Loading [MathJax]/extensions/tex2jax.js

0

2
2

文字

分享

0
2
2

《排球少年!!》在排球場中常發出的啾啾聲,到底是什麼的聲音?──《空想科學讀本》

遠流出版_96
・2016/06/03 ・1994字 ・閱讀時間約 4 分鐘 ・SR值 483 ・五年級

文/柳田理科雄

《排球少年!!》是一部看了令人熱血澎湃的作品。

Haikyu_cover
《排球少年!!》漫畫封面。圖/wikipedia

身高很矮卻有著超群的運動能力、對排球異常執著的日向翔陽,以及拜體格之賜又有著高超技術卻無法與周圍之人協調的影山飛雄,這兩位主角互相引發出彼此的能力,朝向高中排球界的頂點前進。筆者我最喜歡這類直截了當毫不拖泥帶水的運動漫畫了。

既然如此,那就單純的欣賞作品不就得了?雖然筆者我自己也如此覺得,不過有件事情無論如何都很在意。那就是這部漫畫中經常出現「啾啾」的聲音。對,那是鞋子踩在體育館地板上時所發出的聲響!這個聲音雖然在至今為止的許多運動漫畫裏都有畫出來過,但總覺得在《排球少年!!》裡出現的頻率特別高。

-----廣告,請繼續往下閱讀-----

舉例來說,這部作品雖然是在《週刊少年 JUMP》上從 2012 年的 12 號開始連載的,但從第 1 集的第 1 頁開始,畫面上就是沿線並排著的選手的腳,然後就畫出了鞋子的聲音「啾啾」「啾啾」「啾」「啾」,一共畫出 4 聲!這一格的畫面接下來的一頁才是標題頁。

換句話說,連作品的名稱都還沒出現,「啾啾」聲就已經先冒出來啦。

與《影子籃球員》比較

在體育館裡比賽球類運動的確是會發出「啾啾」的聲音。這麼說來也應該不是只有《排球少年!!》會,其他以體育館為舞台的運動漫畫也應該同樣會發出這種聲音吧?筆者我這麼一想,就試著用《灌籃高手》和《影子籃球員》等漫畫來試著做個比較吧。

首先從各作品中挑出具代表性的比賽,再試著數一下一場比賽中究竟發出過多少次「啾」聲吧。要比較這種事,最重要的就是先訂出嚴密的規則,所以規則如下:

-----廣告,請繼續往下閱讀-----
  1. 「啾啾」的話就算 2 次。
  2. 在球賽還在進行的情況下,只有畫出參賽選手的畫面才能算進「比賽的畫面」中。

將一場比賽裡的「啾」聲次數除以比賽的畫面格數,此定義為「啾率」。

就先從籃球漫畫的金字塔《灌籃高手》中湘北 vs 山王工業的這場比賽開始吧。這是《灌藍高手》連載時最後的一場比賽,也是高中聯賽的第 2 場比賽。其中符合第 2 條規則的畫面共有 1555 格,而發出的「啾」聲共有 61 次。在此情形下「啾率」為 3.9 %。

另一部名作籃球漫畫《影子籃球員》則選出冬季杯準決賽之成凜 vs 海常之戰。這場比賽共有901格,「啾」聲有81次,所以「啾率」為9.0%。喔,這頻率是《灌籃高手》的2倍以上。

然後在《排球少年!!》裡挑出的則是高中聯賽宮城預賽第 2 場的烏野 vs 伊達工業之戰。比賽畫面的格數還真是出乎意料的少,只有 287 格,然而「啾」聲卻出現了 88 次,是這 3 部作品中最多的,「啾率」竟然高達 30.7 %

-----廣告,請繼續往下閱讀-----

153

這太強了吧。

平均每 3.3 格就發出一聲「啾」,啾啾啾啾啾啾啾啾啾啾啾啾啾……啊!吵死人啦!!

體育館的地板光可鑑人嗎?

從科學的角度考量,這種啾啾聲是一種「自激振盪」(Self-exciting oscillation)的聲音。所謂自激振盪,是指對物體持續給予能量時所產生的振動。在我們身邊就有許多例子,例如盪鞦韆越盪越高的時候,寒風吹動電線所發出的聲音等等。

自激振盪有許多種模式,在《排球少年!!》裡所發生的,是某種具有彈性的物體在具有摩擦的平面上擦過時所產生的自激振盪。

-----廣告,請繼續往下閱讀-----

除此之外,例如小提琴,是用馬毛製成的弓(平面)與金屬或合成纖維製成的琴弦(有彈性的物體)互相摩擦而發出聲音的。行駛中的車輛突然煞車時發出的「嘰嘰」聲,則是來自柏油路面(平面)和橡膠輪胎(具有彈性的物體)互相摩擦所發出的聲音。

用指甲刮黑板時發出的令人毛骨悚然的難聽聲音,以及用手指在洗乾淨的碗盤上搓動時發出的啾啾聲,全都是基於自激振盪所發出的。

在運動漫畫裡的「啾啾」聲,有摩擦的平面就是體育館的地板,而有彈性的物體就是球鞋鞋底。

摩擦而產生的自激振盪,經常發生於「具有彈性的物體,在具有適度摩擦力的光滑平面上擦過」的情形下。相反地,當平面被砂土或油脂弄髒時,摩擦力會減少,就無法產生自激振盪了。

-----廣告,請繼續往下閱讀-----

換句話說,地板太髒的話就不容易發出啾啾聲

156
為了讓地板發出「啾啾」聲必須有條件

意思是,《排球少年!!》裡進行比賽的體育館,比起其他運動漫畫的比賽場地的地板擦得更乾淨,不然就是這些登場的選手全都穿著光鮮亮麗的嶄新球鞋……吧?雖然從科學上來說就是這麼回事,不過真的是這樣嗎?


0

 

 

《公主踢騎士》遊戲中,把士兵踢飛幾十公尺遠的飛踢公主到底多神力? 《飆速宅男》中那種傾斜了 70 度的搖擺抽車,實際上會有效嗎?那些動漫裡的「超」科學。是內容超級合乎科學,還是超越科學解釋範圍呢? 且看日本科普大師柳田理科雄最新力作《空想科學讀本:這部動漫超科學》,遠流出版。

 

 

-----廣告,請繼續往下閱讀-----
文章難易度
遠流出版_96
59 篇文章 ・ 30 位粉絲
遠流出版公司成立於1975年,致力於台灣本土文化的紮根與出版的工作,向以專業的編輯團隊及嚴謹的製作態度著稱,曾獲日本出版之《台灣百科》評為「台灣最具影響力的民營出版社」。遠流以「建立沒有圍牆的學校」、滿足廣大讀者「一生的讀書計畫」自期,積極引進西方新知,開發作家資源,提供全方位、多元化的閱讀生活,矢志將遠流經營成一個「理想與勇氣的實踐之地」。

0

1
0

文字

分享

0
1
0
ECU: 汽車大腦的演化與挑戰
鳥苷三磷酸 (PanSci Promo)_96
・2025/07/02 ・3793字 ・閱讀時間約 7 分鐘

-----廣告,請繼續往下閱讀-----

本文與 威力暘電子 合作,泛科學企劃執行。

想像一下,當你每天啟動汽車時,啟動的不再只是一台車,而是一百台電腦同步運作。但如果這些「電腦」突然集體當機,後果會有多嚴重?方向盤可能瞬間失靈,安全氣囊無法啟動,整台車就像失控的高科技廢鐵。這樣的「系統崩潰」風險並非誇張劇情,而是真實存在於你我日常的駕駛過程中。

今天,我們將深入探討汽車電子系統「逆天改運」的科學奧秘。究竟,汽車的「大腦」—電子控制單元(ECU),是如何從單一功能,暴增至上百個獨立系統?而全球頂尖的工程師們,又為何正傾盡全力,試圖將這些複雜的系統「砍掉重練」、整合優化?

第一顆「汽車大腦」的誕生

時間回到 1980 年代,當時的汽車工程師們面臨一項重要任務:如何把汽油引擎的每一滴燃油都壓榨出最大動力?「省油即省錢」是放諸四海皆準的道理。他們發現,關鍵其實潛藏在一個微小到幾乎難以察覺的瞬間:火星塞的點火時機,也就是「點火正時」。

如果能把點火的精準度控制在「兩毫秒」以內,這大約是你眨眼時間的百分之一到千分之一!引擎效率就能提升整整一成!這不僅意味著車子開起來更順暢,還能直接省下一成的油耗。那麼,要如何跨過這道門檻?答案就是:「電腦」的加入!

-----廣告,請繼續往下閱讀-----

工程師們引入了「微控制器」(Microcontroller),你可以把它想像成一顆專注於特定任務的迷你電腦晶片。它能即時讀取引擎轉速、進氣壓力、油門深度、甚至異常爆震等各種感測器的訊號。透過內建的演算法,在千分之一秒、甚至微秒等級的時間內,精準計算出最佳的點火角度,並立刻執行。

從此,引擎的性能表現大躍進,油耗也更漂亮。這正是汽車電子控制單元(ECU)的始祖—專門負責點火的「引擎控制單元」(Engine Control Unit)。

汽車電子控制單元的始祖—專門負責點火的「引擎控制單元」(Engine Control Unit)/ 圖片來源:shutterstock

ECU 的失控暴增與甜蜜的負荷

第一顆 ECU 的成功,在 1980 年代後期點燃了工程師們的想像:「這 ECU 這麼好用,其他地方是不是也能用?」於是,ECU 的應用範圍不再僅限於點火,燃油噴射量、怠速穩定性、變速箱換檔平順度、ABS 防鎖死煞車,甚至安全氣囊的引爆時機……各種功能都交給專屬的 ECU 負責 。

然而,問題來了:這麼多「小電腦」,它們之間該如何有效溝通?

-----廣告,請繼續往下閱讀-----

為了解決這個問題,1986 年,德國的博世(Bosch)公司推出了一項劃時代的發明:控制器區域網路(CAN Bus)。你可以將它想像成一條專為 ECU 打造的「神經網路」。各個 ECU 只需連接到這條共用的線路上,就能將訊息「廣播」給其他單元。

更重要的是,CAN Bus 還具備「優先通行」機制。例如,煞車指令或安全氣囊引爆訊號這類攸關人命的重要訊息,絕對能搶先通過,避免因資訊堵塞而延誤。儘管 CAN Bus 解決了 ECU 之間的溝通問題,但每顆 ECU 依然需要獨立的電源線、接地線,並連接各種感測器和致動器。結果就是,一輛汽車的電線總長度可能達到 2 到 4 公里,總重量更高達 50 到 60 公斤,等同於憑空多載了一位乘客的重量。

另一方面,大量的 ECU 與錯綜複雜的線路,也讓「電子故障」開始頻繁登上汽車召回原因的榜首。更別提這些密密麻麻的線束,簡直是設計師和維修技師的惡夢。要檢修這些電子故障,無疑讓人一個頭兩個大。

大量的 ECU 與錯綜複雜的線路,也讓「電子故障」開始頻繁登上汽車召回原因的榜首。/圖片來源:shutterstock

汽車電子革命:從「百腦亂舞」到集中治理

到了2010年代,汽車電子架構迎來一場大改革,「分區架構(Zonal Architecture)」搭配「中央高效能運算(HPC)」逐漸成為主流。簡單來說,這就像在車內建立「地方政府+中央政府」的管理系統。

-----廣告,請繼續往下閱讀-----

可以想像,整輛車被劃分為幾個大型區域,像是車頭、車尾、車身兩側與駕駛艙,就像數個「大都會」。每個區域控制單元(ZCU)就像「市政府」,負責收集該區所有的感測器訊號、初步處理與整合,並直接驅動該區的馬達、燈光等致動器。區域先自理,就不必大小事都等中央拍板。

而「中央政府」則由車用高效能運算平台(HPC)擔任,統籌負責更複雜的運算任務,例如先進駕駛輔助系統(ADAS)所需的環境感知、物體辨識,或是車載娛樂系統、導航功能,甚至是未來自動駕駛的決策,通通交由車輛正中央的這顆「超級大腦」執行。

乘著這波汽車電子架構的轉型浪潮中, 2008 年成立的台灣本土企業威力暘電子,便精準地切入了這個趨勢,致力於開發整合 ECU 與區域控制器(Domain Controller)功能的模組化平台。他們專精於開發電子排檔、多功能方向盤等各式汽車電子控制模組。為了確保各部件之間的溝通順暢,威力暘提供的解決方案,就像是將好幾個「分區管理員」的職責,甚至一部分「超級大腦」的功能,都整合到一個更強大的硬體平台上。

這些模組不僅擁有強大的晶片運算能力,可同時支援 ADAS 與車載娛樂,還能兼容多種通訊協定,大幅簡化車內網路架構。如此一來,車廠在追求輕量化和高效率的同時,也能顧及穩定性與安全性。

-----廣告,請繼續往下閱讀-----
2008 年威力暘電子致力於開發整合 ECU 與區域控制器(Domain Controller)功能的模組化平台 /圖片來源:shutterstock

萬無一失的「汽車大腦」:威力暘的四大策略

然而,「做出來」與「做好」之間,還是有差別。要如何確保這顆集結所有功能的「汽車大腦」不出錯?具體來說,威力暘電子憑藉以下四大策略,築起其產品的可靠性與安全性:

  1. AUTOSAR : 導入開放且標準化的汽車軟體架構 AUTOSAR。分為應用層、運行環境層(RTE)和基礎軟體層(BSW)。就像在玩「樂高積木」,ECU 開發者能靈活組合模組,專注在核心功能開發,從根本上提升軟體的穩定性和可靠性。
  2. V-Model 開發流程:這是一種強調嚴謹、能在早期發現錯誤的軟體開發流程。就像打勾 V 字形般,左側從上而下逐步執行,右側則由下而上層層檢驗,確保每個階段的安全要求都確實落實。
  3. 基於模型的設計 MBD(Model-Based Design) 威力暘的工程師們會利用 MatLab®/Simulink® 等工具,把整個 ECU 要控制的系統(如煞車),用數學模型搭建起來,然後在虛擬環境中進行大量的模擬和測試。這等於在實體 ECU 誕生前,就能在「數位雙生」世界中反覆演練、預先排除設計缺陷,,並驗證安全機制是否有效。
  4. Automotive SPICE (ASPICE) : ASPICE 是國際公認的汽車軟體「品質管理系統」,它不直接評估最終 ECU 產品本身的安全性,而是深入檢視團隊在軟體開發的「整個過程」,也就是「方法論」和「管理紀律」是否夠成熟、夠系統化,並只根據數據來評估品質。

既然 ECU 掌管了整輛車的運作,其能否正常運作,自然被視為最優先項目。為此,威力暘嚴格遵循汽車業中一本堪稱「安全聖經」的國際標準:ISO 26262。這套國際標準可視為一本針對汽車電子電氣系統(特別是 ECU)的「超嚴格品管手冊」和「開發流程指南」,從概念、設計、測試到生產和報廢,都詳細規範了每個安全要求和驗證方法,唯一目標就是把任何潛在風險降到最低

有了上述這四項策略,威力暘確保其產品從設計、生產到交付都符合嚴苛的安全標準,才能通過 ISO 26262 的嚴格檢驗。

然而,ECU 的演進並未就此停下腳步。當ECU 的數量開始精簡,「大腦」變得更集中、更強大後,汽車產業又迎來了新一波革命:「軟體定義汽車」(Software-Defined Vehicle, SDV)。

-----廣告,請繼續往下閱讀-----

軟體定義汽車 SDV:你的愛車也能「升級」!

未來的汽車,會越來越像你手中的智慧型手機。過去,車輛功能在出廠時幾乎就「定終身」,想升級?多半只能換車。但在軟體定義汽車(SDV)時代,汽車將搖身一變成為具備強大運算能力與高速網路連線的「行動伺服器」,能夠「二次覺醒」、不斷升級。透過 OTA(Over-the-Air)技術,車廠能像推送 App 更新一樣,遠端傳送新功能、性能優化或安全修補包到你的車上。

不過,這種美好願景也將帶來全新的挑戰:資安風險。當汽車連上網路,就等於向駭客敞開潛在的攻擊入口。如果車上的 ECU 或雲端伺服器被駭,輕則個資外洩,重則車輛被遠端鎖定或惡意操控。為了打造安全的 SDV,業界必須遵循像 ISO 21434 這樣的車用資安標準。

威力暘電子運用前面提到的四大核心策略,確保自家產品能符合從 ISO 26262 到 ISO 21434 的國際認證。從品質管理、軟體開發流程,到安全認證,這些努力,讓威力暘的模組擁有最高的網路與功能安全。他們的產品不僅展現「台灣智造」的彈性與創新,也擁有與國際大廠比肩的「車規級可靠度」。憑藉這些實力,威力暘已成功打進日本 YAMAHA、Toyota,以及歐美 ZF、Autoliv 等全球一線供應鏈,更成為 DENSO 在台灣少數核准的控制模組夥伴,以商用車熱系統專案成功打入日系核心供應鏈,並自 2025 年起與 DENSO 共同展開平台化量產,驗證其流程與品質。

毫無疑問,未來車輛將有更多運作交由電腦與 AI 判斷,交由電腦判斷,比交由人類駕駛還要安全的那一天,離我們不遠了。而人類的角色,將從操作者轉為監督者,負責在故障或斷網時擔任最後的保險。透過科技讓車子更聰明、更安全,人類甘願當一個「最弱兵器」,其實也不錯!

-----廣告,請繼續往下閱讀-----
-----廣告,請繼續往下閱讀-----
文章難易度

討論功能關閉中。

0

2
0

文字

分享

0
2
0
賽道上高溫與摩擦的平衡!賽車最重要的配件「剎車」——《黏黏滑滑》
晨星出版
・2023/01/06 ・3272字 ・閱讀時間約 6 分鐘

度影響剎車的抓力

雖然似乎有點違背直覺,但是煞車是高速駕駛不可或缺的一環。不管是在哪個賽車場,駕駛的目標之一就是保持在賽道的最佳路徑(racingline)—繞行賽道的最短路徑。所以駕駛過彎時不會沿著急轉彎處長長的外彎道前進,而是「夾著」彎道的內側,稱為彎頂點(apex,即過彎路線中最接近彎道內側的點)的地方,以將他們必須行駛的距離縮到最短。

這麼做需要非常精準的煞車:要在剛剛好的時間對煞車踏板施予剛剛好的壓力。當他們辦到時,駕駛就會出現在賽道轉彎處的絕佳位置,且依然帶有征服下一段賽程所需的速度。但是這樣的開車方式會耗損煞車;而且有些賽道沒什麼機會可以讓煞車冷卻。

以世界知名的摩納哥街賽道來說。雖然僅長3.34 公里(2 哩多),是F1 賽程中最短的賽道,但是卻必須不斷踩煞車和加速。煞車製造商布雷博(Brembo)指出,2019 年賽季中,駕駛們每一圈使用煞車 18.5 秒,多過總賽程的四分之一。

在需求最高的轉彎處,汽車要在不到 2.5 秒的時間內將時速從 297 公里(185 哩)減至 89 公里(55 哩);這會將大量動能快速轉換成熱能,難怪煞車碟盤會冒出火花。為了要負荷這樣龐大的熱負載,製造商在每個煞車碟盤的邊緣鑽入細小的徑向孔—數量超過 1000 個。

-----廣告,請繼續往下閱讀-----

這樣的小孔可以增加煞車碟盤的表面積,比較容易散熱。但是也具有通氣孔的功能。與安裝在各個輪框上的大型冷卻管相結合時,可以把冷空氣拉入煞車碟盤中心,把熱空氣從邊緣帶走。還有個額外優點,這些F1 煞車碟盤相當輕,重量約各為1 公斤(2.2 磅),相較之下,差不多大小的鑄鐵煞車碟盤則為 15 公斤(33 磅) 。

所以為什麼不全面使用這種煞車碟盤呢?有個原因是價格—每片煞車碟盤可能要價高達 2000 美元(約 1500 英鎊) ,而且要六個月的時間才能製成。它們也不太耐久,通常每次比賽後就得更換。最後,它們受限於一定的工作溫度,只能處於 350 ∼ 1000℃。

低於溫度下限時,它們幾乎不具有停止能力—煞車片與煞車碟盤無法產生足夠的抓力。但是如果煞車的溫度高於上限值太久,則會災難性地失靈。如馬歇爾對我描述的,「彷彿在踩縫紉機。當這種狀況發生時,煞車碟盤耗盡『材料』的速度有多快,簡直難以置信。」

科技有助於車隊和駕駛控制他們的煞車,但是就跟 F1 的大部分狀況一樣,沒那麼簡單。冷卻管的大小與形狀可控制流經煞車碟盤的空氣量,所以你可以想像管子愈粗愈好。

-----廣告,請繼續往下閱讀-----

但是如 F1 傳奇工程師帕特.西蒙茲(PatSymonds)告訴《賽車工程》(Racecar Engineering)雜誌的,冷卻有其後果:「遇到像蒙特羅這樣需要一直踩煞車的賽道,我們被迫使用一些該賽季最粗的管子。從最細的冷卻管換到最粗的冷卻管,會犧牲 1.5%的空氣動力學效率,這代表最高速度時速會減少 1 公里。」

我可以想像這會引發車隊的煞車工程師與他們的空氣動力學家爭辯。就連測量煞車配件的溫度都不容易。馬歇爾告訴我,在奧斯頓馬丁 F1 車隊中,他們會在煞車片的安裝托架中埋入高溫的熱電偶,和一系列直接朝向煞車碟盤的遠紅外線感測器。電視轉播賽事時偶爾會出現的彩色熱影像,主要是為了給我們這些觀眾看—顯示出他們建議的最高溫度。

剎車片的抓力在彎道時高速剎車時至關重要。圖/envatoelements

摩擦介面與溫度控制

煞車片與煞車碟盤之間還有另一個重要的過程是磨耗。所有滑動與摩擦都會對兩個表面造成實質傷害;每次煞車作動,兩者都會有微粒破裂。在煞車系統的使用期間,這會逐漸降低材料的摩擦係數—換句話說,會失去它們的抓力。

但這不只是因為彼此的表面被「磨光」,或是失去黏性。磨耗也會形成摩擦膜(tribofilm)這種東西—煞車片與煞車碟盤相接觸時壓碎的一層非常薄的細粒狀材料。「談到磨耗與摩擦力,摩擦膜非常有影響力,」英國里茲大學(University of Leeds)的沙赫里爾.柯沙利(Shahriar Kosarieh)說。

-----廣告,請繼續往下閱讀-----

「我們把這層膜視為『第三體』,因為儘管它是由互相滑動的那兩種材料製成,其化學與機械性質還是與那兩種材料不同。」關注各式各樣市售鑄鐵煞車片的德國研究人員發現,無論煞車片是什麼材質,形成的摩擦膜總是會受到氧化鐵(Fe3O4)控制,其他成分的影響力則相當微弱。

「摩擦膜會控制散熱,且能減少摩擦力—它會主導性能,」柯沙利繼續說道。「煞車製造商很清楚這一點,調配自己的煞車片配方時會考量這一點。煞車片與煞車碟盤要互相搭配,才能產生最佳性能。只要你更動了任一個材料,就會改變界面產生的結果。」

柯沙利最近的研究關注鑄鐵煞車碟盤輕量替代物的摩擦表現,這些輕量煞車碟盤主要都是鋁製。不只有他這麼做—整個汽車產業都對減輕重量很執著,主要是因為汽車的重量愈輕,消耗的燃料就愈少,環境影響也愈少。目前是以鋁為主流。

「那是一種低密度金屬,約比灰鑄鐵(grey cast iron)還低 2.5 倍,所以減輕重量的可能性很高,」他跟我在電話中閒聊。「鋁的導熱性也很高,在表面形成的氧化物也具有一些防蝕效果。」把鋁合金與碳化矽等硬質陶瓷材料結合也能提升其強度。

-----廣告,請繼續往下閱讀-----

「但是鋁的問題在於當溫度高於400℃時會開始熔化。就煞車而言,這代表摩擦力突然銳減,也是你能想像最糟的狀況。所以更加促使工程師更努力找出方法,既能讓表面有比較好的熱穩定性,使用壽命又能更持久。」

工程師致力於找出剎車在溫度與磨損上的平衡。圖/envatoelements

對柯沙利而言,最有意思的其中一種方法是電漿電解氧化(plasmaelectrolytic oxidation, PEO),這是用一個電場在鋁的表面形成一層複雜又高度耐磨的薄層。當他測試各種不同以電漿電解氧化處理過的鋁盤性能時,發現有些可以撐過約 550℃。不過,許多案例的摩擦係數太低—低於實際煞車系統所需的最低閾值。

柯沙利並不洩氣。「煞車是整個系統一起作動。如果你拿到一個新的煞車碟盤,那你也需要把對位碟盤調整到最佳狀態。製造商設計出專供電漿電解氧化塗層煞車碟盤使用的新煞車片配方。」我只找到幾篇已發表的研究,結合了電漿電解氧化煞車碟盤與這些新的摩擦片,但是結果看起來大有希望。輕量的鋁製煞車在未來的道路車輛上可能有機會亮相。

F1 在 1970 年代晚期為它們的煞車碟盤和煞車片找到了不同的解決方法,從那時候起就沿用至今:一種稱為碳-碳(carbon-carbon)的材料,在石墨基質裡包埋高度有序的碳纖維。其散熱效果非常好,所以也用在太空梭上。雖然它聽起來可能跟F1 賽車底盤用的碳纖維很類似,但其實是非常不一樣的猛獸。

-----廣告,請繼續往下閱讀-----

製造碳-碳很緩慢且複雜,此材料是由原子薄層堆疊成層。它在摩擦力方面勝出,提供的抓力比傳統煞車配件高 2 倍(在其理想工作溫度範圍內)。但是那並非魔法。在競速的壓力之下,這種材料終究會磨耗殆盡,部分是由於摩擦,但也有化學方面的因素。溫度上升時,碳-碳會與空氣中的氧氣產生反應,而氧氣會提高其劣化程度。你有時候會看到F1 駕駛大力踩煞車時冒出黑塵,這就是原因。

藉由感測器數據調整剎車系統

這個過程代表車隊需要監測的煞車項目不只是溫度。馬歇爾跟我說,他們會使用壓力感測器留意流經管子的氣流。他們也有針對磨耗的電子感測器,可以測量胎側的活動。

「我們使用這些儀器測量煞車片還能接觸煞車碟盤多久。由此可以推論總磨耗程度—也就是煞車片與煞車碟盤的磨耗總和。」為了推算總磨耗比例與煞車片的關係,以及對煞車碟盤的磨耗程度,車隊會把感測器數據對照以往試駕和賽事所蒐集的煞車數據。

「我們可以從所有資料中追溯比賽時的磨耗速率。如果太快,我們可以調整煞車平衡,以免磨耗最高的車輛壽終正寢,或可以請駕駛找一些乾淨的空氣冷卻煞車。」不管怎麼做,目標都是確保駕駛在需要的時間和地點擁有阻擋能力。任一賽季都會面臨數以千計的彎道,這些系統,當然還有駕駛,都表現卓越。

-----廣告,請繼續往下閱讀-----

——本文摘自《黏黏滑滑》,2022 年 11 月,晨星出版,未經同意請勿轉載

-----廣告,請繼續往下閱讀-----

0

2
0

文字

分享

0
2
0
挖個從美國通到中國的洞,然後跳下去會怎樣?──《然後你就死了》
臉譜出版_96
・2019/02/18 ・2872字 ・閱讀時間約 5 分鐘 ・SR值 512 ・六年級

-----廣告,請繼續往下閱讀-----

你在長大過程中(應該是小時候),或許曾心血來潮,想挖個從美國通到中國的洞。你甚至可能動手過,在海灘挖了差不多一公尺。

現在你年紀增長,更有毅力了。假設你下次到了海邊,完成童年時的未竟志業,挖了個穿過地球、深達八千哩(約一萬兩千八百公里)的洞,然後一股腦跳下去。

接下來會怎樣?

如果你從美國大陸開始挖,最後會溺斃在印度洋。若想在美國挖洞,最後在乾燥的陸地上冒出,得從夏威夷海灘上開始挖,最後你會在波札那的狩獵保護區冒出來。圖/pixabay

-----廣告,請繼續往下閱讀-----

問題一:起點很重要

首先,得看你從哪裡開始挖。你的確切起點很重要。別以為中國就在美國的對面。這是錯誤的觀念。事實上,如果你從美國大陸開始挖,最後會溺斃在印度洋。若想在美國挖洞,最後在乾燥的陸地上冒出,得從夏威夷海灘上開始挖,最後你會在波札那的狩獵保護區冒出來。

問題二:摩擦摩擦,直到你剩一攤爛泥

但從夏威夷開始挖也有問題。地球外殼的旋轉速度比內部要快得多,和旋轉木馬一樣。你站在夏威夷海灘上,會比地球核心的移動速度每小時快八百哩(約一千兩百八十七公里)。因此,當你跳進洞裡之後,會一路摩擦著岩壁往下,而朝著另一頭往上時,背部也會摩擦岩壁。

要是摩擦速度慢,你只會輕微擦傷。但高速墜落時,持續擦傷會把你的皮膚與骨頭磨光,直到你只剩一攤爛泥。

地球外殼的旋轉速度比內部要快得多,和旋轉木馬一樣。高速墜落時,一路摩擦岩壁會把你的皮膚與骨頭磨光,直到你只剩一攤爛泥。圖/wikimedia

-----廣告,請繼續往下閱讀-----

要避免摩擦致死,最聰明的方法是從南極或北極開始挖,這裡地表的旋轉速度與核心的旋轉速度差不多。

這是第一步驟。不過,跳進穿過地球的洞穴,風險可不只擦傷致死而已。

人體在海平面以屈體墜落時,終端速度約為時速兩百哩(約三百二十公里)。以這種速度墜落八千哩需要四十小時。換言之,你大可以照一般的方式訂機票,中間經過轉機幾次的折騰後,便能抵達波札那。但假設你不趕時間,花四十小時也無妨。只是,你仍舊不可能通過地球。

問題三:重量減少、空氣密度增加,讓你「漂」在半途

你在幾秒鐘之後,速度就會慢下來。原因有二。

-----廣告,請繼續往下閱讀-----

首先,接近地球中央時,就沒有那麼多的地球重力把你往下拉,這表示你的重量會減少 ,墜落速度也跟著變慢。但第二個原因則比較危險:空氣變厚重。

海拔八千八百四十八公尺的聖母峰是地球最高點,那高度沒有太多大氣來壓縮空氣,因此地表的空氣會比較稀薄,只有受過良好訓練的登山者才可能生存。

你往反方向前進時,則會發生相反的情況。

由於上方的大氣增加,你墜落過程的空氣也會越來越受壓縮。你才僅僅墜落六十哩(不到全程的一%,約九十七公里),空氣的密度已和水一樣。你會下沉一會兒,但後來就達到平衡狀態,屆時空氣和你的密度一樣。因此,你永遠會「漂」在地球裡。

-----廣告,請繼續往下閱讀-----

屆時空氣和你的密度一樣。因此,你永遠會「漂」在地球裡。圖/pxhere

由於大氣壓力會擠壓你的氣室,因此你在地球內部的密度也會比目前還高,並且沉得比你預期得深。但你還是到不了地球的另一端。

顯然,這個沙坑需要重新設計一下。要解決空氣密度的問題,就是抽光隧道中的空氣再封起,使之成為長長的真空管。這就解決了漂浮與移動速度太慢的問題,你現在會以時速一萬八千哩的速度(約兩萬九千公里),尖叫著通過地球中心,而非卡在半途。

問題四:超高溫將你全身汽化

可惜,這條隧道還是不能安全使用。俄羅斯人曾挖掘過世界上最大的沙坑,他們證實:地球中心太熱了。

-----廣告,請繼續往下閱讀-----

俄羅斯的沙坑稱為「科拉超深鑽孔」(Kola Superdeep Borehole),是一項從一九七○年開始、為期二十二年的龐大計畫,目的只是想了解他們能挖得多深。蘇聯在一九八九年已經挖到四萬呎(十二.四公里),後來因為鑽頭焊接處遇到高溫熔化,計畫才告終。即使他們才挖了地球不到○.一%的深度,溫度即已上升到一百八十度。

根據經驗法則,從地表往下每挖一百呎(約三十公尺),溫度就會上升攝氏約零.五六度,也就是墜落兩秒,你大概就會覺得變暖○.五六度。沒什麼大不了。但你在新真空管中,會加速得非常快。

三秒後,隧道中的溫度會提高一.五度,三十秒後,就和烤箱一樣暖。這可不舒服,但你卻能存活超長一段時間。十八世紀,英國科學家查爾斯.布萊格登爵士(Sir Charles Blagden)把一間房間加熱到一百零五度,在裡頭坐了十五分鐘,毫髮無傷地走出來。不過,布萊格登爵士所在的房間不像你的隧道那樣越來越熱。三十秒後,你或許還活著,但這個洞會繼續變熱。再過三十秒,你前進十三哩(約二十一公里),溫度已經抵達五百三十八度。若你帶了加熱即食的披薩,這時已可以吃了,當然你自己也已經熟了。

你在新真空管中三秒後,隧道中的溫度會提高一.五度,三十秒後,就和烤箱一樣暖。再過一分鐘,若你帶了加熱即食的披薩,這時已可以吃了,當然你自己也已經熟了。圖/pxhere

-----廣告,請繼續往下閱讀-----

但情況越來越糟。你仍無法抵達地球另一端。

地球中心的溫度高達六千一百度,比太陽表面還燙。在那溫度下,你的身體會立刻汽化,電子遭撕碎,剩餘部分也將變成零碎的電漿。

所以,我們又得繼續更改你的隧道設計。

如果我們把這隧道的隔熱功能做得非常、非常好(當然不可能做到)。你能順利抵達嗎?

-----廣告,請繼續往下閱讀-----

問題五:能量守恆,小心變成地球版盪鞦韆

設沒有撞到隧道的岩壁,且排除了導致速度變慢、抵達另一端時身體東缺一塊西缺一塊的因素,那麼你在時速一萬八千哩的情況下,只要十九分鐘即可來到地球中心。一旦你通過中心,速度又會開始變慢,因為地球會開始把你拉回。但就像遊樂場的鞦韆,你的動能會把你推回一開始的高度──在這情況下,就是地球的另一邊。

假設排除了上述所有問題,只要十九分鐘即可來到地球中心。但就像遊樂場的鞦韆,你的動能會把你推回一開始的高度──就是地球的另一邊。圖/pxhere

如果忽略目前科技無法在地球核心的極端溫度與壓力下挖掘的問題,你可能抵達地球另一端嗎?可以!大約三十八分十一秒,即可抵達地球另一端。到時候要扶好彼端的地面。

要是沒扶好,你就得重來一遍了。

 

 

本文摘自《然後你就死了:被隕石擊中、被鯨魚吃掉、被磁鐵吸住等45種離奇死法的科學詳解》,2018 年 5 月,臉譜出版。

-----廣告,請繼續往下閱讀-----
臉譜出版_96
88 篇文章 ・ 255 位粉絲
臉譜出版有著多種樣貌—商業。文學。人文。科普。藝術。生活。希望每個人都能找到他要的書,每本書都能找到讀它的人,讀書可以僅是一種樂趣,甚或一個最尋常的生活習慣。

0

2
2

文字

分享

0
2
2
《排球少年!!》在排球場中常發出的啾啾聲,到底是什麼的聲音?──《空想科學讀本》
遠流出版_96
・2016/06/03 ・1994字 ・閱讀時間約 4 分鐘 ・SR值 483 ・五年級

文/柳田理科雄

《排球少年!!》是一部看了令人熱血澎湃的作品。

Haikyu_cover
《排球少年!!》漫畫封面。圖/wikipedia

身高很矮卻有著超群的運動能力、對排球異常執著的日向翔陽,以及拜體格之賜又有著高超技術卻無法與周圍之人協調的影山飛雄,這兩位主角互相引發出彼此的能力,朝向高中排球界的頂點前進。筆者我最喜歡這類直截了當毫不拖泥帶水的運動漫畫了。

-----廣告,請繼續往下閱讀-----

既然如此,那就單純的欣賞作品不就得了?雖然筆者我自己也如此覺得,不過有件事情無論如何都很在意。那就是這部漫畫中經常出現「啾啾」的聲音。對,那是鞋子踩在體育館地板上時所發出的聲響!這個聲音雖然在至今為止的許多運動漫畫裏都有畫出來過,但總覺得在《排球少年!!》裡出現的頻率特別高。

舉例來說,這部作品雖然是在《週刊少年 JUMP》上從 2012 年的 12 號開始連載的,但從第 1 集的第 1 頁開始,畫面上就是沿線並排著的選手的腳,然後就畫出了鞋子的聲音「啾啾」「啾啾」「啾」「啾」,一共畫出 4 聲!這一格的畫面接下來的一頁才是標題頁。

換句話說,連作品的名稱都還沒出現,「啾啾」聲就已經先冒出來啦。

與《影子籃球員》比較

在體育館裡比賽球類運動的確是會發出「啾啾」的聲音。這麼說來也應該不是只有《排球少年!!》會,其他以體育館為舞台的運動漫畫也應該同樣會發出這種聲音吧?筆者我這麼一想,就試著用《灌籃高手》和《影子籃球員》等漫畫來試著做個比較吧。

-----廣告,請繼續往下閱讀-----

首先從各作品中挑出具代表性的比賽,再試著數一下一場比賽中究竟發出過多少次「啾」聲吧。要比較這種事,最重要的就是先訂出嚴密的規則,所以規則如下:

  1. 「啾啾」的話就算 2 次。
  2. 在球賽還在進行的情況下,只有畫出參賽選手的畫面才能算進「比賽的畫面」中。

將一場比賽裡的「啾」聲次數除以比賽的畫面格數,此定義為「啾率」。

就先從籃球漫畫的金字塔《灌籃高手》中湘北 vs 山王工業的這場比賽開始吧。這是《灌藍高手》連載時最後的一場比賽,也是高中聯賽的第 2 場比賽。其中符合第 2 條規則的畫面共有 1555 格,而發出的「啾」聲共有 61 次。在此情形下「啾率」為 3.9 %。

另一部名作籃球漫畫《影子籃球員》則選出冬季杯準決賽之成凜 vs 海常之戰。這場比賽共有901格,「啾」聲有81次,所以「啾率」為9.0%。喔,這頻率是《灌籃高手》的2倍以上。

-----廣告,請繼續往下閱讀-----

然後在《排球少年!!》裡挑出的則是高中聯賽宮城預賽第 2 場的烏野 vs 伊達工業之戰。比賽畫面的格數還真是出乎意料的少,只有 287 格,然而「啾」聲卻出現了 88 次,是這 3 部作品中最多的,「啾率」竟然高達 30.7 %

153

這太強了吧。

平均每 3.3 格就發出一聲「啾」,啾啾啾啾啾啾啾啾啾啾啾啾啾……啊!吵死人啦!!

體育館的地板光可鑑人嗎?

從科學的角度考量,這種啾啾聲是一種「自激振盪」(Self-exciting oscillation)的聲音。所謂自激振盪,是指對物體持續給予能量時所產生的振動。在我們身邊就有許多例子,例如盪鞦韆越盪越高的時候,寒風吹動電線所發出的聲音等等。

-----廣告,請繼續往下閱讀-----

自激振盪有許多種模式,在《排球少年!!》裡所發生的,是某種具有彈性的物體在具有摩擦的平面上擦過時所產生的自激振盪。

除此之外,例如小提琴,是用馬毛製成的弓(平面)與金屬或合成纖維製成的琴弦(有彈性的物體)互相摩擦而發出聲音的。行駛中的車輛突然煞車時發出的「嘰嘰」聲,則是來自柏油路面(平面)和橡膠輪胎(具有彈性的物體)互相摩擦所發出的聲音。

用指甲刮黑板時發出的令人毛骨悚然的難聽聲音,以及用手指在洗乾淨的碗盤上搓動時發出的啾啾聲,全都是基於自激振盪所發出的。

在運動漫畫裡的「啾啾」聲,有摩擦的平面就是體育館的地板,而有彈性的物體就是球鞋鞋底。

-----廣告,請繼續往下閱讀-----

摩擦而產生的自激振盪,經常發生於「具有彈性的物體,在具有適度摩擦力的光滑平面上擦過」的情形下。相反地,當平面被砂土或油脂弄髒時,摩擦力會減少,就無法產生自激振盪了。

換句話說,地板太髒的話就不容易發出啾啾聲

156
為了讓地板發出「啾啾」聲必須有條件

意思是,《排球少年!!》裡進行比賽的體育館,比起其他運動漫畫的比賽場地的地板擦得更乾淨,不然就是這些登場的選手全都穿著光鮮亮麗的嶄新球鞋……吧?雖然從科學上來說就是這麼回事,不過真的是這樣嗎?

-----廣告,請繼續往下閱讀-----

0

 

 

《公主踢騎士》遊戲中,把士兵踢飛幾十公尺遠的飛踢公主到底多神力? 《飆速宅男》中那種傾斜了 70 度的搖擺抽車,實際上會有效嗎?那些動漫裡的「超」科學。是內容超級合乎科學,還是超越科學解釋範圍呢? 且看日本科普大師柳田理科雄最新力作《空想科學讀本:這部動漫超科學》,遠流出版。

 

 

-----廣告,請繼續往下閱讀-----
文章難易度
遠流出版_96
59 篇文章 ・ 30 位粉絲
遠流出版公司成立於1975年,致力於台灣本土文化的紮根與出版的工作,向以專業的編輯團隊及嚴謹的製作態度著稱,曾獲日本出版之《台灣百科》評為「台灣最具影響力的民營出版社」。遠流以「建立沒有圍牆的學校」、滿足廣大讀者「一生的讀書計畫」自期,積極引進西方新知,開發作家資源,提供全方位、多元化的閱讀生活,矢志將遠流經營成一個「理想與勇氣的實踐之地」。