0

1
0

文字

分享

0
1
0

不是只有數字才是數據,語意分析讓電腦掌握文字背後的情感-專訪意藍科技董事長楊立偉

陳妤寧
・2016/05/24 ・2677字 ・閱讀時間約 5 分鐘 ・SR值 554 ・八年級

採訪 / 陳妤寧
撰文 / 李允誠

2013年時,哈利波特作者 J.K. 羅琳化名 Robert Galbraith 創作了一本偵探小說《Cuckoo》,評價雖高,銷量卻不好。英國的電腦科學家透過語意分析技術,將此著作和羅琳以往寫作文本比對,發現寫作手法極為接近,這也讓 J.K. 羅琳為真實作者一事曝光,《Cuckoo》因此大受關注,立刻竄上亞馬遜暢銷榜第一名。

上述案例中,語意分析可謂關鍵角色,但語意分析究竟如何運作?如何快速解構文本類型的「大數據」?本篇專訪中,鑽研中文語意分析的意藍科技董事長楊立偉,從技術原理談到語意分析各種應用和挑戰,深入分析了語意分析背後的眉角。

從單詞到文章,文本分析更深、更廣、更快

過去的資料探勘,大多侷限於結構化資料,像是論文、專利、論文、新聞稿等經過嚴謹撰寫完成的文章。隨著社群網站興起,人們在網路上發表意見變得越來越容易、卻也更零碎、甚至參雜許多錯字讓電腦難以精準判讀。而透過大數據為基礎發展演算法的語意分析,能夠分析非結構化的資訊,像是散文、小說等較無固定格式的文本,加深文本分析的廣度,同時納入圖片、影音各種非結構化資料所能提供的資訊。

-----廣告,請繼續往下閱讀-----

假設你現在想查詢一個新聞事件,並分析網友、鄉民的看法,最直覺的方式便是利用 Google 進行關鍵字搜索,但這樣只能做到關鍵字比對,如此一來搜索出的資料將有幾百萬、幾千萬之譜,該如何進行整理、重點摘要?總不可能人工比對吧,這時,語意分析的優點便顯現出來了。楊立偉表示,語意分析透過爬梳大量網路資料,每日能夠搜索 60 億筆中文字詞,快速找出每日重要資訊。

2014 年 5 月時,越南發生排華暴動。楊立偉以當時分析越南地區的中文內容為例,除了字詞分析,也利用了情感分析。原先的文本內容大多為正面字詞,例如「建廠」、「投資」等等,但暴動當天開始出現許多負面字詞,例如「害怕」、「被砸」、「快跑」等等,情感分析的正負評比大為下滑。相對於傳統媒體可能是透過駐越記者或是當地新聞媒體報導才得知相關資訊,語意分析利用網路輿情觀察,足足快了十小時掌握新聞事件。

範例引導進行教學,機器學習增加準確率

楊立偉解釋,演算法為了能做到通篇分析,多採用機器學習的方式,就像教小孩念書,透過範例引導,結合答案輔助,電腦便能找出其中關聯。同時藉由資料庫的「語料」提供範例,輔以人工提供正確答案,電腦便能找出其中邏輯關係。

語意分析和關鍵字比對最大差異在於處理層級的不同。除了比對單詞外,它能以閱讀的概念進行分析,從前後文、段落乃至通篇文章進行分析。假設現在要分析「全家」便利商店的相關新聞,若以關鍵字比對,可能會抓出「全家一起玩」等無關字詞,但在語意分析下,此類句子會被過濾掉,只會抓出「全家推出新產品」等相關度較高的句子。

-----廣告,請繼續往下閱讀-----

回家功課寫錯了要訂正,那語意分析錯了也要訂正嗎?「對於機器學習來說,我們只要告訴機器這樣的結果好不好,透過多次嘗試,機器會將不好與好的結果都學習下來,進而進行更準確的運算。」

語意分析的多種應用

1. 自動摘要:手機滑到一篇有興趣的文章,卻嫌文章太長不想看?透過語意分析,能夠找出一篇文章的重要字詞、摘要,讓人能短時間快速瞭解內文。楊立偉說明,通篇文章中,機器會先挑出具有代表性、特殊意義的字詞,再找出相關字詞的句子、段落,將分析出的摘要列出來,最後以人工的方式給摘要打分,如此一來機器在多次嘗試學習下,高分的摘要會愈來愈多,藉此發展出自動摘要的應用程式。

2. 以文找文:語意分析能透過文章中的重要、關鍵字詞,進而並找出相關文章。例如 Google新聞把相關性、類似的文章聚集,便是利用語意分析的技術。

3. 廣告信偵測:以 Gmail 為例,語意分析能判斷一封信中是否包含廣告信的常用字詞,協助信箱進行篩選。有時雖然也會誤判,但長時間下來,全世界的使用者亦會幫忙修正,不斷累積下,判斷準確率也愈來愈高。

-----廣告,請繼續往下閱讀-----

4. 意見分析與情感分析:分析企業在網路上的口碑、評價。根據提到相關企業或產品的文章進行分析,篩選通篇文裡的正負面字詞,分析網友的觀點與情感。並透過通篇上下文,加強判斷正負面情緒的判讀。這項功能也能運用在企業客服中,偵測消費者的抱怨內容,轉介給適合處理的單位。

5. 寫作輔助:機器與人工能共同創作,協助文本效正。比如說台灣人若要以英文撰寫論文,語意分析便能幫助選詞、文法。

6. 電腦問答:如同 Siri,語意分析也能應用在人工智能對話,協助使用者利用問與答(Q&A)的方式找尋所需的資訊。

語意分析並非萬能,發展瓶頸和隱憂是?

語意分析並非百分百正確,目前仍多以機器學習的方式增加準確度,因此機器獲得的「語料」愈多愈好,也因此需要建立具大的資料庫,而系統的硬體設備也要有一定水準,才能快速進行分析。

-----廣告,請繼續往下閱讀-----

除了硬體條件,語意分析現階段也仍需要以人工評量系統,為機器所分析出來的結果給與回饋與改善建議。除了需要語言學家針對不同語系的慣用法進行審核,若遇到專業領域的文本、字詞,也需要請相關領域專家協助評量,這些都是現階段語意分析在人事上無法完全去除的因子。

「水能載舟,亦能覆舟。」語意分析同時也可能會被用於造假、偽造。楊立偉坦言,利用語意分析的演算法,許多人能夠設計出論文製造機等應用,雖然透過機器產生的論文或許可信度較低,但有心人仍能將其投稿到審查制度較寬鬆的學術期刊上,藉此奪得在學術期刊上發表的機會。

在隱私問題方面,楊立偉解釋,語意分析只會搜尋公開的貼文和訊息。以臉書為例,只有公開帳號的文章會被納入分析,包含熱門粉絲頁、意見領袖、公開的個人頁。目前台灣以中文為主的公開帳號約有六百萬個,都是語意分析的守備範圍。

災害通報、事件預防、預測,也是語意分析技術的努力目標,透過網友貼文,能夠在短時間內搜集大量的破碎訊息,組合成一完整資訊匯流,對於提供災害事件資訊、甚至是建立災害預測模型,都將大有助益。「現在大數據的一大挑戰在於資料都存在不同的地方,因此『匯集』的角色更為重要。」楊立偉強調,許多大數據都是在講單一企業的資料庫分析、應用,但真正重要的是跨企業、領域的資料整合,數據分析才能更兼顧深度與廣度。

-----廣告,請繼續往下閱讀-----

(本文由科技部補助「新媒體科普傳播實作計畫-智慧生活與前沿科技科普知識教育推廣」執行團隊撰稿)

責任編輯:鄭國威

大數據專題報導系列:

  1. 資料科學如何解決真實世界的問題?認識資料極限,打開分析視野-專訪DSP智庫驅動知識長謝宗震
  2. 運用海量資料讓機器「自學」,電腦將成為更好的決策代理人-專訪台大資工教授林守德
  3. 從演算法設計到金融交易應用,數學在資料科學中無所不在-專訪東吳數學系教授吳牧恩
  4. 提昇大數據可信度,統計學用機率和抽樣優化分析模型-專訪典通公司總經理楊雅惠
-----廣告,請繼續往下閱讀-----
文章難易度
陳妤寧
38 篇文章 ・ 1 位粉絲
熱愛將知識拆解為簡單易懂的文字,喜歡把一件事的正反觀點都挖出來思考,希望用社會科學的視角創造更宏觀的視野。

0

1
0

文字

分享

0
1
0
停工即停薪:如何證明你的時間值多少?車禍背後的認知 x 情緒 x 金錢 x 法律大混戰
鳥苷三磷酸 (PanSci Promo)_96
・2026/01/09 ・3351字 ・閱讀時間約 6 分鐘

-----廣告,請繼續往下閱讀-----

本文與 PAMO車禍線上律師 合作,泛科學企劃執行

走在台灣的街頭,你是否發現馬路變得越來越「急躁」?滿街穿梭的外送員、分秒必爭的多元計程車,為了拚單量與獎金,每個人都在跟時間賽跑 。與此同時,拜經濟發展所賜,路上的豪車也變多了 。

這場關於速度與金錢的博弈,讓車禍不再只是一場意外,更是一場複雜的經濟算計。PAMO 車禍線上律師施尚宏律師在接受《思想實驗室 video podcast》訪談時指出,我們正處於一個交通生態的轉折點,當「把車當生財工具」的職業駕駛,撞上了「將車視為珍貴資產」的豪車車主,傳統的理賠邏輯往往會失靈 。

在「停工即停薪」(有跑才有錢,沒跑就沒收入)的零工經濟時代,如果運氣不好遇上車禍,我們該如何證明自己的時間價值?又該如何在保險無法覆蓋的灰色地帶中全身而退?

-----廣告,請繼續往下閱讀-----
如果運氣不好遇上車禍,我們該如何證明自己的時間價值?/ 圖片來源: Nano Banana

薪資證明的難題:零工經濟者的「隱形損失」

過去處理車禍理賠,邏輯相對單純:拿出公司的薪資單或扣繳憑單,計算這幾個月的平均薪資,就能算出因傷停工的「薪資損失」。

但在零工經濟時代,這套邏輯卡關了!施尚宏律師指出,許多外送員、自由接案者或是工地打工者,他們的收入往往是領現金,或者分散在多個不同的 App 平台中 。更麻煩的是,零工經濟的特性是「高度變動」,上個月可能拚了 7 萬,這個月休息可能只有 0 元,導致「平均收入」難以定義 。

這時候,律師的角色就不只是法條的背誦者,更像是一名「翻譯」。

施律師解釋「PAMO車禍線上律師的工作是把外送員口中零散的『跑單損失』,轉譯成法官或保險公司聽得懂的法律語言。」 這包括將不同平台(如 Uber、台灣大車隊)的流水帳整合,或是找出過往的接單紀錄來證明當事人的「勞動能力」。即使當下沒有收入(例如學生開學期間),只要能證明過往的接單能力與紀錄,在談判桌上就有籌碼要求合理的「勞動力減損賠償 」。

-----廣告,請繼續往下閱讀-----
PAMO車禍線上律師的工作是把外送員口中零散的『跑單損失』,轉譯成法官或保險公司聽得懂的法律語言 / 圖片來源: Nano Banana

300 萬張罰單背後的僥倖:你的直覺,正在害死你

根據警政署統計,台灣交通違規的第一名常年是「違規停車」,一年可以開出約 300 萬張罰單 。這龐大的數字背後,藏著兩個台灣駕駛人最容易誤判的「直覺陷阱」。

陷阱 A:我在紅線違停,人還在車上,沒撞到也要負責? 許多人認為:「我人就在車上,車子也沒動,甚至是熄火狀態。結果一台機車為了閃避我,自己操作不當摔倒了,這關我什麼事?」

施律師警告,這是一個致命的陷阱。「人在車上」或「車子沒動」在法律上並不是免死金牌 。法律看重的是「因果關係」。只要你的違停行為阻礙了視線或壓縮了車道,導致後方車輛必須閃避而發生事故,你就可能必須背負民事賠償責任,甚至揹上「過失傷害」的刑責 。 

數據會說話: 台灣每年約有 700 件車禍是直接因違規停車導致的 。這 300 萬張罰單背後的僥倖心態,其巨大的代價可能是人命。

-----廣告,請繼續往下閱讀-----

陷阱 B:變換車道沒擦撞,對方自己嚇到摔車也算我的? 另一個常年霸榜的肇事原因是「變換車道不當」 。如果你切換車道時,後方騎士因為嚇到而摔車,但你感覺車身「沒震動、沒碰撞」,能不能直接開走?

答案是:絕對不行。

施律師強調,車禍不以「碰撞」為前提 。只要你的駕駛行為與對方的事故有因果關係,你若直接離開現場,在法律上就構成了「肇事逃逸」。這是一條公訴罪,後果遠比你想像的嚴重。正確的做法永遠是:停下來報警,釐清責任,並保留行車記錄器自保 。

正確的做法永遠是:停下來報警,釐清責任,並保留行車記錄器自保 。/ 圖片來源: Nano Banana

保險不夠賠?豪車時代的「超額算計」

另一個現代駕駛的惡夢,是撞到豪車。這不僅是因為修車費貴,更因為衍生出的「代步費用」驚人。

-----廣告,請繼續往下閱讀-----

施律師舉例,過去撞到車,只要把車修好就沒事。但現在如果撞到一台 BMW 320,車主可能會主張修車的 8 天期間,他需要租一台同等級的 BMW 320 來代步 。以一天租金 4000 元計算,光是代步費就多了 3 萬多塊 。這時候,一般人會發現「全險」竟然不夠用。為什麼?

因為保險公司承擔的是「合理的賠償責任」,他們有內部的數據庫,只願意賠償一般行情的修車費或代步費 。但對方車主可能不這麼想,為了拿到這筆額外的錢,對方可能會採取「以刑逼民」的策略:提告過失傷害,利用刑事訴訟的壓力(背上前科的恐懼),迫使你自掏腰包補足保險公司不願賠償的差額 。

這就是為什麼在全險之外,駕駛人仍需要懂得談判策略,或考慮尋求律師協助,在保險公司與對方的漫天喊價之間,找到一個停損點 。

談判桌的最佳姿態:「溫柔而堅定」最有效?

除了有單據的財損,車禍中最難談判的往往是「精神慰撫金」。施律師直言,這在法律上沒有公式,甚至有點像「開獎」,高度依賴法官的自由心證 。

-----廣告,請繼續往下閱讀-----

雖然保險公司內部有一套簡單的算法(例如醫療費用的 2 到 5 倍),但到了法院,法官會考量雙方的社會地位、傷勢嚴重程度 。在缺乏標準公式的情況下,正確的「態度」能幫您起到加分效果。

施律師建議,在談判桌上最好的姿態是「溫柔而堅定」。有些人會試圖「扮窮」或「裝兇」,這通常會有反效果。特別是面對看過無數案件的保險理賠員,裝兇只會讓對方心裡想著:「進了法院我保證你一毛都拿不到,準備看你笑話」。

相反地,如果你能客氣地溝通,但手中握有完整的接單紀錄、醫療單據,清楚知道自己的底線與權益,這種「堅定」反而能讓談判對手買單,甚至在證明不足的情況下(如外送員的開學期間收入),更願意採信你的主張 。

車禍不只是一場意外,它是認知、情緒、金錢與法律邏輯的總和 。

在這個交通環境日益複雜的時代,無論你是為了生計奔波的職業駕駛,還是天天上路的通勤族,光靠保險或許已經不夠。大部分的車禍其實都是小案子,可能只是賠償 2000 元的輕微擦撞,或是責任不明的糾紛。為了這點錢,要花幾萬塊請律師打官司絕對「不划算」。但當事人往往會因為資訊落差,恐懼於「會不會被告肇逃?」、「會不會留案底?」、「賠償多少才合理?」而整夜睡不著覺 。

-----廣告,請繼續往下閱讀-----

PAMO看準了這個「焦慮商機」, 推出了一種顛覆傳統的解決方案——「年費 1200 元的訂閱制法律服務 」。

這就像是「法律界的 Netflix」或「汽車強制險」的概念。PAMO 的核心邏輯不是「代打」,而是「賦能」。不同於傳統律師收費高昂,PAMO 提倡的是「大腦武裝」,當車禍發生時,線上律師團提供策略,教你怎麼做筆錄、怎麼蒐證、怎麼判斷對方開價合不合理等。

施律師表示,他們的目標是讓客戶在面對不確定的風險時,背後有個軍師,能安心地睡個好覺 。平時保留好收入證明、發生事故時懂得不亂說話、與各方談判時掌握對應策略 。

平時保留好收入證明、發生事故時懂得不亂說話、與各方談判時掌握對應策略 。 / 圖片來源: Nano Banana

從違停的陷阱到訂閱制的解方,我們正處於交通與法律的轉型期。未來,挑戰將更加嚴峻。

-----廣告,請繼續往下閱讀-----

當 AI 與自駕車(Level 4/5)真正上路,一旦發生事故,責任主體將從「駕駛人」轉向「車廠」或「演算法系統」 。屆時,誰該負責?怎麼舉證?

但在那天來臨之前,面對馬路上的豪車、零工騎士與法律陷阱,你選擇相信運氣,還是相信策略? 先「武裝好自己的大腦」,或許才是現代駕駛人最明智的保險。

PAMO車禍線上律師官網:https://pse.is/8juv6k 

-----廣告,請繼續往下閱讀-----
文章難易度

討論功能關閉中。

0

6
3

文字

分享

0
6
3
植物口渴就喊:「啵、啵、啵~」
胡中行_96
・2023/04/06 ・2956字 ・閱讀時間約 6 分鐘

久旱不雨,植物悲鳴,[1, 2]類似教育部《臺灣閩南語常用詞辭典》所謂「因飢餓而吵鬧」的「哭枵」(khàu-iau)。[3]別問為何沒聽過,也不怪天地寡情,人類無義,從來漠不關心。植物叫那種超音波,傳至咱們耳裡就只剩寧靜。幸好靠著以色列科學家幫忙,轉換到常人的聽覺範圍,並分享於 2023 年 3 月底的《細胞》(Cell)期刊,才廣為周知。[1]

轉換到人類聽力範圍的番茄「叫聲」。音/參考資料 1,Audio S1(CC BY 4.0)

傾聽植物的聲音

面臨乾旱或草食動物的威脅,植物會做出多種反應,例如:改變外貌,或是以揮發性有機化合物影響鄰居等。[1]過去的文獻指出,缺水引發空蝕現象(cavitation),使植物負責輸送水份的木質部,因氣泡形成、擴張和破裂而震動。[1, 4]現在科學家想知道,這是否也會產生在特定距離內,能被其他物種聽見的聲音。[1]

受試的對象是番茄菸草,分別拆成乾旱、修剪和對照 3 組。對照組又有常態生長的一般對照、有土卻無植物的盆器,以及每株植物實驗前的自體對照 3 種。實驗大致有幾個階段:首先,在隔音箱裡,距離每個受試對象 10 公分處,各立 2 支麥克風收音。將聲音的紀錄分類後,拿去進行機器學習。接著移駕溫室,讓訓練好的模型,分辨雜音和不同情況下植物的聲音。再來,觀察乾旱程度與植物發聲的關係。最後,也測試其他的植物和狀態。[1]

麥克風對著乾旱、修剪和對照組的植物收音。圖/參考資料 1,Graphical Abstract局部(CC BY 4.0)

植物錄音與機器學習

隔音箱裡常態生長的植物,每小時平均發聲少於一次;而沒植物的盆器當然完全無聲。相對地,遭受乾旱或修剪壓力的實驗組植物,反應則十分劇烈:[1]

-----廣告,請繼續往下閱讀-----
 平均值(單位)番茄菸草
乾旱發聲頻率(次/小時)35.4 ± 6.111.0 ± 1.4
 音量(聲壓分貝;dBSPL)61.6 ± 0.165.6 ± 0.4
 聲波頻率(千赫茲;kHz)49.6 ± 0.454.8 ± 1.1
修剪發聲頻率(次/小時)25.2 ± 3.215.2 ± 2.6
 音量(聲壓分貝;dBSPL)65.6 ± 0.263.3 ± 0.2
 聲波頻率(千赫茲;kHz)57.3 ± 0.757.8 ± 0.7

隔音箱中實驗組的錄音,被依照植物品種以及所受的待遇,歸納為 4 個組別,各組別再彼此配對比較,例如:乾旱的番茄對修剪的番茄等。以此資料訓練出來的機器學習模型,判別配對中各組別的準確率為 70%。第二階段在溫室中進行,自然較隔音箱嘈雜。科學家拿空蕩溫室的環境錄音,來教模型分辨並過濾雜訊。訓練後,令其區別乾旱與對照組番茄的聲音,結果 84% 正確。[1]既然能聽得出基本的差別,下一步就是了解水量對番茄發聲的影響。

體積含水量

為了操縱體積含水量(volumetric water content,縮寫VWC),即水份與泥土體積的比值或百分比,[1, 5]科學家狠下心,連續幾天都不給溫室裡的番茄植栽喝水。一邊觀察 VWC 的變化;一邊錄下它們的聲音。起先水份充足,番茄不太吵鬧;4、5 天下來,發聲的次數逐漸增加至高峰;然後應該是快渴死了,有氣無力,所以次數又開始減少。此外,番茄通常都在早上 8 點(圖表較像 7 點)到中午 12 點,以及下午 4 點至晚上 7 點,這兩個時段出聲。[1]科學家覺得這般作息,可能與規律的氣孔導度(stomatal conductance),也就是跟光合作用的換氣以及蒸散作用的水份蒸發,兩個透過氣孔進行的動作有關。[1, 6]

大部份的聲音都是在 VWC < 0.05 時出現;當 VWC > 0.1,水份還足夠,就幾乎無聲。科學家將比較的條件進一步分成 VWC < 0.01 與 VWC > 0.05、VWC < 0.05 跟 VWC > 0.05,以及 VWC < 0.01、VWC > 0.05 和淨空溫室的聲音。機器學習模型分辨起來,都有七、八成的準確率。[1]

縱軸為每日發聲次數;橫軸為缺乏灌溉的天數。圖/參考資料 1,Figure 3A(CC BY 4.0)
乾旱狀態下,番茄發聲的時段。縱軸為每小時發聲次數;橫軸為 24 小時制的時間。圖/參考資料 1,Figure 3B(CC BY 4.0)

植物發聲的原理

實驗觀察所得,都將植物發聲的機制,指向木質部導管中氣體的運動,也就是科學家先前預期的空蝕現象[1]下面為支持這項推論的理由:

-----廣告,請繼續往下閱讀-----
  1. 木質部導管的口徑,與植物被錄到的聲波頻率相關:寬的低;而窄的高。[1]
  2. 乾旱與修剪所造成的聲音不同:在木質部導管中,前者氣泡形成緩慢,發聲時數較長;而後者則相當迅速,時數較短。[1]
  3. 聲音是由植物的莖,向四面八方傳播。[1]
  4. 空蝕現象造成的震動,跟記錄到的超音波,部份頻率重疊;而沒有重疊的,其實已經超出其他物種的聽力以及麥克風收音的範圍。[1]
葡萄、菸草和番茄木質部導管的水平橫截面。圖/參考資料 1,Figure S4B(CC BY 4.0)
葡萄(綠色)、菸草(灰色)和番茄(橙色)的差異:縱軸為聲波頻率;橫軸是木質部導管的平均口徑。圖/參考資料 1,Figure S4A(CC BY 4.0)

問誰未發聲

觀察完番茄和菸草之後,科學家不禁好奇,別的植物是否也會為自己的處境發聲?還是它們都默默受苦,無聲地承擔?研究團隊拿小麥玉米卡本內蘇維濃葡萄(Cabernet Sauvignon grapevine)、奇隆丸仙人掌(Mammillaria spinosissima)與寶蓋草(henbit)來測試,發現它們果然有聲音。不過,像杏仁樹之類的木本植物,還有木質化的葡萄藤就沒有了。另外,科學家又監聽感染菸草嵌紋病毒(tobacco mosaic virus)的番茄,並錄到它們的病中呻吟。[1]

你敢有聽著咱的歌

之前有研究指出,海邊月見草(Oenothera drummondii)暴露於蜜蜂的聲音時,會產出較甜的花蜜。[2]若將角色對調過來:植物在乾旱、修剪或感染等壓力下釋出的超音波,頻率約在 20 至 100 kHz 之間,理論上 3 到 5 公尺內的某些哺乳動物或昆蟲,例如:蝙蝠、老鼠和飛蛾,應該聽得到。[1, 2]以色列科學家認為幼蟲會寄住在番茄或菸草上的飛蛾,或許能辨識植物的聲波,並做出某些反應。同理,人類可以用機器學習模型,分辨農作物的聲音,再給予相應的照顧。如此不僅節省水源,精準培育,還能預防氣候變遷所導致的糧食危機。[1]

  

備註

本文最後兩個子標題,借用音樂劇《Les Misérables》歌曲〈Do You Hear the People Sing?〉的粵語和臺語版曲名。[7]

-----廣告,請繼續往下閱讀-----

參考資料

  1. Khait I, Lewin-Epstein O, Sharon R. (2023) ‘Sounds emitted by plants under stress are airborne and informative’. Cell, 106(7): 1328-1336.
  2. Marris E. (30 MAR 2023) ‘Stressed plants ‘cry’ — and some animals can probably hear them’. Nature.
  3. 教育部「哭枵」臺灣閩南語常用詞辭典(Accessed on 01 APR 2023)
  4. McElrone A J, Choat B, Gambetta GA, et al. (2013) ‘Water Uptake and Transport in Vascular Plants’. Nature Education Knowledge, 4(5):6.
  5. Datta S, Taghvaeian S, Stivers J. (AUG 2018) ‘Understanding Soil Water Content and Thresholds for Irrigation Management’. OSU Extension of Oklahoma State University.
  6. Murray M, Soh WK, Yiotis C, et al. (2020) ‘Consistent Relationship between Field-Measured Stomatal Conductance and Theoretical Maximum Stomatal Conductance in C3 Woody Angiosperms in Four Major Biomes’. International Journal of Plant Sciences, 181, 1.
  7. FireRock Music.(16 JUN 2019)「【問誰未發聲】歌詞 Mix全民超長版 粵+國+台+英 口琴+小童+學生+市民 Do you hear the people sing?」YouTube.
-----廣告,請繼續往下閱讀-----
胡中行_96
169 篇文章 ・ 67 位粉絲
曾任澳洲臨床試驗研究護理師,以及臺、澳劇場工作者。 西澳大學護理碩士、國立台北藝術大學戲劇學士(主修編劇)。邀稿請洽臉書「荒誕遊牧」,謝謝。

0

1
0

文字

分享

0
1
0
不是只有數字才是數據,語意分析讓電腦掌握文字背後的情感-專訪意藍科技董事長楊立偉
陳妤寧
・2016/05/24 ・2677字 ・閱讀時間約 5 分鐘 ・SR值 554 ・八年級

採訪 / 陳妤寧
撰文 / 李允誠

2013年時,哈利波特作者 J.K. 羅琳化名 Robert Galbraith 創作了一本偵探小說《Cuckoo》,評價雖高,銷量卻不好。英國的電腦科學家透過語意分析技術,將此著作和羅琳以往寫作文本比對,發現寫作手法極為接近,這也讓 J.K. 羅琳為真實作者一事曝光,《Cuckoo》因此大受關注,立刻竄上亞馬遜暢銷榜第一名。

上述案例中,語意分析可謂關鍵角色,但語意分析究竟如何運作?如何快速解構文本類型的「大數據」?本篇專訪中,鑽研中文語意分析的意藍科技董事長楊立偉,從技術原理談到語意分析各種應用和挑戰,深入分析了語意分析背後的眉角。

從單詞到文章,文本分析更深、更廣、更快

過去的資料探勘,大多侷限於結構化資料,像是論文、專利、論文、新聞稿等經過嚴謹撰寫完成的文章。隨著社群網站興起,人們在網路上發表意見變得越來越容易、卻也更零碎、甚至參雜許多錯字讓電腦難以精準判讀。而透過大數據為基礎發展演算法的語意分析,能夠分析非結構化的資訊,像是散文、小說等較無固定格式的文本,加深文本分析的廣度,同時納入圖片、影音各種非結構化資料所能提供的資訊。

-----廣告,請繼續往下閱讀-----

假設你現在想查詢一個新聞事件,並分析網友、鄉民的看法,最直覺的方式便是利用 Google 進行關鍵字搜索,但這樣只能做到關鍵字比對,如此一來搜索出的資料將有幾百萬、幾千萬之譜,該如何進行整理、重點摘要?總不可能人工比對吧,這時,語意分析的優點便顯現出來了。楊立偉表示,語意分析透過爬梳大量網路資料,每日能夠搜索 60 億筆中文字詞,快速找出每日重要資訊。

2014 年 5 月時,越南發生排華暴動。楊立偉以當時分析越南地區的中文內容為例,除了字詞分析,也利用了情感分析。原先的文本內容大多為正面字詞,例如「建廠」、「投資」等等,但暴動當天開始出現許多負面字詞,例如「害怕」、「被砸」、「快跑」等等,情感分析的正負評比大為下滑。相對於傳統媒體可能是透過駐越記者或是當地新聞媒體報導才得知相關資訊,語意分析利用網路輿情觀察,足足快了十小時掌握新聞事件。

範例引導進行教學,機器學習增加準確率

楊立偉解釋,演算法為了能做到通篇分析,多採用機器學習的方式,就像教小孩念書,透過範例引導,結合答案輔助,電腦便能找出其中關聯。同時藉由資料庫的「語料」提供範例,輔以人工提供正確答案,電腦便能找出其中邏輯關係。

語意分析和關鍵字比對最大差異在於處理層級的不同。除了比對單詞外,它能以閱讀的概念進行分析,從前後文、段落乃至通篇文章進行分析。假設現在要分析「全家」便利商店的相關新聞,若以關鍵字比對,可能會抓出「全家一起玩」等無關字詞,但在語意分析下,此類句子會被過濾掉,只會抓出「全家推出新產品」等相關度較高的句子。

-----廣告,請繼續往下閱讀-----

回家功課寫錯了要訂正,那語意分析錯了也要訂正嗎?「對於機器學習來說,我們只要告訴機器這樣的結果好不好,透過多次嘗試,機器會將不好與好的結果都學習下來,進而進行更準確的運算。」

語意分析的多種應用

1. 自動摘要:手機滑到一篇有興趣的文章,卻嫌文章太長不想看?透過語意分析,能夠找出一篇文章的重要字詞、摘要,讓人能短時間快速瞭解內文。楊立偉說明,通篇文章中,機器會先挑出具有代表性、特殊意義的字詞,再找出相關字詞的句子、段落,將分析出的摘要列出來,最後以人工的方式給摘要打分,如此一來機器在多次嘗試學習下,高分的摘要會愈來愈多,藉此發展出自動摘要的應用程式。

2. 以文找文:語意分析能透過文章中的重要、關鍵字詞,進而並找出相關文章。例如 Google新聞把相關性、類似的文章聚集,便是利用語意分析的技術。

3. 廣告信偵測:以 Gmail 為例,語意分析能判斷一封信中是否包含廣告信的常用字詞,協助信箱進行篩選。有時雖然也會誤判,但長時間下來,全世界的使用者亦會幫忙修正,不斷累積下,判斷準確率也愈來愈高。

-----廣告,請繼續往下閱讀-----

4. 意見分析與情感分析:分析企業在網路上的口碑、評價。根據提到相關企業或產品的文章進行分析,篩選通篇文裡的正負面字詞,分析網友的觀點與情感。並透過通篇上下文,加強判斷正負面情緒的判讀。這項功能也能運用在企業客服中,偵測消費者的抱怨內容,轉介給適合處理的單位。

5. 寫作輔助:機器與人工能共同創作,協助文本效正。比如說台灣人若要以英文撰寫論文,語意分析便能幫助選詞、文法。

6. 電腦問答:如同 Siri,語意分析也能應用在人工智能對話,協助使用者利用問與答(Q&A)的方式找尋所需的資訊。

語意分析並非萬能,發展瓶頸和隱憂是?

語意分析並非百分百正確,目前仍多以機器學習的方式增加準確度,因此機器獲得的「語料」愈多愈好,也因此需要建立具大的資料庫,而系統的硬體設備也要有一定水準,才能快速進行分析。

-----廣告,請繼續往下閱讀-----

除了硬體條件,語意分析現階段也仍需要以人工評量系統,為機器所分析出來的結果給與回饋與改善建議。除了需要語言學家針對不同語系的慣用法進行審核,若遇到專業領域的文本、字詞,也需要請相關領域專家協助評量,這些都是現階段語意分析在人事上無法完全去除的因子。

「水能載舟,亦能覆舟。」語意分析同時也可能會被用於造假、偽造。楊立偉坦言,利用語意分析的演算法,許多人能夠設計出論文製造機等應用,雖然透過機器產生的論文或許可信度較低,但有心人仍能將其投稿到審查制度較寬鬆的學術期刊上,藉此奪得在學術期刊上發表的機會。

在隱私問題方面,楊立偉解釋,語意分析只會搜尋公開的貼文和訊息。以臉書為例,只有公開帳號的文章會被納入分析,包含熱門粉絲頁、意見領袖、公開的個人頁。目前台灣以中文為主的公開帳號約有六百萬個,都是語意分析的守備範圍。

災害通報、事件預防、預測,也是語意分析技術的努力目標,透過網友貼文,能夠在短時間內搜集大量的破碎訊息,組合成一完整資訊匯流,對於提供災害事件資訊、甚至是建立災害預測模型,都將大有助益。「現在大數據的一大挑戰在於資料都存在不同的地方,因此『匯集』的角色更為重要。」楊立偉強調,許多大數據都是在講單一企業的資料庫分析、應用,但真正重要的是跨企業、領域的資料整合,數據分析才能更兼顧深度與廣度。

-----廣告,請繼續往下閱讀-----

(本文由科技部補助「新媒體科普傳播實作計畫-智慧生活與前沿科技科普知識教育推廣」執行團隊撰稿)

責任編輯:鄭國威

大數據專題報導系列:

  1. 資料科學如何解決真實世界的問題?認識資料極限,打開分析視野-專訪DSP智庫驅動知識長謝宗震
  2. 運用海量資料讓機器「自學」,電腦將成為更好的決策代理人-專訪台大資工教授林守德
  3. 從演算法設計到金融交易應用,數學在資料科學中無所不在-專訪東吳數學系教授吳牧恩
  4. 提昇大數據可信度,統計學用機率和抽樣優化分析模型-專訪典通公司總經理楊雅惠
-----廣告,請繼續往下閱讀-----
文章難易度
陳妤寧
38 篇文章 ・ 1 位粉絲
熱愛將知識拆解為簡單易懂的文字,喜歡把一件事的正反觀點都挖出來思考,希望用社會科學的視角創造更宏觀的視野。

1

3
0

文字

分享

1
3
0
數據塑造生活與社會,讓人既放心但又不安?——《 AI 世代與我們的未來》
聯經出版_96
・2022/12/28 ・2760字 ・閱讀時間約 5 分鐘

數位世界已經改變了我們日常生活的體驗,一個人從早到晚都會接受到大量數據,受益於大量數據,也貢獻大量數據。這些數據龐大的程度,和消化資訊的方式已經太過繁多,人類心智根本無法處理。

與數位科技建立夥伴關係

所以人會本能地或潛意識地倚賴軟體來處理、組織、篩選出必要或有用的資訊,也就是根據用戶過去的偏好或目前的流行,來挑選要瀏覽的新項目、要看的電影、要播放的音樂。自動策劃的體驗很輕鬆容易,又能讓人滿足,人們只會在沒有自動化服務,例如閱讀別人臉書塗鴉牆上的貼文,或是用別人的網飛帳號看電影時,才會注意到這服務的存在。

有人工智慧協助的網路平臺加速整合,並加深了個人與數位科技間的連結。人工智慧經過設計和訓練,能直覺地解決人類的問題、掌握人類的目標,原本只有人類心智才能管理的各種選擇,現在能由網路平臺來引導、詮釋和記錄(儘管效率比較差)。

日常生活中很少察覺到對自動策劃的依賴。圖/Pexels

網路平臺收集資訊和體驗來完成這些任務,任何一個人的大腦在壽命期限內都不可能容納如此大量的資訊和體驗,所以網路平臺能產出看起來非常恰當的答案和建議。例如,採購員不管再怎麼投入工作,在挑選冬季長靴的時候,也不可能從全國成千上萬的類似商品、近期天氣預測、季節因素、回顧過去的搜尋記錄、調查物流模式之後,才決定最佳的採購項目,但人工智慧可以完整評估上述所有因素。

-----廣告,請繼續往下閱讀-----

因此,由人工智慧驅動的網路平臺經常和我們每個人互動,但我們在歷史上從未和其他產品、服務或機器這樣互動過。當我們個人在和人工智慧互動的時候,人工智慧會適應個人用戶的偏好(網際網路瀏覽記錄、搜尋記錄、旅遊史、收入水準、社交連結),開始形成一種隱形的夥伴關係。

個人用戶逐漸依賴這樣的平臺來完成一串功能,但這些功能過去可能由郵政、百貨公司,或是接待禮賓、懺悔自白的人和朋友,或是企業、政府或其他人類一起來完成。

網路平臺和用戶之間是既親密又遠距的聯繫。圖/Envato Elements

個人、網路平臺和平臺用戶之間的關係,是一種親密關係與遠距聯繫的新穎組合。人工智慧網路平臺審查大量的用戶數據,其中大部分是個人數據(如位置、聯絡資訊、朋友圈、同事圈、金融與健康資訊);網路會把人工智慧當成嚮導,或讓人工智慧來安排個人化體驗。

人工智慧如此精準、正確,是因為人工智慧有能力可以根據數億段類似的關係,以及上兆次空間(用戶群的地理範圍)與時間(集合了過去的使用)的互動來回顧和反應。網路平臺用戶與人工智慧形成了緊密的互動,並互相學習。

-----廣告,請繼續往下閱讀-----

網路平臺的人工智慧使用邏輯,在很多方面對人類來說都難以理解。例如,運用人工智慧的網路平臺在評估圖片、貼文或搜尋時,人類可能無法明確地理解人工智慧會在特定情境下如何運作。谷歌的工程師知道他們的搜尋功能若有人工智慧,就會有清楚的搜尋結果;若沒有人工智慧,搜尋結果就不會那麼清楚,但工程師沒辦法解釋為什麼某些結果的排序比較高。

要評鑑人工智慧的優劣,看的是結果實用不實用,不是看過程。這代表我們的輕重緩急已經和早期不一樣了,以前每個機械的步驟或思考的過程都會由人類來體驗(想法、對話、管理流程),或讓人類可以暫停、檢查、重複。

人工智慧陪伴現代人的生活

例如,在許多工業化地區,旅行的過程已經不需要「找方向」了。以前這過程需要人力,要先打電話給我們要拜訪的對象,查看紙本地圖,然後常常在加油站或便利商店停下來,確認我們的方向對不對。現在,透過手機應用程式,旅行的過程可以更有效率。

透過導航,為旅途帶來不少便利。圖/Pexels

這些應用程式不但可以根據他們「所知」的交通記錄來評估可能的路線與每條路線所花費的時間,還可以考量到當天的交通事故、可能造成延誤的特殊狀況(駕駛過程中的延誤)和其他跡象(其他用戶的搜尋),來避免和別人走同一條路。

-----廣告,請繼續往下閱讀-----

從看地圖到線上導航,這轉變如此方便,很少人會停下來想想這種變化有多大的革命性意義,又會帶來什麼後果。個人用戶、社會與網路平臺和營運商建立了新關係,並信任網路平臺與演算法可以產生準確的結果,獲得了便利,成為數據集的一部分,而這數據集又在持續進化(至少會在大家使用應用程式的時候追蹤個人的位置)。

在某種意義上,使用這種服務的人並不是獨自駕駛,而是系統的一部分。在系統內,人類和機器智慧一起協作,引導一群人透過各自的路線聚集在一起。

持續陪伴型的人工智慧會愈來愈普及,醫療保健、物流、零售、金融、通訊、媒體、運輸和娛樂等產業持續發展,我們的日常生活體驗透過網路平臺一直在變化。

網路平台協助我們完成各種事項。圖/Pexels

當用戶找人工智慧網路平臺來協助他們完成任務的時候,因為網路平臺可以收集、提煉資訊,所以用戶得到了益處,上個世代完全沒有這種經驗。這種平臺追求新穎模式的規模、力量、功能,讓個人用戶獲得前所未有的便利和能力;同時,這些用戶進入一種前所未有的人機對話中。

-----廣告,請繼續往下閱讀-----

運用人工智慧的網路平臺有能力可以用我們無法清楚理解,甚至無法明確定義或表示的方式來形塑人類的活動,這裡有一個很重要的問題:這種人工智慧的目標功能是什麼?由誰設計?在哪些監管參數範圍裡?

類似問題的答案會繼續塑造未來的生活與未來的社會:誰在操作?誰在定義這些流程的限制?這些人對於社會規範和制度會有什麼影響?有人可以存取人工智慧的感知嗎?有的話,這人是誰?

如果沒有人類可以完全理解或查看數據,或檢視每個步驟,也就是說假設人類的角色只負責設計、監控和設定人工智慧的參數,那麼對人工智慧的限制應該要讓我們放心?還是讓我們不安?還是既放心又不安?

——本文摘自《 AI 世代與我們的未來:人工智慧如何改變生活,甚至是世界?》,2022 年 12 月,聯經出版公司,未經同意請勿轉載。

-----廣告,請繼續往下閱讀-----
-----廣告,請繼續往下閱讀-----
所有討論 1
聯經出版_96
27 篇文章 ・ 20 位粉絲
聯經出版公司創立於1974年5月4日,是一個綜合性的出版公司,為聯合報系關係企業之一。 三十多年來已經累積了近六千餘種圖書, 範圍包括人文、社會科學、科技以及小說、藝術、傳記、商業、工具書、保健、旅遊、兒童讀物等。

0

1
0

文字

分享

0
1
0
不是只有數字才是數據,語意分析讓電腦掌握文字背後的情感-專訪意藍科技董事長楊立偉
陳妤寧
・2016/05/24 ・2677字 ・閱讀時間約 5 分鐘 ・SR值 554 ・八年級

採訪 / 陳妤寧
撰文 / 李允誠

2013年時,哈利波特作者 J.K. 羅琳化名 Robert Galbraith 創作了一本偵探小說《Cuckoo》,評價雖高,銷量卻不好。英國的電腦科學家透過語意分析技術,將此著作和羅琳以往寫作文本比對,發現寫作手法極為接近,這也讓 J.K. 羅琳為真實作者一事曝光,《Cuckoo》因此大受關注,立刻竄上亞馬遜暢銷榜第一名。

上述案例中,語意分析可謂關鍵角色,但語意分析究竟如何運作?如何快速解構文本類型的「大數據」?本篇專訪中,鑽研中文語意分析的意藍科技董事長楊立偉,從技術原理談到語意分析各種應用和挑戰,深入分析了語意分析背後的眉角。

從單詞到文章,文本分析更深、更廣、更快

過去的資料探勘,大多侷限於結構化資料,像是論文、專利、論文、新聞稿等經過嚴謹撰寫完成的文章。隨著社群網站興起,人們在網路上發表意見變得越來越容易、卻也更零碎、甚至參雜許多錯字讓電腦難以精準判讀。而透過大數據為基礎發展演算法的語意分析,能夠分析非結構化的資訊,像是散文、小說等較無固定格式的文本,加深文本分析的廣度,同時納入圖片、影音各種非結構化資料所能提供的資訊。

-----廣告,請繼續往下閱讀-----

假設你現在想查詢一個新聞事件,並分析網友、鄉民的看法,最直覺的方式便是利用 Google 進行關鍵字搜索,但這樣只能做到關鍵字比對,如此一來搜索出的資料將有幾百萬、幾千萬之譜,該如何進行整理、重點摘要?總不可能人工比對吧,這時,語意分析的優點便顯現出來了。楊立偉表示,語意分析透過爬梳大量網路資料,每日能夠搜索 60 億筆中文字詞,快速找出每日重要資訊。

2014 年 5 月時,越南發生排華暴動。楊立偉以當時分析越南地區的中文內容為例,除了字詞分析,也利用了情感分析。原先的文本內容大多為正面字詞,例如「建廠」、「投資」等等,但暴動當天開始出現許多負面字詞,例如「害怕」、「被砸」、「快跑」等等,情感分析的正負評比大為下滑。相對於傳統媒體可能是透過駐越記者或是當地新聞媒體報導才得知相關資訊,語意分析利用網路輿情觀察,足足快了十小時掌握新聞事件。

範例引導進行教學,機器學習增加準確率

楊立偉解釋,演算法為了能做到通篇分析,多採用機器學習的方式,就像教小孩念書,透過範例引導,結合答案輔助,電腦便能找出其中關聯。同時藉由資料庫的「語料」提供範例,輔以人工提供正確答案,電腦便能找出其中邏輯關係。

語意分析和關鍵字比對最大差異在於處理層級的不同。除了比對單詞外,它能以閱讀的概念進行分析,從前後文、段落乃至通篇文章進行分析。假設現在要分析「全家」便利商店的相關新聞,若以關鍵字比對,可能會抓出「全家一起玩」等無關字詞,但在語意分析下,此類句子會被過濾掉,只會抓出「全家推出新產品」等相關度較高的句子。

-----廣告,請繼續往下閱讀-----

回家功課寫錯了要訂正,那語意分析錯了也要訂正嗎?「對於機器學習來說,我們只要告訴機器這樣的結果好不好,透過多次嘗試,機器會將不好與好的結果都學習下來,進而進行更準確的運算。」

語意分析的多種應用

1. 自動摘要:手機滑到一篇有興趣的文章,卻嫌文章太長不想看?透過語意分析,能夠找出一篇文章的重要字詞、摘要,讓人能短時間快速瞭解內文。楊立偉說明,通篇文章中,機器會先挑出具有代表性、特殊意義的字詞,再找出相關字詞的句子、段落,將分析出的摘要列出來,最後以人工的方式給摘要打分,如此一來機器在多次嘗試學習下,高分的摘要會愈來愈多,藉此發展出自動摘要的應用程式。

2. 以文找文:語意分析能透過文章中的重要、關鍵字詞,進而並找出相關文章。例如 Google新聞把相關性、類似的文章聚集,便是利用語意分析的技術。

3. 廣告信偵測:以 Gmail 為例,語意分析能判斷一封信中是否包含廣告信的常用字詞,協助信箱進行篩選。有時雖然也會誤判,但長時間下來,全世界的使用者亦會幫忙修正,不斷累積下,判斷準確率也愈來愈高。

-----廣告,請繼續往下閱讀-----

4. 意見分析與情感分析:分析企業在網路上的口碑、評價。根據提到相關企業或產品的文章進行分析,篩選通篇文裡的正負面字詞,分析網友的觀點與情感。並透過通篇上下文,加強判斷正負面情緒的判讀。這項功能也能運用在企業客服中,偵測消費者的抱怨內容,轉介給適合處理的單位。

5. 寫作輔助:機器與人工能共同創作,協助文本效正。比如說台灣人若要以英文撰寫論文,語意分析便能幫助選詞、文法。

6. 電腦問答:如同 Siri,語意分析也能應用在人工智能對話,協助使用者利用問與答(Q&A)的方式找尋所需的資訊。

語意分析並非萬能,發展瓶頸和隱憂是?

語意分析並非百分百正確,目前仍多以機器學習的方式增加準確度,因此機器獲得的「語料」愈多愈好,也因此需要建立具大的資料庫,而系統的硬體設備也要有一定水準,才能快速進行分析。

-----廣告,請繼續往下閱讀-----

除了硬體條件,語意分析現階段也仍需要以人工評量系統,為機器所分析出來的結果給與回饋與改善建議。除了需要語言學家針對不同語系的慣用法進行審核,若遇到專業領域的文本、字詞,也需要請相關領域專家協助評量,這些都是現階段語意分析在人事上無法完全去除的因子。

「水能載舟,亦能覆舟。」語意分析同時也可能會被用於造假、偽造。楊立偉坦言,利用語意分析的演算法,許多人能夠設計出論文製造機等應用,雖然透過機器產生的論文或許可信度較低,但有心人仍能將其投稿到審查制度較寬鬆的學術期刊上,藉此奪得在學術期刊上發表的機會。

在隱私問題方面,楊立偉解釋,語意分析只會搜尋公開的貼文和訊息。以臉書為例,只有公開帳號的文章會被納入分析,包含熱門粉絲頁、意見領袖、公開的個人頁。目前台灣以中文為主的公開帳號約有六百萬個,都是語意分析的守備範圍。

災害通報、事件預防、預測,也是語意分析技術的努力目標,透過網友貼文,能夠在短時間內搜集大量的破碎訊息,組合成一完整資訊匯流,對於提供災害事件資訊、甚至是建立災害預測模型,都將大有助益。「現在大數據的一大挑戰在於資料都存在不同的地方,因此『匯集』的角色更為重要。」楊立偉強調,許多大數據都是在講單一企業的資料庫分析、應用,但真正重要的是跨企業、領域的資料整合,數據分析才能更兼顧深度與廣度。

-----廣告,請繼續往下閱讀-----

(本文由科技部補助「新媒體科普傳播實作計畫-智慧生活與前沿科技科普知識教育推廣」執行團隊撰稿)

責任編輯:鄭國威

大數據專題報導系列:

  1. 資料科學如何解決真實世界的問題?認識資料極限,打開分析視野-專訪DSP智庫驅動知識長謝宗震
  2. 運用海量資料讓機器「自學」,電腦將成為更好的決策代理人-專訪台大資工教授林守德
  3. 從演算法設計到金融交易應用,數學在資料科學中無所不在-專訪東吳數學系教授吳牧恩
  4. 提昇大數據可信度,統計學用機率和抽樣優化分析模型-專訪典通公司總經理楊雅惠
-----廣告,請繼續往下閱讀-----
文章難易度
陳妤寧
38 篇文章 ・ 1 位粉絲
熱愛將知識拆解為簡單易懂的文字,喜歡把一件事的正反觀點都挖出來思考,希望用社會科學的視角創造更宏觀的視野。