也說過雙足步行的動能跟位能要有效率地轉換,才能有效率地運動,但企鵝似乎是用橫向搖擺的動作來進行這種能量轉換。

圖一、企鵝的樣子跟人很像,所以如果讓企鵝在山手線月台上排隊,也不會有人發現(右),但是如果看骨骼(左),企鵝蹲下來就可以跟站著的人類簡單區分開來。

短腿優先?

也就是說,企鵝走路效率不佳的理由,跟牠們這種體型跟姿勢有關。

-----廣告,請繼續往下閱讀-----

企鵝的腳確實很短,以現在還活著的企鵝種類來說,體型最大的皇帝企鵝的體重將近 20 公斤,和澳洲的平胸鳥類鶆䴈幾乎相同,然而比較這兩種鳥類的腿長的話,鶆䴈的髖關節大概在 80 公分高的位置,而皇帝企鵝大概在 30 公分高左右。明明體重差不多相同,企鵝的腳的長度卻只有鶆䴈的一半以下,步行效率差也是沒辦法的事。

本章已經反覆提過好幾次,腿愈長一般來說會步行速度愈快、效率也愈好,企鵝的短腳和蹲下的姿勢非常不適合走路,這點沒有人能否定。

圖/giphy

企鵝的腳會這麼短,恐怕是為了在寒冷地帶保住體溫。雖然也有棲息在熱帶的企鵝,但多數企鵝都棲息在極地,在水中跟地面上不失去體溫就是牠們最重要的課題。四肢末梢要是比較長,就會因為體積的表面積變大,容易失去體溫。所以在寒冷地帶演化的物種,耳朵等突出部位通常都會比較小。

雖然意外地能走很長距離,但企鵝仍然主要屬於在寒冷地區游泳的鳥類,為此演化出的短腿跟蹲著的姿勢,必須讓身體左右搖晃走路來補足才更有效率。

-----廣告,請繼續往下閱讀-----

——本文摘自《鴿子為什麼要邊走邊搖頭?》,2023 年 8 月,晨星出版,未經同意請勿轉載。

0

4
2

文字

分享

0
4
2
逝者已矣?為什麼我們卻覺得他們好像從沒離開——《悲傷的的大腦》
臉譜出版_96
・2023/03/24 ・2216字 ・閱讀時間約 4 分鐘

那些我們仍忘不了的逝者

幾年前,我有位年長的同事過世,我在他過世後的幾個月裡花了一些時間陪伴他的遺孀。那位同事是研究睡眠的重要學者,時常為參加世界各地的學術研討會而四處旅行。

有一次和他的遺孀吃晚餐時,她一邊搖頭一邊告訴我,她實在對丈夫已經離世這件事沒有真實感,她感覺丈夫好像只是又出門旅行了,隨時都會再次從家門走進來。

許多哀悼中的人仍覺得過世的親人或愛人仍會回來。圖/envatoelements

大家大概都聽過正在哀悼失去的人這麼說,不過這並不是因為產生了幻覺,畢竟這些人通常同時也會說自己確實知道對方已逝;他們並不是因為太害怕悲傷的情緒而拒絕接受現實,也不是在否認真相。

還有另一個抱持這種信念的知名案例,也就是瓊.蒂蒂安(Joan Didion)的著作《奇想之年》(The Year of Magical Thinking)。蒂蒂安在書中寫道,她實在無法把已逝丈夫的鞋子送出去,因為她覺得「他或許有一天還穿得到。」

-----廣告,請繼續往下閱讀-----

為何即便理智上知道事實,我們卻還是相信那些已經離開人世的重要他人終究會回到自己身邊呢?從大腦的神經系統就能推斷這種矛盾現象從何而來,因為大腦神經系統會創造出不同層面的資訊,並傳輸到人類的意識裡。

如果深愛的人不見了,大腦會預設這些人只是當下不在我們身邊,之後一定還找得到他們;對大腦來說,對方已經不在這個世界上,空間、時間、關係的向度都已不再適用的概念根本就不合邏輯。

我在第五章會再從神經生物學的角度向大家解釋,為何人類會渴望找到離開的重要他人;在本章我們要探討的議題則是,為何我們相信自己終究找得到這些逝者?

我們仍渴望找回他們。圖/envatoelements

在依附關係裡留下鮮明的記憶

心理學家約翰.雅徹(John Archer)在他的著作《悲傷是什麼》(The Nature of Grief,書名為暫譯)裡提出,正因為演化的強大力量,人類才能在明知道事實並非如此的情況下,依然相信所愛之人終究會回到自己身邊。

-----廣告,請繼續往下閱讀-----

人類物種發展的早期,相信配偶會帶著食物回來的個體會持續待在子代身邊,而這些孩子也因為有正在等待配偶回家的父母貼身保護,才更有機會存活下來;我們在動物世界裡也能觀察到這種現象。在《企鵝寶貝》(March of the Penguins)紀錄片裡,皇帝企鵝爸爸在南極的嚴酷環境下負責孵蛋,等待企鵝媽媽從冰凍的大海裡覓食回家。

企鵝爸爸保護這些蛋的決心十分驚人—公企鵝能夠維持約四個月的時間不進食,一心等待配偶回來。附帶一提,同性配偶關係的企鵝伴侶也是同樣優秀的家長;中央公園動物園(Central Park Zoo)的公企鵝伴侶羅伊(Roy)和塞隆(Silo)就孵出了一隻可愛的小企鵝探戈(Tango),並且成功將牠養育長大。

無論企鵝家長究竟是公是母,最重要的是其中一方必須維持信念,相信配偶即便在極地消失了很長一段時間,依然會帶著食物回到自己身邊。假如原本應該待在原地保護企鵝蛋的一方認定伴侶不會回來,自顧自地到海裡捕魚,這些蛋就無法成功孵化,也可能導致幼雛死亡。

企鵝孵蛋和養育雛鳥的過程始終相信伴侶還會回來。圖/envatoelements

那些始終維持信念,相信伴侶會回來而靜靜等待的企鵝,更有可能成功將蛋孵化或將幼雛扶養長大。在影片中,我們可以看到在上千隻的企鵝中,覓食回家的企鵝媽媽必須透過企鵝爸爸獨特的叫聲找到伴侶。這些企鵝克服了數不盡的種種困難,動物的天性實在令人讚嘆。

-----廣告,請繼續往下閱讀-----

是什麼讓企鵝願意為了待在下一代的身邊而絕食?這種依附關係究竟是如何運作?企鵝伴侶之間無形的連結是如何形成?企鵝伴侶之間的緊密關係實在令人心醉。

繁殖季剛開始時,成雙成對的企鵝伴侶會互相交頸纏繞,對彼此發出求偶的叫聲;此時牠們的大腦也開始出現生理變化,在腦神經深深烙下了對伴侶的記憶,留下明確的標記,這樣牠們就不會忘記伴侶的樣貌、氣味、叫聲。

企鵝伴侶在彼此中留下深刻的記憶。圖/envatoelements

在企鵝的大腦裡,伴侶不再只是隨便一隻企鵝了,而是最重要的那隻企鵝。企鵝伴侶離開彼此身邊,一方覓食、一方孵蛋的時候,牠們腦中對於伴侶的印象已不僅僅是一般的記憶,同時還帶著某種信念或動力──「我要等他回來,他就是那個特別的存在,是專屬於我的存在。」

在人類身上亦然,因為你的所愛之人存在於世上,大腦裡的某些神經細胞才會同時激發,某些蛋白質才會在你的大腦裡以特別的方式折疊。

-----廣告,請繼續往下閱讀-----

也正因為你的所愛之人曾經那樣活生生地存在於世上,正因為你們曾經如此相愛,他們才會在死去後卻依然存在──活在你的腦神經細胞裡。

——本文摘自《悲傷的大腦:一位心理神經免疫學者的傷慟考,從腦科學探究失去摯愛的悲痛與修復》,2023 年 3 月,臉譜出版,未經同意請勿轉載。

臉譜出版_96
85 篇文章 ・ 255 位粉絲
臉譜出版有著多種樣貌—商業。文學。人文。科普。藝術。生活。希望每個人都能找到他要的書,每本書都能找到讀它的人,讀書可以僅是一種樂趣,甚或一個最尋常的生活習慣。

0

7
2

文字

分享

0
7
2
宇宙學的最大謎團!有超過90%的世界都是暗物質和暗能量,但,它們究竟是什麼?──《大人的宇宙學教室:透過微中子與重力波解密宇宙起源》
台灣東販
・2022/08/08 ・3400字 ・閱讀時間約 7 分鐘

-----廣告,請繼續往下閱讀-----

觀測星系時,科學家發現了「看不見的物質」

我們現在所看到的人類、太陽、星系以及星系群等等,所有東西都是由物質構成。「物質構成了宇宙的全部」這個概念長年以來深植於人類心中。

宇宙是由物質構成的,但究竟是由甚麼物質構成的呢?圖 / twenty20photos

不過,後來我們了解到,宇宙中存在著許多我們人類看不到的物質,那就是「暗物質(dark matter)」。這個名稱聽起來很像科幻作品中的虛構物質,卻實際存在於宇宙中,而且暗物質在宇宙中的含量,遠多於我們看得到的「物質」

1934 年,瑞士的天文學家茲威基(Fritz Zwicky,1898~1974)觀測「后髮座星系團」時,發現周圍星系的旋轉速度所對應的中心質量,與透過光學觀測結果推算的中心質量不符。

周圍星系的轉速明顯過快,推測存在 400 倍以上的重力缺損(missing mass)。

在這之後,美國天文學家魯賓(Vera Rubin,1928~2016)於 1970 年代觀測仙女座星系時,發現周圍與中心部分的旋轉速度幾乎沒什麼差別,並推論仙女座的真正質量,是以光學觀測結果推算出之質量的 10 倍左右。

-----廣告,請繼續往下閱讀-----

到了 1986 年,科學家們觀測到了宇宙中的大規模結構,發現星系的分布就像是泡泡般的結構。若要形成這種結構,僅靠觀測到的質量是不夠的。

為了補充質量的不足,科學家們假設宇宙中存在「看不見的物質=暗物質」。

看不到卻存在?暗物質究竟是什麼?

既然看不到,那我們怎麼確定暗物質真的存在?圖 / twenty20photos

前面提到我們看不見暗物質,而且不只用可見光看不到,就連用無線電波、X 射線也不行,任何電磁波都無法檢測出這種物質(它們不帶電荷,交互作用極其微弱)。

因為用肉眼、X 射線,或者其他方法都看不到它們,所以稱其為「暗」物質。

不過,從星系的運動看來,可以確定「那裡確實存在眼見所及之上的重力(質量)」。這就是由暗物質造成的重力。

-----廣告,請繼續往下閱讀-----

看不到的能量:暗能量

事實上,科學家們也逐漸了解到,宇宙中除了暗物質之外,還存在「看不見的能量」。

原本科學家們認為,宇宙膨脹速度應該會愈來愈慢才對,不過,1998 年觀測 Ⅰa 型超新星(可精確估計距離)時,發現宇宙的膨脹正在加速中。這個結果證明宇宙充滿了我們看不到的能量「暗能量(dark energy)」。而且,暗能量的量應該比暗物質還要更多。

我們過去所知道的「物質」,以及暗物質、暗能量在宇宙中的估計比例,如下圖所示。 這項估計是基於 WMAP 衛星(美國)於 2003 年起觀測的宇宙微波背景輻射(CMB),計算出來的結果。

圖/台灣東販

後來,普朗克衛星(歐洲太空總署)於 2013 年起開始觀測宇宙,並發表了更為精準的數值。

-----廣告,請繼續往下閱讀-----
  • 什麼是「普朗克衛星」?

歐洲太空總署(ESA)為了觀測距離我們 138 億光年的宇宙微波背景輻射(CMB)而發射至宇宙的觀測裝置(人造衛星)。可與 NASA 發射,廣視角、低感度的 WMAP 衛星互相對照。由 WMAP 衛星製成的 CMB 地圖,計算出宇宙年齡應為 137 億年左右,誤差在正負 2 億年內;普朗克衛星則製作出了更為詳細的 CMB 地圖,並以此推論出宇宙年齡應為 138 億年左右,誤差在正負 6000 萬年內,數字更為精準。

歐洲太空總署(ESA)為了觀測距離我們 138 億光年的宇宙微波背景輻射(CMB)而發射至宇宙的觀測裝置(人造衛星)。可與 NASA 發射,廣視角、低感度的 WMAP 衛星互相對照。由 WMAP 衛星製成的 CMB 地圖,計算出宇宙年齡應為 137 億年左右,誤差在正負 2 億年內;普朗克衛星則製作出了更為詳細的 CMB 地圖,並以此推論出宇宙年齡應為 138 億年左右,誤差在正負 6000 萬年內,數字更為精準。  

暗物質的真面目,究竟是什麼?微中子嗎?

既然暗物質有質量,那會不會是由某種基本粒子構成的呢?也有人認為暗物質是在宇宙初期誕生的迷你黑洞(原始黑洞),而我也致力於這些研究,不過相關說明不在此贅述。

已知的基本粒子(共 17 種)以及其他未知粒子,都有可能是暗物質,在這些粒子當中最被看好的是微中子。

因為暗物質不帶電荷,不與其他物質產生交互作用,會輕易穿過其他物質。這些暗物質的特徵與微中子幾乎相同。而且,宇宙中也確實充滿了微中子。因此,微中子很可能是暗物質的真面目。

-----廣告,請繼續往下閱讀-----

不過,目前的物理學得出的結論卻是「微中子不可能是暗物質的主要成分」。

NASA 曾經想透過星系團的碰撞來了解暗物質的特性。圖/NASA

為什麼微中子被撇除了呢?

這是因為,雖然微中子大量存在於宇宙中,質量卻太輕了。雖然科學家們現在還不確定微中子的精準質量是多少,不過依照目前的宇宙論,3 個世代的微中子總質量上限應為 0.3eV。如果暗物質是微中子,那麼 3 個世代的微中子總質量應高達 9eV 才對,兩者相差過大。

另一方面,暗物質中的冷暗物質(cold dark matter)的速度應該會非常慢才對。

宇宙暴脹時期會產生密度的擾動,進而產生暗物質的擾動(空間的擾動應與觀測到的 CMB 擾動相同),這種微妙的重力偏差,會讓周圍的暗物質聚集,提升重力,進一步吸引更多原子聚集,最後形成我們現在看到的星系。

-----廣告,請繼續往下閱讀-----

相較於此,微中子過輕(屬於熱暗物質,hot dark matter),會以高速飛行。微中子無法固定在一處,這樣就無法聚集起周圍的原子,自然也無法形成星系。

暗物質、暗能量的真相究竟是甚麼?仍然是宇宙學中最大的謎團!

熱暗物質、冷暗物質

這裡要介紹的是熱暗物質與冷暗物質。所謂的「熱暗物質」,指的是由像微中子那樣「以接近光速的速度飛行」的粒子組成暗物質的形式。

宇宙微波背景輻射(CMB)可顯示出宇宙初期的溫度起伏,因而得知存在相當微小,卻十分明顯的擾動,此擾動與暗物質的擾動相同。擾動中,物質會往較濃的部分聚集,並形成星系或星系團等大規模結構。

不過,如同我們前面提到的,科學家們認為以接近光速的速度運動的微中子,在程度那麼微弱的宇宙初期擾動下,很難形成現今的星系團。

-----廣告,請繼續往下閱讀-----

於是,科學家們假設宇宙中還存在著速度非常慢的未知粒子「冷暗物質」。

冷暗物質的候選者包括「超對稱粒子(SUSY 粒子)」當中光的超伴子——超中性子(neutralino)、名為軸子(axion)的假設粒子;另外,也有人認為原始黑洞可能是「冷暗物質的候選者」,雖然黑洞並不是基本粒子。

在討論暗物質時,即使不假設這些未知粒子的存在,在標準模型的範圍內,微中子也是呼聲很高的候選者。

如同在討論熱暗物質時提到的,當我們認為微中子應該不是主要暗物質時,就表示基本粒子物理學需要一個超越標準理論的新理論,這點十分重要。

-----廣告,請繼續往下閱讀-----
宇宙微波背景(CMB)是宇宙大霹靂後遺留下來的熱輻射,充滿了整個宇宙。圖 / 台灣東販

那麼,微中子真的完全不可能是暗物質嗎?

倒也並非如此。如果存在右旋的微中子,由於我們還不曉得它的質量以及存在量,所以「微中子是暗物質」的可能性還沒完全消失。不過,這樣就必須引入超越標準理論的理論才行。

在目前只有發現左旋、符合標準理論的微中子的情況下,一切都還未知。關於這點,我們將在《大人的宇宙學教室:透過微中子與重力波解密宇宙起源》第 6 章第 7 節詳細說明。

——本文摘自《大人的宇宙學教室:透過微中子與重力波解密宇宙起源》,2022 年 6 月,台灣東販,未經同意請勿轉載。

台灣東販
5 篇文章 ・ 3 位粉絲
台灣東販股份有限公司是在台灣第1家獲許投資的國外出版公司。 本公司翻譯各類日本書籍,並且發行。 近年來致力於雜誌、流行文化作品與本土原創作品的出版開發,積極拓展商品的類別,期朝全面化,多元化,專業化之目標邁進。