Loading [MathJax]/extensions/tex2jax.js

0

1
1

文字

分享

0
1
1

冬眠的松鼠和阿茲海默症病人的大腦有點像?

活躍星系核_96
・2018/05/17 ・1809字 ・閱讀時間約 3 分鐘 ・SR值 559 ・八年級

-----廣告,請繼續往下閱讀-----

文/洪浩恩 │ 中興大學獸醫學系

圖/海棉寶寶劇照

北美洲的金背地松鼠(Callospermophilus  lateralis)被作為研究冬眠的實驗動物。科學家發現松鼠在冬眠時,大腦中磷酸化 tau蛋白(tau protein)會大量的出現,就像程度嚴重的阿茲海默症(Alzheimer’s disease)患者一樣,而隨著環境慢慢恢復成適合牠們活動的條件,松鼠就像是沒事一般的甦醒過日子,讓人吃驚的是牠們原來瀰漫於大腦中的磷酸化 tau蛋白幾乎完全消失。

真實世界的珊迪(金背地松鼠)其實長這樣。 圖/Eborutta [CC BY-SA 3.0] via wikipedia

阿茲海默症與磷酸化 tau 蛋白

從失智症患者的大腦組織被觀察到類澱粉蛋白斑塊(amyloid plaques)至今,阿茲海默症持續被人們研究了 110 年,即使我們對於疾病的進程有更多的了解,卻始終無法找到一個好的方法能有效治療它。

以現在累積的證據來看,人們相信阿茲海默症的成因,最可能肇因於一種(可能)用來協助神經細胞維持和運輸功能的微管蛋白tau,這些原本就廣布於神經系統的蛋白因為某個不明原因,可能是受到遺傳或是環境因子影響而產生了過度磷酸化(hyperphosphorylation),而後這些磷酸化 tau蛋白就到處瀰漫,甚至與組織間的其他碎屑產生糾纏,於是讓身體不得不透過炎症反應來玉石俱焚的類澱粉蛋白斑塊就這麼誕生了。

-----廣告,請繼續往下閱讀-----
崩解的維管蛋白。 圖/wikipedia

在神經退化性疾病的研究中,科學家致力於尋找活化神經可塑性(neuronal plasticity)的關鍵,因為如阿茲海默症的例子,即使我們清除了所有的斑塊,也得讓患者的神經系統恢復到原來的樣子,眾多關於神經可塑性的探索行動,有人開始注意到冬眠(hibernation)這種一直存在於我們身邊的神奇事情。

恆溫動物腦中的磷酸化 tau蛋白在冬眠時大幅增加,但在甦醒後又漸漸消失。如圖所示,自休眠開始(F、F’);剛甦醒(G、G’);到甦醒一段時間(H、H’),磷酸化 tau蛋白漸次從畫面中消失。 圖/原始論文

協助大腦冬眠「關機」的 tau 蛋白

冬眠是一種動物用來渡過惡劣環境以盡量減少能量消耗的行為策略,在冬眠期間的哺乳動物,其代謝速率、心跳和呼吸頻率都會大幅下降,在這個時候為了不必要的能量消耗,大腦幾乎停止活動,腦細胞會減少,那麼,tau蛋白在這時候大量出現又隨著甦醒消失,如此安排用意為何呢?

冬眠期間的海馬迴組織循環變化。在神經末端的神經傳導分子消失與再現的周期性變化與 tau蛋白的磷酸化和去磷酸化時間一致。(點圖可放大)圖/原始論文

科學家相信磷酸化 tau蛋白的出現,帶來一種協助大腦「關機」的訊號,在環境不利於生存時,腦中需要將暫時不需要的神經連結除去,以保住那些和生命直接相關的部分,這個現象也發現在倉鼠和黑熊腦中,特別是科學家還在壽命較長的黑熊腦中,發現了未被還原而留下來形成斑塊的 tau蛋白,根據目前在動物行為上的長期記憶實驗結果,這些甦醒的動物在社交上的記憶是不受冬眠影響的,而空間性的學習記憶則有程度不一的損傷,有一種鼠耳蝠(Myotis myotis)則能保留完整的空間記憶。

在漫長的演化歷程中,人類的基因始終帶著這樣的機制,阿茲海默症患者的腦中,tau蛋白說不定預知了危險,為了保護大腦而來,可惜喚醒它的可能是我們的衰老或其他因素,面對突如其來的變化,沒有走進冬眠程序的我們無法逆轉它。

-----廣告,請繼續往下閱讀-----

松鼠和其他動物,靠著冬眠捱過嚴冬,在遙遠的未來,如果人們想要實現太空旅行,除了交通載具的突破外,如何讓人進入冬眠又能毫髮無傷地悠然轉醒會是相當重要的,或許等到那時候,一直困擾著科學家的阿茲海默症也將得到了解答。

也難怪 NASA 會聘請松鼠了。 圖/海綿寶寶劇照
-----廣告,請繼續往下閱讀-----
文章難易度
活躍星系核_96
778 篇文章 ・ 128 位粉絲
活躍星系核(active galactic nucleus, AGN)是一類中央核區活動性很強的河外星系。這些星系比普通星系活躍,在從無線電波到伽瑪射線的全波段裡都發出很強的電磁輻射。 本帳號發表來自各方的投稿。附有資料出處的科學好文,都歡迎你來投稿喔。 Email: contact@pansci.asia

0

1
0

文字

分享

0
1
0
ECU: 汽車大腦的演化與挑戰
鳥苷三磷酸 (PanSci Promo)_96
・2025/07/02 ・3793字 ・閱讀時間約 7 分鐘

本文與 威力暘電子 合作,泛科學企劃執行。

想像一下,當你每天啟動汽車時,啟動的不再只是一台車,而是一百台電腦同步運作。但如果這些「電腦」突然集體當機,後果會有多嚴重?方向盤可能瞬間失靈,安全氣囊無法啟動,整台車就像失控的高科技廢鐵。這樣的「系統崩潰」風險並非誇張劇情,而是真實存在於你我日常的駕駛過程中。

今天,我們將深入探討汽車電子系統「逆天改運」的科學奧秘。究竟,汽車的「大腦」—電子控制單元(ECU),是如何從單一功能,暴增至上百個獨立系統?而全球頂尖的工程師們,又為何正傾盡全力,試圖將這些複雜的系統「砍掉重練」、整合優化?

第一顆「汽車大腦」的誕生

時間回到 1980 年代,當時的汽車工程師們面臨一項重要任務:如何把汽油引擎的每一滴燃油都壓榨出最大動力?「省油即省錢」是放諸四海皆準的道理。他們發現,關鍵其實潛藏在一個微小到幾乎難以察覺的瞬間:火星塞的點火時機,也就是「點火正時」。

如果能把點火的精準度控制在「兩毫秒」以內,這大約是你眨眼時間的百分之一到千分之一!引擎效率就能提升整整一成!這不僅意味著車子開起來更順暢,還能直接省下一成的油耗。那麼,要如何跨過這道門檻?答案就是:「電腦」的加入!

-----廣告,請繼續往下閱讀-----

工程師們引入了「微控制器」(Microcontroller),你可以把它想像成一顆專注於特定任務的迷你電腦晶片。它能即時讀取引擎轉速、進氣壓力、油門深度、甚至異常爆震等各種感測器的訊號。透過內建的演算法,在千分之一秒、甚至微秒等級的時間內,精準計算出最佳的點火角度,並立刻執行。

從此,引擎的性能表現大躍進,油耗也更漂亮。這正是汽車電子控制單元(ECU)的始祖—專門負責點火的「引擎控制單元」(Engine Control Unit)。

汽車電子控制單元的始祖—專門負責點火的「引擎控制單元」(Engine Control Unit)/ 圖片來源:shutterstock

ECU 的失控暴增與甜蜜的負荷

第一顆 ECU 的成功,在 1980 年代後期點燃了工程師們的想像:「這 ECU 這麼好用,其他地方是不是也能用?」於是,ECU 的應用範圍不再僅限於點火,燃油噴射量、怠速穩定性、變速箱換檔平順度、ABS 防鎖死煞車,甚至安全氣囊的引爆時機……各種功能都交給專屬的 ECU 負責 。

然而,問題來了:這麼多「小電腦」,它們之間該如何有效溝通?

-----廣告,請繼續往下閱讀-----

為了解決這個問題,1986 年,德國的博世(Bosch)公司推出了一項劃時代的發明:控制器區域網路(CAN Bus)。你可以將它想像成一條專為 ECU 打造的「神經網路」。各個 ECU 只需連接到這條共用的線路上,就能將訊息「廣播」給其他單元。

更重要的是,CAN Bus 還具備「優先通行」機制。例如,煞車指令或安全氣囊引爆訊號這類攸關人命的重要訊息,絕對能搶先通過,避免因資訊堵塞而延誤。儘管 CAN Bus 解決了 ECU 之間的溝通問題,但每顆 ECU 依然需要獨立的電源線、接地線,並連接各種感測器和致動器。結果就是,一輛汽車的電線總長度可能達到 2 到 4 公里,總重量更高達 50 到 60 公斤,等同於憑空多載了一位乘客的重量。

另一方面,大量的 ECU 與錯綜複雜的線路,也讓「電子故障」開始頻繁登上汽車召回原因的榜首。更別提這些密密麻麻的線束,簡直是設計師和維修技師的惡夢。要檢修這些電子故障,無疑讓人一個頭兩個大。

大量的 ECU 與錯綜複雜的線路,也讓「電子故障」開始頻繁登上汽車召回原因的榜首。/圖片來源:shutterstock

汽車電子革命:從「百腦亂舞」到集中治理

到了2010年代,汽車電子架構迎來一場大改革,「分區架構(Zonal Architecture)」搭配「中央高效能運算(HPC)」逐漸成為主流。簡單來說,這就像在車內建立「地方政府+中央政府」的管理系統。

-----廣告,請繼續往下閱讀-----

可以想像,整輛車被劃分為幾個大型區域,像是車頭、車尾、車身兩側與駕駛艙,就像數個「大都會」。每個區域控制單元(ZCU)就像「市政府」,負責收集該區所有的感測器訊號、初步處理與整合,並直接驅動該區的馬達、燈光等致動器。區域先自理,就不必大小事都等中央拍板。

而「中央政府」則由車用高效能運算平台(HPC)擔任,統籌負責更複雜的運算任務,例如先進駕駛輔助系統(ADAS)所需的環境感知、物體辨識,或是車載娛樂系統、導航功能,甚至是未來自動駕駛的決策,通通交由車輛正中央的這顆「超級大腦」執行。

乘著這波汽車電子架構的轉型浪潮中, 2008 年成立的台灣本土企業威力暘電子,便精準地切入了這個趨勢,致力於開發整合 ECU 與區域控制器(Domain Controller)功能的模組化平台。他們專精於開發電子排檔、多功能方向盤等各式汽車電子控制模組。為了確保各部件之間的溝通順暢,威力暘提供的解決方案,就像是將好幾個「分區管理員」的職責,甚至一部分「超級大腦」的功能,都整合到一個更強大的硬體平台上。

這些模組不僅擁有強大的晶片運算能力,可同時支援 ADAS 與車載娛樂,還能兼容多種通訊協定,大幅簡化車內網路架構。如此一來,車廠在追求輕量化和高效率的同時,也能顧及穩定性與安全性。

-----廣告,請繼續往下閱讀-----
2008 年威力暘電子致力於開發整合 ECU 與區域控制器(Domain Controller)功能的模組化平台 /圖片來源:shutterstock

萬無一失的「汽車大腦」:威力暘的四大策略

然而,「做出來」與「做好」之間,還是有差別。要如何確保這顆集結所有功能的「汽車大腦」不出錯?具體來說,威力暘電子憑藉以下四大策略,築起其產品的可靠性與安全性:

  1. AUTOSAR : 導入開放且標準化的汽車軟體架構 AUTOSAR。分為應用層、運行環境層(RTE)和基礎軟體層(BSW)。就像在玩「樂高積木」,ECU 開發者能靈活組合模組,專注在核心功能開發,從根本上提升軟體的穩定性和可靠性。
  2. V-Model 開發流程:這是一種強調嚴謹、能在早期發現錯誤的軟體開發流程。就像打勾 V 字形般,左側從上而下逐步執行,右側則由下而上層層檢驗,確保每個階段的安全要求都確實落實。
  3. 基於模型的設計 MBD(Model-Based Design) 威力暘的工程師們會利用 MatLab®/Simulink® 等工具,把整個 ECU 要控制的系統(如煞車),用數學模型搭建起來,然後在虛擬環境中進行大量的模擬和測試。這等於在實體 ECU 誕生前,就能在「數位雙生」世界中反覆演練、預先排除設計缺陷,,並驗證安全機制是否有效。
  4. Automotive SPICE (ASPICE) : ASPICE 是國際公認的汽車軟體「品質管理系統」,它不直接評估最終 ECU 產品本身的安全性,而是深入檢視團隊在軟體開發的「整個過程」,也就是「方法論」和「管理紀律」是否夠成熟、夠系統化,並只根據數據來評估品質。

既然 ECU 掌管了整輛車的運作,其能否正常運作,自然被視為最優先項目。為此,威力暘嚴格遵循汽車業中一本堪稱「安全聖經」的國際標準:ISO 26262。這套國際標準可視為一本針對汽車電子電氣系統(特別是 ECU)的「超嚴格品管手冊」和「開發流程指南」,從概念、設計、測試到生產和報廢,都詳細規範了每個安全要求和驗證方法,唯一目標就是把任何潛在風險降到最低

有了上述這四項策略,威力暘確保其產品從設計、生產到交付都符合嚴苛的安全標準,才能通過 ISO 26262 的嚴格檢驗。

然而,ECU 的演進並未就此停下腳步。當ECU 的數量開始精簡,「大腦」變得更集中、更強大後,汽車產業又迎來了新一波革命:「軟體定義汽車」(Software-Defined Vehicle, SDV)。

-----廣告,請繼續往下閱讀-----

軟體定義汽車 SDV:你的愛車也能「升級」!

未來的汽車,會越來越像你手中的智慧型手機。過去,車輛功能在出廠時幾乎就「定終身」,想升級?多半只能換車。但在軟體定義汽車(SDV)時代,汽車將搖身一變成為具備強大運算能力與高速網路連線的「行動伺服器」,能夠「二次覺醒」、不斷升級。透過 OTA(Over-the-Air)技術,車廠能像推送 App 更新一樣,遠端傳送新功能、性能優化或安全修補包到你的車上。

不過,這種美好願景也將帶來全新的挑戰:資安風險。當汽車連上網路,就等於向駭客敞開潛在的攻擊入口。如果車上的 ECU 或雲端伺服器被駭,輕則個資外洩,重則車輛被遠端鎖定或惡意操控。為了打造安全的 SDV,業界必須遵循像 ISO 21434 這樣的車用資安標準。

威力暘電子運用前面提到的四大核心策略,確保自家產品能符合從 ISO 26262 到 ISO 21434 的國際認證。從品質管理、軟體開發流程,到安全認證,這些努力,讓威力暘的模組擁有最高的網路與功能安全。他們的產品不僅展現「台灣智造」的彈性與創新,也擁有與國際大廠比肩的「車規級可靠度」。憑藉這些實力,威力暘已成功打進日本 YAMAHA、Toyota,以及歐美 ZF、Autoliv 等全球一線供應鏈,更成為 DENSO 在台灣少數核准的控制模組夥伴,以商用車熱系統專案成功打入日系核心供應鏈,並自 2025 年起與 DENSO 共同展開平台化量產,驗證其流程與品質。

毫無疑問,未來車輛將有更多運作交由電腦與 AI 判斷,交由電腦判斷,比交由人類駕駛還要安全的那一天,離我們不遠了。而人類的角色,將從操作者轉為監督者,負責在故障或斷網時擔任最後的保險。透過科技讓車子更聰明、更安全,人類甘願當一個「最弱兵器」,其實也不錯!

-----廣告,請繼續往下閱讀-----
-----廣告,請繼續往下閱讀-----
文章難易度

討論功能關閉中。

0

4
3

文字

分享

0
4
3
前額葉皮質的奇蹟:如何保養你的記憶引擎!——《記憶決定你是誰》
天下文化_96
・2024/08/04 ・2641字 ・閱讀時間約 5 分鐘

憂鬱症或阿茲海默症?前額葉皮質的雙面效應

額葉損傷病患遇到的記憶問題,跟我們在日常生活中所面對的記憶挑戰有著直接的關聯,而這個關聯成為我對前額葉皮質深感興趣的原因之一。即使在沒有具體損傷的情況下,前額葉皮質的功能仍會受到許多因素影響,進一步導致顯著的記憶問題,例如我在埃文斯頓醫院神經心理學診間測試的許多病患,轉介過來是為了評估阿茲海默症的可能性,但在進一步測驗後,卻發現是臨床上的憂鬱症。

在年紀較長的成人身上,憂鬱症有可能看起來很像早期的阿茲海默症,好比我曾經測驗過一名剛退休不久的學校老師,他一向以頭腦清晰自豪,現在卻難以專注,一直忘東忘西。儘管從磁振造影看不出明顯的腦部損傷,但他的認知卻不比前額葉皮質受損的人好上多少。他和醫生都沒想到,這些認知問題可能與他剛經歷一場離婚,以及幾十年來第一次獨居的情況有關。

前額葉皮質是腦部最晚成熟的區域之一,在整個青春期會持續調整與其他腦區的聯繫。兒童雖然學習很快,卻不擅長專注在應該專注的事物上,因為容易分心。這對於有 ADHD(注意力缺失/過動障礙症)的兒童更是嚴重,他們在學校表現不佳並不是因為缺乏理解力,而是因為在教室裡難以集中注意力、培養有效的學習習慣,以及利用可以應付考試的策略。有大量證據顯示,ADHD與前額葉皮質的異常活動有關。

前額葉皮質也是我們進入老年時,首先開始衰退的區域之一,我們因此覺得自己變得比較健忘。幸好,對多數年長的人來說,形成記憶的能力不會有問題,倒是專注力的改變會影響我們記憶事件的方式。舉例來說,你可能記不住你在表妹婚禮上遇到的某個人叫什麼名字,卻可以記得你們會面時各式各樣的其他資訊,諸如他臉上有雀斑,戴著鮮黃色的領結,或不停說著他最近到田納西州那許維爾(Nashville)的事。

-----廣告,請繼續往下閱讀-----

隨著年齡變長,我們想起瑣事卻想不起重要事情的傾向也會提高。已經有無數研究顯示,在必須專心、忽視干擾的情況下記憶時,年長者表現得比年輕人要差,然而他們記得干擾訊息的能力卻與年輕人一樣好,有時甚至更好。隨著年歲漸長,我們依然能夠學習,卻較難專注於想要記住的細節,反倒常常記住無關緊要的事情。

多工殺手:為什麼一心多用讓你大腦退化

除了年齡之外,讓你覺得自己的前額葉皮質有問題的因素多得不得了。在現代世界裡,一心多用恐怕是最常見的罪魁禍首。我們的對話、活動和會議不斷受到簡訊、電話的干擾,而我們本身又常把注意力分散在好幾個目標上,使得問題更加嚴重。就算是神經科學家也無法免於多工作業--在今天,幾乎每一場學術演講中,都能發現臺下的科學家(包括我自己)拿出筆記型電腦,時而聽講、時而回電子郵件。

很多人甚至對一心多用的能力很自豪,但同時做兩件事很難不用付出代價。為了達成目標,前額葉皮質能幫助我們專注在所需的事情上,但如果我們在不同目標間迅速換來換去,這項美妙的能力就會消失。

加州大學舊金山分校神經科學家安卡佛(Melina Uncapher)的團隊便指出,「媒體多工」(media multitasking)對記憶不利,意思是在不同媒體的訊息間切換會妨礙記憶,例如一下子看簡訊、一下子看電子郵件。更嚴重的是,習慣重度媒體多工的人,平均而言前額葉皮質的某些區域會變得較薄。

-----廣告,請繼續往下閱讀-----

至於額葉的功能失常究竟是媒體多工的原因或是結果,還需要更多研究才能了解,但不管如何,這裡傳達出來的訊息相當一致。我的樂團夥伴米勒爾(Earl Miller)是世界頂尖的前額葉皮質專家及麻省理工學院的教授,他經常這樣說:

「沒有所謂一心多用;你只是輪流把不同的事情做得很糟。」

前額葉的功能也會遭到一些健康問題的破壞。例如高血壓和糖尿病會傷害大腦各區域間相互溝通的神經纖維通路,也就是白質。我和同事發現,與年齡相關的白質損傷,似乎會讓前額葉皮質失去跟大腦其他部分的聯繫--試想這名執行長被單獨鎖在房間裡,無法使用電話和網路。

感染疾病後如果造成腦部的發炎,也可能導致相似的結果,例如在新冠肺炎流行早期受到感染的人,注意力和記憶力等執行功能出現衰退,而且前額葉皮質部分區域的結構發生改變。

一旦前額葉的運作發生改變,就可能導致「腦霧」(又稱為「長新冠」)--當感染的時間很長,或罹患慢性疲勞症候群(chronic fatigue syndrome)等與感染相關的病症時,有機率出現腦霧的症狀。

-----廣告,請繼續往下閱讀-----
感染或罹患慢性疲勞症候群,都可能影響到前額葉皮質。圖/envato

養成健康生活:強化前額葉皮質的簡單步驟

如果我們生活時忽視自己的身心健康,也可能使前額葉皮質暫時失能。例如睡眠剝奪可能對前額葉皮質和記憶造成毀滅性的打擊。酒精也對前額葉皮質帶來負面影響,有些研究顯示這些影響在大量喝酒後還會持續好幾天。我們在後面的章節將探討,壓力會破壞前額葉的運作。如果你在充滿壓力的一週工作之後,熬夜喝酒又不停滑手機看網路新聞,然後整個週末都在跟腦霧奮戰,不用太驚訝。

幸運的是,我們確實可以做一些事來增進前額葉皮質的運作,雖然那些事可能跟你想的不一樣。你的腦是身體的一部分,所以任何對身體有幫助的事情,對你的腦都有幫助,進一步也對記憶有幫助。例如充足的睡眠、適度的運動、健康的飲食,這些事物都有益於你的生理和心理健康,也有益於你的前額葉皮質。

有氧運動如跑步,能促進腦部化學物質釋放,進而提升神經可塑性,改善為腦運送氧氣和能量的血管系統,降低發炎並減少罹患腦血管疾病和糖尿病的可能性。運動也會改善睡眠、降低壓力,而睡眠不足和壓力過高正是耗盡前額葉資源的兩大元凶。

這些因素會一同作用,影響記憶功能在我們年齡增長時的維持狀況。有一項令人敬佩的研究,追蹤了多達兩萬九千人的記憶表現,發現那些在生活方式裡包含上述某些有益因素的人,在十年期間記憶能力的維持狀況也較佳。

-----廣告,請繼續往下閱讀-----

——本文摘自《記憶決定你是誰:探索心智基礎,學習如何記憶》,2024 年 7 月,天下文化,未經同意請勿轉載

-----廣告,請繼續往下閱讀-----

討論功能關閉中。

天下文化_96
142 篇文章 ・ 624 位粉絲
天下文化成立於1982年。一直堅持「傳播進步觀念,豐富閱讀世界」,已出版超過2,500種書籍,涵括財經企管、心理勵志、社會人文、科學文化、文學人生、健康生活、親子教養等領域。每一本書都帶給讀者知識、啟發、創意、以及實用的多重收穫,也持續引領台灣社會與國際重要管理潮流同步接軌。

0

5
0

文字

分享

0
5
0
含糖飲料讓思考能力受損,還和失智有關聯?——《大自然就是要你胖!》
天下文化_96
・2024/06/24 ・2352字 ・閱讀時間約 4 分鐘

認知與失智

阿茲海默症是現代社會面臨的一大困擾,這種可怕的疾病是俗稱老年痴呆的失智症最常見的原因,也是 2022 年全美第七大死因。阿茲海默症是一種行為失能疾病,目前尚無有效的治療方法。這項疾病的特徵是神經元會持續死亡、大腦萎縮、神經元之間形成富含 β 澱粉樣蛋白(beta-amyloid)的蛋白質斑塊,並在神經元內部出現濤蛋白(tau)累積。患者通常一開始的症狀是短期記憶喪失,並在幾年內發展為完全的失智。

阿茲海默症中,Tau蛋白異常會造成腦細胞內的微管瓦解。圖/wikimedia

大多數科學家認為,若能阻止澱粉樣蛋白在腦部沉積或濤蛋白在腦神經中累積,就可以預防失智症。然而,目前有幾種治療失智症的方法,正是採行預防或減少澱粉樣斑塊累積,只是全都失敗,導致有人質疑澱粉樣蛋白斑塊是否真的是致病原因,並開始嘗試尋找其他可能的解釋。

許多科學家指出,阿茲海默症患者在早期通常會表現出兩種顯著的特徵。首先,患者大腦中的某些區域,會減少對葡萄糖的吸收和代謝,因此有人將阿茲海默症稱為「大腦糖尿病」或「第三型糖尿病」。其次,大腦神經元內的能量工廠粒線體,不論是數量或功能都出現下滑,導致 ATP 產量減少。這兩項特徵都顯示生存開關可能涉入其中。

的確,大量攝取糖、高升糖碳水化合物和鹽,全都是阿茲海默症的危險因子,而這些食物正好都會啟動生存開關。肥胖症和糖尿病等疾病也可能提高罹患阿茲海默症的風險。若果糖是導致肥胖症和糖尿病的根本原因,而肥胖症和糖尿病又與阿茲海默症的罹患風險上升有關,那可以合理懷疑:果糖也可能是造成阿茲海默症的原因。

-----廣告,請繼續往下閱讀-----

實驗研究也支持糖與認知之間的關聯。例如,實驗室大鼠飲用含糖飲料之後,思考能力會受損。我的同事生理學家魯尼(Kieron Rooney)每天餵食大鼠兩小時的蔗糖水,濃度為 10%,大約與軟性飲料相同,為期一個月。結果這些喝糖水的大鼠,變得很難找到走出迷宮的路。更令人擔憂的是,即使大鼠停止飲用糖水,這種情況還是持續了六週。同樣的,經常飲用軟性飲料的兒童,在閱讀、寫作、文法和數學方面的學業表現,都相對較差。

經常飲用軟性飲料的兒童,在閱讀、寫作、文法和數學方面的學業表現,都相對較差。圖/envato

這些研究顯示,攝取含糖飲料可能對認知功能造成影響,而且影響所及的時間有可能持續。然而,這不一定代表蔗糖會導致失智。即使每天喝一種或多種含糖飲料,與情節記憶(episodic memory,對過去經歷或事件的回憶)受損和腦容量萎縮有關,但目前還無法做出任何定論。

不過,有愈來愈多證據將果糖與阿茲海默症聯繫起來。阿茲海默症患者大腦中的果糖濃度偏高,且含量比同年齡、同性別的非患者高出四至六倍,而果糖濃度最高的地方通常就是病變區域。也有證據顯示,大腦中的果糖大多是透過多元醇途徑生成。這些患者腦內有大量的山梨糖醇,也就是果糖的前驅物,這跟躁鬱症患者的情況類似。正如我們所知的,果糖一旦生成,會刺激生存開關啟動,造成細胞中的 ATP 含量減少。此外,阿茲海默症患者大腦中負責「清除」AMP 的酵素濃度,比同年齡對照組高出約兩倍。AMP 原本可重新轉化為 ATP,當愈多 AMP 遭到清除,腦內的能量濃度也就隨之下降。

我認為果糖導致阿茲海默症的途徑大致如下。之前提過,在缺少食物時,身體會活化生存開關以保護大腦,這時血液中的葡萄糖無法進入肌肉和肝臟,而會保留在血液中供大腦吸收與使用。這道開關的運作是透過阻斷胰島素作用來完成,因為肌肉和肝細胞需要胰島素才能吸收和使用葡萄糖,但大腦多半不需要。

-----廣告,請繼續往下閱讀-----
阿茲海默症患者大腦中的果糖濃度偏高,且含量比同年齡、同性別的非患者高出四至六倍,而果糖濃度最高的地方通常就是病變區域。圖/envato

然而有例外,大腦中與記憶和決策相關的區域,需要借助胰島素的作用才能攝取葡萄糖。加州大學洛杉磯分校的神經生理學家戈梅茲皮尼拉(Fernando Gomez-Pinilla)發現,大鼠攝取果糖後,大腦中與記憶和決策相關的區域會失去對胰島素的反應,導致葡萄糖吸收減少。實際上,果糖引起胰島素抗性的區域除了肌肉和肝臟,還有與記憶相關的大腦重要區域,這或許正是阿茲海默症的根本原因。

但限制大腦的這些特定區域攝取葡萄糖,對生存有什麼好處?之前提過,衝動和探索屬於覓食行為。記憶受壓抑的動物,可能更願意前往危險區域探索,因為牠們忘了潛在危險,而決策區受損的動物則會變得更衝動。因此可合理推測,果糖會透過在特定大腦區域引發胰島素抗性,以促進覓食行為,這是一種生存反應。

生存開關活化導致特定腦區的功能受到短期抑制,一開始的確能帶來生存優勢,但如果是反覆或慢性的刺激,反而可能導致腦部損傷。這些重要的神經元長期得不到足夠的葡萄糖,最終可能因為營養不良而功能受損。而且果糖代謝會對粒線體造成氧化壓力,使得 ATP 產量減少,更使狀況進一步惡化。一旦 ATP 濃度過低,神經元會死亡,最後的結果就是阿茲海默症。依此觀點來看,阿茲海默症患者大腦的後續變化,例如澱粉樣蛋白和濤蛋白的積累,都是次要的,而阿茲海默症的根本原因,主要是生存開關慢性活化。

——本文摘自《大自然就是要你胖!》,2024 年 06 月,天下文化出版,未經同意請勿轉載。

-----廣告,請繼續往下閱讀-----
-----廣告,請繼續往下閱讀-----

討論功能關閉中。

天下文化_96
142 篇文章 ・ 624 位粉絲
天下文化成立於1982年。一直堅持「傳播進步觀念,豐富閱讀世界」,已出版超過2,500種書籍,涵括財經企管、心理勵志、社會人文、科學文化、文學人生、健康生活、親子教養等領域。每一本書都帶給讀者知識、啟發、創意、以及實用的多重收穫,也持續引領台灣社會與國際重要管理潮流同步接軌。