0

0
1

文字

分享

0
0
1

數學家看《天才無限家》:數學為什麼不能像藝術一樣被欣賞

賴 以威
・2016/06/09 ・3033字 ・閱讀時間約 6 分鐘 ・SR值 528 ・七年級

請試著想像,倘若今天走進咖啡廳,牆上掛了一幅油畫

636px-Vincent_Van_Gogh_-_The_Potato_Eaters
梵谷早期畫作《吃馬鈴薯的人》(The Potato Eaters)。圖/CC0,wikipedia

「這是梵谷早期的作品,色調偏⋯⋯」

同行友人侃侃而談,或許有人覺得他在賣弄,但至少不太會有人打斷他,通常大家還會認真傾聽。而且如果可以,我們也想參一腳加入賣弄的行列。

現在換個畫面,牆上掛的是著名的歐拉公式

$$e^{i \pi}+1=0$$

「這是被稱為最奇妙的恆等式,非常簡單,卻涵蓋了 (\( 0, 1, e, \pi , i \) ) 這 5 個重要的基本常數。而且啊,你知道拉馬努金是在 12 歲的時候獨立推導出來噢……」

絕對不會有人這樣講,除非這是一群剛參加完數學研討會的人,或場景是一場失敗的聯誼,說話者想盡快結束回家睡覺。

我們在不知不覺間存在一種偏見,認為具備藝術素養是高雅的代表,數感素養則是不必要,至少不該拿出來高談闊論的東西。日常生活中少數會將數學作為對話素材的內容通常是:

「我大學聯考數學只考 30 分,還是上了台大。」

這類反過來以數學不好為傲的模式。

mwki2

「數學就像繪畫,只是用你看不見的顏色來呈現。」

《天才無限家》的電影導演 Matt Brown 讓觀眾體會到數學如同藝術的那面,它的顏料是符號、幻化出來的作品是一道道公式,跟一幅畫一樣足以表現這個世界。

他挑了一位再恰當不過的主人翁,媲美任何一位藝術天才的數學家——拉馬努金。

拉馬努金出生在有著虔誠婆羅門信仰的貧困家庭,他是家裡的長子,底下有 2 個弟弟和 3 個妹妹。12 歲時,朋友借了他一本《三角學》。或許是沒其他的消遣,也或許拉馬努金天生熱愛數學,他不但唸完了,還自己獨立推導出著名的歐拉公式。

15 歲時,他拿到了另一本數學書《純粹數學概要》(Synopsis of pure mathematics),這大概也是少數因為讀者(就是拉馬努金)而出名的一本書。書中介紹了 6,000 多條公式,拉馬努金在 5 年內反覆閱讀,不僅懂了這些公式,還進一步延伸推廣。這本書可說是拉馬努金自學數學的聖經。也因為這本書不附證明的寫法,讓拉馬努金不擅長數學嚴謹的證明邏輯。這個時期他的數學成就,都是靠論證、直覺、歸納的混合處理達到。就像電影裡那樣,等到去了劍橋,才在哈代(G. H. Hardy)的指導下學會證明。話說回來,每個人適合不同的學習方式,倘若拉馬努金一開始就學習嚴謹的證明,說不定就無法培養出他那銳利無比的洞察力。

20 歲到 24 歲期間,拉馬努金基本上是個高等遊民,沒有固定職業,依然熱衷數學,研究了幻方、連分數、超幾何級數等等。他的研究成果記錄成 3 大本筆記本,對,比電影裡還多一本。每一本都跟《純粹數學概要》致敬,沒附上任何證明結果(或許拉馬努金覺得數學書就該這樣寫)。這段期間內,他也完成了終生大事,在 21 歲結婚。

fx_fmen50787524_0002

不過跟電影裡不太一樣的是,電影裡的女主角太太 Janki(不是哈代)和拉馬努金看起來很登對,但事實上他們年紀相差 12 歲。

簡單的計算題,結婚時太太只有9歲。

成為人夫的拉馬努金遇到了後來成為印度數學學會會長的 R. Ramachandra Rao,Rao 激賞拉馬努金的天份,願意定期贊助他,讓他安心從事研究。贊助了幾年,拉馬努金覺得自己沒什麼貢獻,不願意在白白拿錢。Rao 介紹他去港務局工作,除了穩定收入,還有一個拉馬努金的專屬福利——去海港撿包裝紙當計算紙。值得一提的是,在這段期間,拉馬努金已經在《印度數學學會期刊》(Journal of the Indian Mathematical Society)發表過一篇論文,探討伯努利函數的性質。

26 歲時,拉馬努金將自己的研究成果寫成一封信,寄給哈代。哈代看完後立刻邀請拉馬努金到劍橋,只是宗教信仰讓拉馬努金猶豫,最後他決定先留在 Madras 大學做研究。

哈代沒放棄邀請拉馬努金,他透過當時正在 Madras 大學講課的 Neville(就是數值分析裡 Neville algorithm 的那個Neville)繼續遊說,終於說服了拉馬努金。

於是,拉馬努金在 27 歲時第一次來到世界的學術舞台劍橋大學,他跟哈代像一對默契絕佳的菜鳥與資深刑警:菜鳥刑警用敏銳的直覺辦案,資深刑警在一旁靠著經驗和對法規的熟嫻協助,兩人合作無間。只花了 4 年,拉馬努金就站到了學術舞台的中心,入選為英國皇家學會會員、三一學院的研究員。

但很遺憾地,在比成為會員的更短時間內,他就因為過度疲勞,以及飲食問題(就像電影裡的那樣,吃素的他只能每天自己隨便煮一煮)染上了肺結核。

他 32 歲回到印度,隔年過世。

24TH_RAMANUJAN_MANU_294879f
拉馬努金手稿,翻拍自其筆記本。圖/ V. Ganesan @hindu

或許是在劍橋研究時都在學習證明,精煉他前三本筆記的成果。他的第四本筆記一直到最後這一年才完成。這本筆記後來遺失了 50 多年,直到 1976 年才被發現不知為何放在劍橋三一書院的圖書館內。

裡面有 600 條公式,同樣非常有拉馬努金風格——沒附任何證明。

不知道哈代到底有沒有看過這本筆記本,強調證明的他看到拉馬努金依然這樣搞,一定很哭笑不得吧。

拉馬努金讓人們看到天才的璀璨,也讓我們看到,不出世的天才同樣得服膺於數學的嚴謹證明,唯有透過證明,才能將數學式子從假說、推論、提煉成定理,比鑽石還珍貴的永恆存在。

fx_fmen50787524_0003
圖/取自開眼電影院

《天才無限家》這部電影提供了一種全新審視數學的角度。兩位主要演員 Dev Patel、Jeremy Irons 都說自己非常不擅長數學,Jeremy Irons 甚至自爆電影中寫公式地方是他靠「畫」的畫出來。電影的數學顧問還教他要觀察數字的對稱性,就可以更好畫。

導演 Matt Brown 在接受訪問時表達他對「數學家」的看法:

I think what they are doing — they are artists.

希望有一天,我們的社會也能用這樣更「寬容」的角度去觀看專業知識。數學不一定要跟著計算,還得算對才行。他可以像藝術一樣,在一定距離以外,用欣賞的角度去接觸。你不需要會畫油畫會雕刻才能去美術館,同樣地,也不需要一定得會三角函數或微積分才能踏入數學的領域。

唯有先讓更多人願意欣賞數學,我想,我們才能再去談,該如何改善數學教育,減少在學校聽到數學課就翻白眼,看到數學考卷就繳白卷的人數。

參考資料

文章難易度
賴 以威
32 篇文章 ・ 8 位粉絲
數學作家、譯者,作品散見於聯合報、未來少年、國語日報,與各家網路媒體。師大附中,台大電機畢業。 我深信數學大師約翰·馮·諾伊曼的名言「If people do not believe that mathematics is simple, it is only because they do not realize how complicated life is」。為了讓各位跟我一樣相信這句話,我們得先從數學有多簡單來說起,聊聊數學,也用數學說故事。 歡迎加入我與太太廖珮妤一起創辦的: 數感實驗室

0

1
2

文字

分享

0
1
2
原來數學也可以用在這裡?生物巧妙運用數學模式,克服了移動上的物理限制——《生物世界的數學遊戲》
天下文化_96
・2022/10/26 ・1541字 ・閱讀時間約 3 分鐘

步調模式千變萬化

生物體移動時所受的限制是屬於物理學的。如果該生物使用的是肢體,這些肢體必須強壯到可以支撐作用在牠們上面的力量。(我看過不少設計較差的機器人在移動時散掉。)其他形態的移動也一樣,如果是游泳,該動物就要全力對付流體力學的定律。物理定律影響動物的移動是很明顯的,不值得奇怪。顯然,在這個情形當中,數學提供了各式各樣的模式,而被生物學拿來運用。很少不會用到,不管多麼奇特。

游泳時要全力對付流體力學定律。圖/Pexels

物理學的影響還要更深入。單有腿也沒有用,除非你有可以控制腿的神經系統。運動與神經網路是一體的,兩者一定要一起演化,而不是個別的。另外,正如負責感覺的神經網路一定會模擬外在世界的模式,因此負責運動的神經網路,必定會模擬動物身體的機械性模式。

我很懷疑這種共同演化真的有可能或很容易發生,因為下面這個顯著的事實:像肢體這樣的物理系統的自然振盪模式,跟神經網路的振盪模式是一樣的。早在肢體和腦變成完整的生物結構之前,就已經有一種普遍的步調韻律存在了,潛在地將動物的肢體關聯到腦。步調節奏提供了存在於演化相空間中、等待被使用的模式。

形形色色的生物移動

這模式的確一直被應用。差不多所有的生物都會移動,甚至連最固定不動的植物也會向光彎曲,最微小的浮游生物也會隨波逐流——但是,獵豹在追逐獵物時,可以跑到每小時一百一十公里,這移動真是快速啊!

生物體的種類這麼多,而移動的方式也是千變萬化。細菌利用會旋轉的微小螺旋槳使自己在水中推進,就像船一樣;像草履蟲(Paramecium)這類單細胞生物,則能藉由揮動鞭毛來選擇運動的方向。

(圖七○)Centronotus gunnellus 這種鰻魚肌肉收縮的波形。圖/《生物世界的數學遊戲》

運動的數學模式形形色色,更是令人印象深刻:草履蟲鞭毛的移動有如行進波,就像是玉米田在微風吹拂下產生的浪波;細菌的旋轉螺旋所成幾何圖案之美是無可比擬的;蛇和鰻是靠肌肉收縮做波狀蠕動行進(圖七○);響尾蛇在熱燙的沙漠中滾動,像一個捲曲的彈簧;尺蠖走動時是尾巴頂到頭部,整個身子呈 ∩ 狀,然後前端再向前行並伸展成-字形。

信天翁滑翔時羽翼僵直不動,偶爾慵懶地鼓翼一下,以有蹼的腳劃過水面,而後用笨拙卻迷人的方式飛跑而起;大象拖著沉重的腳步,緩慢橫過空曠的熱帶大草原,一次移動一隻腳(圖七一),模式就像那隻在海邊市鎮漫步的拉布拉多獵犬。

(圖七一)大象的慢步行走。圖/《生物世界的數學遊戲》

駱駝行走的模式又不一樣了:先同時移動兩隻左腿,然後是兩隻右腿〔稱為「溜蹄」(pace)〕,身子左右搖擺有如醉漢一般。松鼠又是另外一種模式:跳一下,停一下,然後再跳一下;如果遇到警訊,就省掉「停」的步驟。

Carparachneaureoflava 這種車輪蜘蛛會像一個有八個輪輻的輪子般,滾過沙漠。世界上有一種會跳躍的蛆〔較正式的稱呼為Ceratitis capitata(地中海果實蠅)的幼蟲〕,會把自己扭曲成 ∩ 形,然後再伸直,就像一顆砲彈般跳入空中,形成一個完美的拋物線。

——本文摘自《生物世界的數學遊戲》,2022 年 9 月,天下文化,未經同意請勿轉載。

天下文化_96
110 篇文章 ・ 597 位粉絲
天下文化成立於1982年。一直堅持「傳播進步觀念,豐富閱讀世界」,已出版超過2,500種書籍,涵括財經企管、心理勵志、社會人文、科學文化、文學人生、健康生活、親子教養等領域。每一本書都帶給讀者知識、啟發、創意、以及實用的多重收穫,也持續引領台灣社會與國際重要管理潮流同步接軌。

0

3
2

文字

分享

0
3
2
比大還要再大!比「無窮」還要更大是什麼概念?——《不用數字的數學》
經濟新潮社
・2022/09/28 ・2660字 ・閱讀時間約 5 分鐘

我們都知道無窮(infinity)是什麼。無窮比任何數都更大。當你從一二三不停數下去的時候你會靠近它。它也是萬物甚至更多事物的總和。

我們談到無窮時,一定會想知道一件事:

什麼事物比無窮大?圖/經濟新潮社

比無窮還大?有可能嗎?

這個問題其實真的有答案。它不是開放性問題,也不是陷阱題。答案不是「是」就是「否」,而且我會在這一章的結尾公布答案。

讀者可以先猜猜看,但我們或許應該先訂好遊戲規則,讓大家知道該怎麼思考。

具體說來,我們需要訂定關於「較大」的規則。我們要怎麼確定自己發現了比無窮更大的事物?如果是有限的量,要分辨某個事物比另一個事物更大相當容易,但碰到無窮時似乎就沒那麼簡單了。我們不希望完全靠感覺判斷,所以必須選擇簡單明瞭的規則,用來判定一個量是否比另一個量「更大」。

配對數量的多寡來判斷哪邊比較「大」

那麼,在一般、有限的狀況下,我們通常怎麼判定「較大」?我們說右邊這一堆比左邊的更大是什麼意思?

右邊這一堆比左邊的更大圖/經濟新潮社

沒錯,用看的就知道。但假設我們遇到一個外星人,這個外星人從沒聽過「更大」、「更多」、「更好」這些概念,我們該如何解釋右邊這堆較大?真的,試試看就知道。這個概念太基本了,其實很難從頭開始解釋。

當我們碰到困難時,數學中有個常用的技巧,就是提出完全相反的問題,看看會有什麼結果。我們要怎麼跟外星人解釋這兩堆的大小相同?

我們要怎麼跟外星人解釋這兩堆的大小相同?圖/經濟新潮社

我們不能用「相等」這個詞,因為它正是我們要去解釋的東西。這個外星人想了解我們說兩樣事物「相等」或「相同」時是什麼意思,以及它的主要概念是什麼。

有個方法行得通。把兩堆東西並排起來,一個對一個。如果兩兩配對後正好用完,沒有剩餘,表示這兩堆東西大小相同。

如果兩兩配對後正好用完,沒有剩餘,表示這兩堆東西大小相同。圖/經濟新潮社
圖/經濟新潮社

「提出相反問題」的技巧確實有用。只要把這個規則反轉過來,就能得到「較大」的定義。

圖/經濟新潮社

現在問題已經定義清楚了,答案也隨之確定。那麼,世界上有什麼事物比無窮更大?答案是「是」還是「否」?世界上有什麼事物和無窮兩兩配對之後還有剩餘?現在我們可以思考之後猜猜看。

無窮跟無窮 +1 誰比較大?

我們可以把無窮想成一個深不見底的袋子,裡面裝著無限多個物體。

我們可以從這個袋子裡拿出任意數量的物體,袋子裡也還剩下無限多個。

世界上怎麼可能有其他事物比它更大?好吧,如果是無窮加一呢?

多一個物體看來應該不會對無窮造成什麼影響,但我們用配對規則來確認看看。首先,我們可以把無窮袋中的物體排成一排,這樣比較容易看清楚哪個跟哪個配對。

如果我們以最顯而易見的方式配對,無窮加一看起來當然更大。

不過要小心!規則指出,兩個事物必須無法正好兩兩配對,才會有一者較大。(最好經常回頭看清楚規則!)還有一種配對方法確實可行,而且兩方都不會有剩餘:

如果你覺得這樣好像在騙人,請花點時間告訴自己,這樣真的沒錯。我們不是把一個物體跟點點點配對,而是把它跟隱藏在點點點中的下一個物體配對。既然兩個袋子都有無限多個物體,不會有物體配對不到,所以兩者大小相同。無窮加一等於無窮!

我來講個故事說明這個結果有多奇怪。

無窮大飯店!如何塞進無窮 +1 位客人

假設我們在一家非常特別的「無窮大飯店」當櫃臺接待人員。無窮大飯店有無限多間房間。飯店裡有條長長的走廊,沿著走廊有一排房門,連綿不絕地延續下去,無論走多遠都不會結束。走廊沒有盡頭,所以也沒有「無窮號房」或「最後一號房」。當然有一號房,每間房間也都有下一號房。

今天晚上格外忙碌,飯店裡每間房間都住滿了(對,這個世界裡有無限多個人)。如果沿走廊隨意走一段距離,選一扇門敲幾下,就會聽到:「有人!請勿打擾!」無限多間房間,裡面住著無限多個人。

接著有人從外面走進飯店大廳說:「請問還有房間嗎?」我們不是第一天在無窮大飯店工作,當然知道該怎麼做。我們拿起廣播系統麥克風說:「各位來賓,抱歉打擾一下,請各位來賓搬到下一間房間。沒錯,請收拾好行李,走出房門,朝遠離大廳的方向搬到下一間房間。謝謝合作,祝您有個愉快的夜晚。」大家都照做之後,就有房間給新住客了。

無限多間房間,無限多加一位住客,房間跟住客依然正好兩兩配對。無窮加一等於無窮。

無窮加五、無窮加一兆……都沒關係,這個邏輯全都成立。兩個袋子可以正好配對,可以多裝進一位客人。無窮非常大,任何有限的量根本沒得比。所以我們還沒有找到比無窮更大的事物。

——本文摘自《不用數字的數學:讓我們談談數學的概念,一些你從沒想過的事……激發無窮的想像力!》,2022 年 9 月,經濟新潮社,未經同意請勿轉載。

經濟新潮社
4 篇文章 ・ 4 位粉絲

0

3
2

文字

分享

0
3
2
圓形 = 三角形?形狀之間的秘密關係——《不用數字的數學》
經濟新潮社
・2022/09/27 ・1427字 ・閱讀時間約 2 分鐘

數學家通常都想很多,這是我們的習性。我們會分析對稱或相等這類大家都知道的基本概念,試圖找出更深層的意義。

形狀就是一個例子。我們多少都知道形狀是什麼。我們看到一個物體時,很容易就看得出它是圓形、方形還是其他形狀。但數學家會問:形狀是什麼?構成形狀的要素是什麼?我們以形狀分辨物體時,會忽略它的大小、色彩、用途、年代、重量、誰把它拿來的,以及最後誰要負責歸位。我們沒有忽略的是什麼?當我們說某樣東西是圓形時,看到的是什麼呢?

形狀百百種,可以量化嗎?

當然,這些問題沒什麼意義。就實際用途而言,我們對形狀的直覺理解就已經夠了——生活中沒有什麼重大決定是需要仰賴我們對於「形狀」的確切定義。但如果你有空又願意花時間來想一想,形狀倒是個很有趣的主題。

假設我們現在要思考了,我們或許會問自己這個問題:

世界上有多少形狀?圖/經濟新潮社

這個問題很簡單,但不容易回答。這個問題有個比較精確和有限的說法,稱為廣義龐卡赫猜想(generalized Poincaré conjecture,或譯龐加萊猜想)。這個猜想提出至今已經超過一百年,目前還沒有人解答出來。嘗試過的人相當多,有一位數學家解出這個問題的大部分,因此獲得了100萬美元獎金,但還有許多種形狀沒有找到,所以目前我們還不知道世界上一共有幾種形狀。

動手把形狀畫出來

我們來試著解答這個問題。世界上有幾種形狀?如果沒有更好的點子,有個不錯的方法是畫出一些形狀,看看會有什麼結果。

我們可以試著畫出一些形狀。圖/經濟新潮社
我們可以試著畫出一些形狀。圖/經濟新潮社

看來這個問題的答案取決於我們區分形狀的方式。大圓和小圓是相同的形狀嗎?波浪線(squiggle)應該全部算成一大類,還是應該依彎曲的方式細分?我們需要一種通用規則來解決這類爭議,才不用每次都需要停下來爭論。

從幾何學到拓樸學

可用於決定兩個形狀是否相同的規則相當多。如果是木匠或工程師,通常會希望規則既嚴謹又精確:必須長度、角度和曲線都完全相等,兩個形狀才算相同。這樣的規則屬於幾何學(geometry)這個數學領域。在這個領域裡,形狀嚴格又精確,經常做的事情是畫垂直線和計算面積等等。

決定兩個形狀是否相同的規則相當多。圖/經濟新潮社

但我們的要求比較寬鬆一點。我們想要找出所有可能的形狀,但沒時間慢慢區分幾千種不同的波浪線。我們想要的是在比較兩個形狀是否相同時比較寬鬆的規則,它能夠把所有的形狀分成若干類別,但類別的數量又不至於太多。

所以三角形可以等於圓形。圖/經濟新潮社




——本文摘自《不用數字的數學:讓我們談談數學的概念,一些你從沒想過的事……激發無窮的想像力!》,2022 年 9 月,經濟新潮社,未經同意請勿轉載。

經濟新潮社
4 篇文章 ・ 4 位粉絲