15 歲時,他拿到了另一本數學書《純粹數學概要》(Synopsis of pure mathematics),這大概也是少數因為讀者(就是拉馬努金)而出名的一本書。書中介紹了 6,000 多條公式,拉馬努金在 5 年內反覆閱讀,不僅懂了這些公式,還進一步延伸推廣。這本書可說是拉馬努金自學數學的聖經。也因為這本書不附證明的寫法,讓拉馬努金不擅長數學嚴謹的證明邏輯。這個時期他的數學成就,都是靠論證、直覺、歸納的混合處理達到。就像電影裡那樣,等到去了劍橋,才在哈代(G. H. Hardy)的指導下學會證明。話說回來,每個人適合不同的學習方式,倘若拉馬努金一開始就學習嚴謹的證明,說不定就無法培養出他那銳利無比的洞察力。
成為人夫的拉馬努金遇到了後來成為印度數學學會會長的 R. Ramachandra Rao,Rao 激賞拉馬努金的天份,願意定期贊助他,讓他安心從事研究。贊助了幾年,拉馬努金覺得自己沒什麼貢獻,不願意在白白拿錢。Rao 介紹他去港務局工作,除了穩定收入,還有一個拉馬努金的專屬福利——去海港撿包裝紙當計算紙。值得一提的是,在這段期間,拉馬努金已經在《印度數學學會期刊》(Journal of the Indian Mathematical Society)發表過一篇論文,探討伯努利函數的性質。
26 歲時,拉馬努金將自己的研究成果寫成一封信,寄給哈代。哈代看完後立刻邀請拉馬努金到劍橋,只是宗教信仰讓拉馬努金猶豫,最後他決定先留在 Madras 大學做研究。
-----廣告,請繼續往下閱讀-----
哈代沒放棄邀請拉馬努金,他透過當時正在 Madras 大學講課的 Neville(就是數值分析裡 Neville algorithm 的那個Neville)繼續遊說,終於說服了拉馬努金。
數學作家、譯者,作品散見於聯合報、未來少年、國語日報,與各家網路媒體。師大附中,台大電機畢業。
我深信數學大師約翰·馮·諾伊曼的名言「If people do not believe that mathematics is simple, it is only because they do not realize how complicated life is」。為了讓各位跟我一樣相信這句話,我們得先從數學有多簡單來說起,聊聊數學,也用數學說故事。
歡迎加入我與太太廖珮妤一起創辦的:
數感實驗室
。
1990 年,融合蛋白 CD4 免疫黏附素(CD4 immunoadhesin)誕生。這項設計,是為了對付令人類聞風喪膽的 HIV 病毒。
-----廣告,請繼續往下閱讀-----
我們知道 T 細胞是人體中一種非常重要的白血球。在這些 T 細胞中,大約有六到七成表面帶有一個叫做「CD4」的輔助受體。CD4 會和另一個受體 TCR 一起合作,幫助 T 細胞辨識其他細胞表面的抗原片段,等於是 T 細胞用來辨認壞人的「探測器」。表面擁有 CD4 受體的淋巴球,就稱為 CD4 淋巴球。
麻煩的來了。 HIV 病毒反將一軍,竟然把 T 細胞的 CD4 探測器,當成了自己辨識獵物的「標記」。沒錯,對 HIV 病毒來說,免疫細胞就是它的獵物。HIV 的表面有一種叫做 gp120 的蛋白,會主動去抓住 T 細胞上的 CD4 受體。
而另一端的 Fc 區域則有兩個重要作用:一是延長融合蛋白在體內的存活時間;二是理論上能掛上「這裡有敵人!」的標籤,這種機制稱為抗體依賴性細胞毒殺(ADCC)或免疫吞噬作用(ADCP)。當免疫細胞的 Fc 受體與 Fc 區域結合,就能促使免疫細胞清除被黏住的病毒顆粒。
不過,這裡有個關鍵細節。
在實際設計中,CD4免疫黏附素的 Fc 片段通常會關閉「吸引免疫細胞」的這個技能。原因是:HIV 專門攻擊的就是免疫細胞本身,許多病毒甚至已經藏在 CD4 細胞裡。若 Fc 區域過於活躍,反而可能引發強烈的發炎反應,甚至讓免疫系統錯把帶有病毒碎片的健康細胞也一併攻擊,這樣副作用太大。因此,CD4 免疫黏附素的 Fc 區域會加入特定突變,讓它只保留延長藥物壽命的功能,而不會與淋巴球的 Fc 受體結合,以避免誘發免疫反應。
從 DNA 藍圖到生物積木:融合蛋白的設計巧思
融合蛋白雖然潛力強大,但要製造出來可一點都不簡單。它並不是用膠水把兩段蛋白質黏在一起就好。「融合」這件事,得從最根本的設計圖,也就是 DNA 序列就開始規劃。
我們體內的大部分蛋白質,都是細胞照著 DNA 上的指令一步步合成的。所以,如果科學家想把蛋白 A 和蛋白 B 接在一起,就得先把這兩段基因找出來,然後再「拼」成一段新的 DNA。
如果在「三跤㧣」選舉之下,選情的激盪從候選人的得票多少看不出來,那要從哪裡看?政治學提供的一個方法是把候選人配對 PK,看是否有一位候選人能在所有的 PK 中取勝。這樣的候選人並不一定存在,如果不存在,那代表有 A 與 B 配對 A 勝,B 與 C 配對 B 勝,C 與 A 配對 C 勝的 A>B>C>A 的情形。這種情形,一般叫做「循環多數」(cyclical majorities),是 18 世紀法國學者孔多塞(Nicolas de Condorcet)首先提出。循環多數的存在意涵選舉結果隱藏了政治動盪。
台大電機系畢業,美國明尼蘇達大學政治學博士,
現任教於美國德州大學奧斯汀校區政府系。
林教授每年均參與中央研究院政治學研究所及政大選研中心
「政治學計量方法研習營」(Institute for Political Methodology)的教學工作,
並每兩年5-6月在台大政治系開授「理性行為分析專論」密集課程。
林教授的中文部落格多為文學、藝術、政治、社會、及文化評論。