Loading [MathJax]/extensions/tex2jax.js

1

0
1

文字

分享

1
0
1

《真的能像頭文字D裡飆車又不讓水灑出來嗎?》——2019數感盃 / 國中組專題報導類金獎 

數感實驗室_96
・2019/05/17 ・2586字 ・閱讀時間約 5 分鐘 ・SR值 537 ・八年級

數感盃青少年寫作競賽」提供國中、高中職學生在培養數學素養後,一個絕佳的發揮舞台。本競賽鼓勵學生跨領域學習,運用數學知識,培養及展現邏輯思考與文字撰寫的能力,盼提升臺灣青少年科普寫作的風氣以及對數學的興趣。

本文為 2019數感盃青少年寫作競賽 / 國中組專題報導類第一名 之作品,為盡量完整呈現學生之作品樣貌,本文除首圖及標點符號、錯字之外並未進行其他大幅度編修。

  • 作者:林柏廷/台北市私立復興實驗高級中學
圖/imdb

一、研究動機

從小,我就幻想著能夠開著一台酷炫的法拉利快速行駛在路上,帥氣地飆車和甩尾。想必每個人也都想像過自己在車道上疾速奔馳吧!如果又能夠像頭文字D的主角藤原拓海一樣,把車開得又快又穩,不知道該有多帥!

二、研究背景簡介

在頭文字D裡,為了要訓練拓海的駕駛能力,他的父親曾在車上裝了一杯水,且要求他不能將杯子裡的水灑出來,否則就不能回家。最終,拓海練成了一身絕技,車子開得又快又穩,彷彿人車合一,就此成為了新一代的秋名山車神。不過這真的有可能嗎?我們真的能夠高速行駛且不讓水灑出來嗎?

三、研究過程

首先,我們觀察一些生活中類似的情況。為什麼我們在拿著一杯盛滿的水走路時,水會灑出來呢?因為慣性!我們人前進了,但是水會因為慣性還留在原地,所以水就灑出來了。不過如果用假想力來看,在一個非慣性坐標系當中,如果人用一個a的加速度走路,那水杯裡質量為m的水就會受到-ma的假想力(負號是因為假想力的方向與加速度的方向相反)。如果轉彎的話,這個力就叫離心力。這就像有人在杯子裡使用-ma的力推這杯水,讓水灑出來(當然,杯子裡沒有真的躲著人,因為假想力顧名思義就是一個假想的力)。

如(圖一),電影中杯子裡的水並不是盛滿的,水面到杯緣有一定的深度。

-----廣告,請繼續往下閱讀-----
(圖一) 電影中車上水杯一景

如(圖二)所示,我們試著畫圖計算估計這杯水在拓海轉彎時的運動情形。藍線為水在杯裡的高度;紅線為轉彎時的水面,可以看到水面是傾斜的。圖中標示了杯口的直徑 x 和轉彎水面最低點到杯口的距離 h。以非慣性坐標系來看,車裡的水受到了向下 mg 的重力和 -ma 的假想力,合力方向也呈現在圖中。合力方向就是車子裡新的重力場方向,所以水面會大約垂直這個合加速度的方向。

(圖二)拓海車中水杯示意圖

如(圖三):

(圖三) 兩個相似三角形示意圖

透過相似三角形,我們證出 x : h = mg: m│a│。即,a 的大小等於 gh/x 。我們知道車子在轉彎時,若曲率半徑為R,切線速度為 V,向心加速度為 V2/R。如(圖四)所示:

(圖四) 圓周運動

我們依上述公式可做出下列統整:

-----廣告,請繼續往下閱讀-----

四、實證分析

有一般化公式後,我們只需要代入數字,便可求出拓海在轉彎時不讓水灑出來的加速度。從(圖一)電影裡的水杯特寫當中,我們觀察到水杯直徑 x 和水面最低點到杯口的距離 h 比大約為 5:1,即:

此時再找出轉彎的曲率半徑,就可以找到拓海開車的時速囉!如(圖五)所示,曲率半徑就是 AE86 車身長的一半加上護欄圍繞住轉彎處所形成的局部近似圓半徑。

(圖五)影片中AE86轉彎情形

上網查詢資料後,我們得知 AE86 車身長約為 4.2 公尺,質量中心大約在車身長一半處,也就是 2 公尺的位置。求出局部近似圓半徑的方法如下:

如(圖六)所示,到 google maps 尋找秋名山髮夾彎的道路,將螢幕截圖後利用小畫家點出其圓上相異四點,再透過弦的垂直平分線找出圓心。點出圓心後,利用 google maps 測量距離求出圓半徑。

-----廣告,請繼續往下閱讀-----
(圖六)繪畫垂直平分線求局部近似圓圓心和半徑

透過 google maps 和小畫家,我們找出了局部近似圓的半徑,約為 8 公尺。將其數字和車身長度 2 公尺相加,我們就得到了長度約為 10 公尺的曲率半徑。這時,再沿用之前推論的加速度,代入向心加速度公式中:

求出拓海的行駛速度v為 √19 m/s,大約是每秒 4.4 公尺。

4.4 * 60 * 60 / 1000 = 15.84

換算成時速大約是 16 km/hr。

-----廣告,請繼續往下閱讀-----

這速度其實是十分緩慢的,到底有多慢呢?舉個例子做對比:一般國中生跑 100 公尺的時間大概都在 20 秒以內,也就是說 1 秒內大約都能跑 5 公尺。

欸?拓海開車的速度竟然比我們國中生奔跑還要慢!拓海恐怕真的會被對手嗆說:「我跑步就比你快了!」,這樣,秋名山車神的面子怎麼掛得住?那麼,想必大家應該很好奇,如果要漫畫裡快速行駛又不讓水灑出來的情境呈現於現實生活當中,需要一個多大的杯子?一樣的,我們只需要代入想要的時速,做簡單的換算之後就可以算出來啦!

我們估計拓海賽車的時速會超過 150 km/hr。若以時速 162公里計算,換算成秒速是 45 m/s,那麼我們就可以透過下述的算式求出車子的向心加速度:

這加速度大約是重力加速度 g 的 20 倍。也就是說,這杯子裡水面到杯口的距離,根據相似三角形,必須要是 5 公分的 20 倍,也就是 100 公分。拓海至少要使用一個超過 1 公尺深的杯子才能在時速 162 km/hr 的情況下開車又不讓水灑出來。

-----廣告,請繼續往下閱讀-----

五、結論探討

利用相似三角形和電影中水杯特寫的比例,我們求出了拓海轉彎的加速度;利用向心加速度公式、google maps、和小畫家,我們求出了拓海的行駛速度,最後得到的結果為:若依照電影情節,拓海的行駛速度大約要低於 16 km/hr 才可避免水灑出來;若要以時速 162 公里的速度開車,就需要一個高於 1 公尺的杯子。顯然我們很難找到一個 1 公尺高的杯子直立在車裡。這是一件非常不合理的事。這樣的話,拓海估計永遠回不了家了,除非他買了一個如(圖八)的巨大杯子。

(圖八) 巨大杯子示意圖。(圖片提供 / IG : liu_1215)

更多2019數感盃青少年寫作競賽內容,歡迎參考 2019數感盃特輯、數感實驗室官網粉絲頁喔。

-----廣告,請繼續往下閱讀-----
文章難易度
所有討論 1
數感實驗室_96
76 篇文章 ・ 50 位粉絲
數感實驗室的宗旨是讓社會大眾「看見數學」。 數感實驗室於 2016 年 4 月成立 Facebook 粉絲頁,迄今超過 44,000 位粉絲追蹤。每天發布一則數學文章,內容包括介紹數學新知、生活中的數學應用、或是數學和文學、藝術等跨領域結合的議題。 詳見網站:http://numeracy.club/ 粉絲專頁:https://www.facebook.com/pg/numeracylab/

0

0
0

文字

分享

0
0
0
LDL-C 正常仍中風?揭開心血管疾病的隱形殺手 L5
鳥苷三磷酸 (PanSci Promo)_96
・2025/06/20 ・3659字 ・閱讀時間約 7 分鐘

-----廣告,請繼續往下閱讀-----

本文與 美商德州博藝社科技 HEART 合作,泛科學企劃執行。

提到台灣令人焦慮的交通,多數人會想到都市裡的壅塞車潮,但真正致命的「塞車」,其實正悄悄發生在我們體內的動脈之中。

這場無聲的危機,主角是被稱為「壞膽固醇」的低密度脂蛋白( Low-Density Lipoprotein,簡稱 LDL )。它原本是血液中運送膽固醇的貨車角色,但當 LDL 顆粒數量失控,卻會開始在血管壁上「違規堆積」,讓「生命幹道」的血管日益狹窄,進而引發心肌梗塞或腦中風等嚴重後果。

科學家們還發現一個令人困惑的現象:即使 LDL 數值「看起來很漂亮」,心血管疾病卻依然找上門來!這究竟是怎麼一回事?沿用數十年的健康標準是否早已不敷使用?

膽固醇的「好壞」之分:一場體內的攻防戰

膽固醇是否越少越好?答案是否定的。事實上,我們體內攜帶膽固醇的脂蛋白主要分為兩種:高密度脂蛋白(High-Density Lipoprotein,簡稱 HDL)和低密度脂蛋白( LDL )。

-----廣告,請繼續往下閱讀-----

想像一下您的血管是一條高速公路。HDL 就像是「清潔車隊」,負責將壞膽固醇( LDL )運來的多餘油脂垃圾清走。而 LDL 則像是在血管裡亂丟垃圾的「破壞者」。如果您的 HDL 清潔車隊數量太少,清不過來,垃圾便會堆積如山,最終導致血管堵塞,甚至引發心臟病或中風。

我們體內攜帶膽固醇的脂蛋白主要分為兩種:高密度脂蛋白(HDL)和低密度脂蛋白(LDL)/ 圖片來源:shutterstock

因此,過去數十年來,醫生建議男性 HDL 數值至少應達到 40 mg/dL,女性則需更高,達到 50 mg/dL( mg/dL 是健檢報告上的標準單位,代表每 100 毫升血液中膽固醇的毫克數)。女性的標準較嚴格,是因為更年期後]pacg心血管保護力會大幅下降,需要更多的「清道夫」來維持血管健康。

相對地,LDL 則建議控制在 130 mg/dL 以下,以減緩垃圾堆積的速度。總膽固醇的理想數值則應控制在 200 mg/dL 以內。這些看似枯燥的數字,實則反映了體內一場血管清潔隊與垃圾山之間的攻防戰。

那麼,為何同為脂蛋白,HDL 被稱為「好」的,而 LDL 卻是「壞」的呢?這並非簡單的貼標籤。我們吃下肚或肝臟製造的脂肪,會透過血液運送到全身,這些在血液中流動的脂肪即為「血脂」,主要成分包含三酸甘油酯和膽固醇。三酸甘油酯是身體儲存能量的重要形式,而膽固醇更是細胞膜、荷爾蒙、維生素D和膽汁不可或缺的原料。

-----廣告,請繼續往下閱讀-----

這些血脂對身體運作至關重要,本身並非有害物質。然而,由於脂質是油溶性的,無法直接在血液裡自由流動。因此,在血管或淋巴管裡,脂質需要跟「載脂蛋白」這種特殊的蛋白質結合,變成可以親近水的「脂蛋白」,才能順利在全身循環運輸。

肝臟是生產這些「運輸用蛋白質」的主要工廠,製造出多種蛋白質來運載脂肪。其中,低密度脂蛋白載運大量膽固醇,將其精準送往各組織器官。這也是為什麼低密度脂蛋白膽固醇的縮寫是 LDL-C (全稱是 Low-Density Lipoprotein Cholesterol )。

當血液中 LDL-C 過高時,部分 LDL 可能會被「氧化」變質。這些變質或過量的 LDL 容易在血管壁上引發一連串發炎反應,最終形成粥狀硬化斑塊,導致血管阻塞。因此,LDL-C 被冠上「壞膽固醇」的稱號,因為它與心腦血管疾病的風險密切相關。

高密度脂蛋白(HDL) 則恰好相反。其組成近半為蛋白質,膽固醇比例較少,因此有許多「空位」可供載運。HDL-C 就像血管裡的「清道夫」,負責清除血管壁上多餘的膽固醇,並將其運回肝臟代謝處理。正因為如此,HDL-C 被視為「好膽固醇」。

-----廣告,請繼續往下閱讀-----
為何同為脂蛋白,HDL 被稱為「好」的,而 LDL 卻是「壞」的呢?這並非簡單的貼標籤。/ 圖片來源:shutterstock

過去數十年來,醫學界主流觀點認為 LDL-C 越低越好。許多降血脂藥物,如史他汀類(Statins)以及近年發展的 PCSK9 抑制劑,其主要目標皆是降低血液中的 LDL-C 濃度。

然而,科學家們在臨床上發現,儘管許多人的 LDL-C 數值控制得很好,甚至很低,卻仍舊發生中風或心肌梗塞!難道我們對膽固醇的認知,一開始就抓錯了重點?

傳統判讀失準?LDL-C 達標仍難逃心血管危機

早在 2009 年,美國心臟協會與加州大學洛杉磯分校(UCLA)進行了一項大型的回溯性研究。研究團隊分析了 2000 年至 2006 年間,全美超過 13 萬名心臟病住院患者的數據,並記錄了他們入院時的血脂數值。

結果發現,在那些沒有心血管疾病或糖尿病史的患者中,竟有高達 72.1% 的人,其入院時的 LDL-C 數值低於當時建議的 130 mg/dL「安全標準」!即使對於已有心臟病史的患者,也有半數人的 LDL-C 數值低於 100 mg/dL。

-----廣告,請繼續往下閱讀-----

這項研究明確指出,依照當時的指引標準,絕大多數首次心臟病發作的患者,其 LDL-C 數值其實都在「可接受範圍」內。這意味著,單純依賴 LDL-C 數值,並無法有效預防心臟病發作。

科學家們為此感到相當棘手。傳統僅檢測 LDL-C 總量的方式,可能就像只計算路上有多少貨車,卻沒有注意到有些貨車的「駕駛行為」其實非常危險一樣,沒辦法完全揪出真正的問題根源!因此,科學家們決定進一步深入檢視這些「駕駛」,找出誰才是真正的麻煩製造者。

LDL 家族的「頭號戰犯」:L5 型低密度脂蛋白

為了精準揪出 LDL 裡,誰才是最危險的分子,科學家們投入大量心力。他們發現,LDL 這個「壞膽固醇」家族並非均質,其成員有大小、密度之分,甚至帶有不同的電荷,如同各式型號的貨車與脾性各異的「駕駛」。

為了精準揪出 LDL 裡,誰才是最危險的分子,科學家們投入大量心力。發現 LDL 這個「壞膽固醇」家族並非均質,其成員有大小、密度之分,甚至帶有不同的電荷。/ 圖片來源:shutterstock

早在 1979 年,已有科學家提出某些帶有較強「負電性」的 LDL 分子可能與動脈粥狀硬化有關。這些帶負電的 LDL 就像特別容易「黏」在血管壁上的頑固污漬。

-----廣告,請繼續往下閱讀-----

台灣留美科學家陳珠璜教授、楊朝諭教授及其團隊在這方面取得突破性的貢獻。他們利用一種叫做「陰離子交換層析法」的精密技術,像是用一個特殊的「電荷篩子」,依照 LDL 粒子所帶負電荷的多寡,成功將 LDL 分離成 L1 到 L5 五個主要的亞群。其中 L1 帶負電荷最少,相對溫和;而 L5 則帶有最多負電荷,電負性最強,最容易在血管中暴衝的「路怒症駕駛」。

2003 年,陳教授團隊首次從心肌梗塞患者血液中,分離並確認了 L5 的存在。他們後續多年的研究進一步證實,在急性心肌梗塞或糖尿病等高風險族群的血液中,L5 的濃度會顯著升高。

L5 的蛋白質結構很不一樣,不僅天生帶有超強負電性,還可能與其他不同的蛋白質結合,或經過「醣基化」修飾,就像在自己外面額外裝上了一些醣類分子。這些特殊的結構和性質,使 L5 成為血管中的「頭號戰犯」。

當 L5 出現時,它並非僅僅路過,而是會直接「搞破壞」:首先,L5 會直接損傷內皮細胞,讓細胞凋亡,甚至讓血管壁的通透性增加,如同在血管壁上鑿洞。接著,L5 會刺激血管壁產生發炎反應。血管壁受傷、發炎後,血液中的免疫細胞便會前來「救災」。

-----廣告,請繼續往下閱讀-----

然而,這些免疫細胞在吞噬過多包括 L5 在內的壞東西後,會堆積在血管壁上,逐漸形成硬化斑塊,使血管日益狹窄,這便是我們常聽到的「動脈粥狀硬化」。若這些不穩定的斑塊破裂,可能引發急性血栓,直接堵死血管!若發生在供應心臟血液的冠狀動脈,就會造成心肌梗塞;若發生在腦部血管,則會導致腦中風。

L5:心血管風險評估新指標

現在,我們已明確指出 L5 才是 LDL 家族中真正的「破壞之王」。因此,是時候調整我們對膽固醇數值的看法了。現在,除了關注 LDL-C 的「總量」,我們更應該留意血液中 L5 佔所有 LDL 的「百分比」,即 L5%。

陳珠璜教授也將這項 L5 檢測觀念,從世界知名的德州心臟中心帶回台灣,並創辦了美商德州博藝社科技(HEART)。HEART 在台灣研發出嶄新科技,並在美國、歐盟、英國、加拿大、台灣取得專利許可,日本也正在申請中,希望能讓更多台灣民眾受惠於這項更精準的檢測服務。

一般來說,如果您的 L5% 數值小於 2%,通常代表心血管風險較低。但若 L5% 大於 5%,您就屬於高風險族群,建議進一步進行影像學檢查。特別是當 L5% 大於 8% 時,務必提高警覺,這可能預示著心血管疾病即將發作,或已在悄悄進展中。

-----廣告,請繼續往下閱讀-----

對於已有心肌梗塞或中風病史的患者,定期監測 L5% 更是評估疾病復發風險的重要指標。此外,糖尿病、高血壓、高血脂、代謝症候群,以及長期吸菸者,L5% 檢測也能提供額外且有價值的風險評估參考。

隨著醫療科技逐步邁向「精準醫療」的時代,無論是癌症還是心血管疾病的防治,都不再只是單純依賴傳統的身高、體重等指標,而是進一步透過更精密的生物標記,例如特定的蛋白質或代謝物,來更準確地捕捉疾病發生前的徵兆。

您是否曾檢測過 L5% 數值,或是對這項新興的健康指標感到好奇呢?

-----廣告,請繼續往下閱讀-----
文章難易度

討論功能關閉中。

0

3
2

文字

分享

0
3
2
我發現你每次過彎都很不自然,到底彎要怎麼過才順暢?
車輛中心ARTC_96
・2019/07/10 ・1958字 ・閱讀時間約 4 分鐘 ・SR值 564 ・九年級

每次過彎都要到極限?轉向不足或過度都有危險!

在車輛轉彎的過程中,當車輛轉彎的速度達到車輛轉彎的極限,車輛會存在兩種轉向特性,即轉向不足和轉向過度。何謂轉向不足及轉向過度?我們可以用下圖(抓地力圓)來說明:

當車輛轉彎的速度達到極限,車輛會存在兩種轉向特性,即轉向不足和轉向過度。圖/ARTC提供

  • X 座標代表車輛在轉彎時由於慣性所產生的離心力(主要受車速和轉向角度影響)
  • Y 座標代表驅動力
  • Z 座標代表合力
  • 圓圈則代表輪胎與地面之間的最大抓地力。

輪胎和路面一定的情況下所產生的抓地力理論上固定,離心力和驅動力的改變都會引起合力的改變。當合力大於抓地力時,輪胎就會沿著合力的方向滑動。如果這個輪胎位於前輪,就是轉向不足。如果這個輪胎位於後輪,那麼出現的就是轉向過度。

更具體的解釋,就是車頭或是車尾哪一個部分的輪胎先失去抓地力。

轉向不足的情況就是前輪喪失了抓地力,在沒有導向力的牽引下,加上車輛原本的慣性推著汽車往前跑,駕駛者就會有彎道轉不過去的感覺。

-----廣告,請繼續往下閱讀-----

轉向不足的情況(紅線)就是前輪喪失了抓地力,會讓駕駛覺得彎道彎不過去。圖/wikimedia

轉向過度就是後輪先失去了抓地力,但是因為前輪還擁有抓地力,因此後輪會以比前輪更快的速度往前跑,駕駛者會覺得車子轉得太多了。

轉向過度(紅線)就是後輪先失去了抓地力,駕駛者會覺得車子轉得太多了。圖/wikimedia

相較於轉向過度來說,轉向不足是比較穩定的,只要把車輛的速度降低下來,通常前輪的抓地力就會恢復,車輛就在控制之中,這就是為什麼幾乎所有的道路用車輛都刻意設計得偏向轉向不足。不過要克服轉向不足就是要慢下來,在賽車中這可不是好事,因此賽車的調校都會避免轉向不足的設定。而轉向過度與轉向不足相比則是高度的不穩定,除非駕駛者做出很快地技巧性修正方向盤及油門,否則一旦轉向過度,通常都是以打滑失控收場。

-----廣告,請繼續往下閱讀-----

不過有轉向過度傾向的底盤設定實際上是協助車子入彎,而且在失控的範圍之內,它的過彎速度遠比轉向不足要快上許多,這也是為什麼幾乎所有的賽車都刻意將底盤的設定朝轉向過度多一點。汽車設計上有很多因素可以影響到轉向特性,比如車輛的軸距、輪距、車輛的重量、車輛的重量分配比例、懸吊結構和調教、輪胎、地面抓地力係數等,這些因素加起來形成一部車的轉向特性。

後輪驅動 vs. 前輪驅動,過彎特性有差嗎?

我們普遍能夠聽到的一種說法是前驅車的特性是轉向不足、後驅車的特性是轉向過度。這種說法不完全對,是一種比較片面的說法,也就是純粹由驅動力改變引發輪胎滑動的情況。前驅車的驅動力施加在前輪,突然增加驅動力自然會引發轉向不足。後驅車的驅動力施加在後輪,突然增加驅動力自然會引發轉向過度。這是一種人為製造的轉向不足或者轉向過度。

而我們可以人為改變的因素還有很多,比如增加離心力或降低抓地力。假設用很快的速度入彎,那無論前驅車還是後驅車都會發生轉向不足。又假設大力煞車的同時猛打方向盤,那無論前驅車還是後驅車都會發生轉向過度。

此外,四驅車是由四個車輪分擔整體驅動力,分配到每個驅動輪上的驅動力比前驅或者後驅車上的都要小,所以四驅車能夠承受更大的整體驅動力。這也就是為什麼四驅車通常要比前驅和後驅的過彎能力高。

-----廣告,請繼續往下閱讀-----

那台86就是這樣過彎的!人家有練過別亂學喔!

基本上甩尾是轉向過度的現象,算是一種特殊的駕駛技巧,又叫「滑胎」或「漂移」。主要用在表演或是路況變化較大的賽車活動,其中又以越野賽裡應用頻率較多,而其他競速類的賽車則較少運用甩尾技巧過彎。這主要原因是甩尾雖然可以在過彎時保持較高的引擎轉速,但由於在一般柏油路面上過彎時車速減損較多,再加上輪胎損耗較大,除非是特殊原因,車手並不會經常在競賽過程中使用此技巧。他的原理是利用鎖死輪胎(後輪)或是大踩油門(後輪驅動),或是利用轉向貫性,使輪胎與地面的相對速度大幅提升,輪胎與地面由靜摩擦力變為動摩擦力,降低抓地力而出現打滑的狀況,產生轉向過度的效果。

防禦駕駛小撇步-轉向不足或轉向過度時該怎麼辦?圖/ARTC提供

延伸閱讀

本文出自財團法人車輛研究測試中心;原文《汽車過彎的動態特性》,如需轉載,歡迎與車輛中心聯繫。

-----廣告,請繼續往下閱讀-----
車輛中心ARTC_96
9 篇文章 ・ 3 位粉絲
財團法人車輛研究測試中心 (ARTC),江湖俗稱車測中心,但更希望大家能稱呼我們為「車輛中心」,因為我們不只做測試,我們也做創新研發;我們是由一群對車輛有著專業知識與熱情的工程師所組成,期望透過泛科學這個平台與大家分享各種車輛知識,讓大家更懂車。