0

0
1

文字

分享

0
0
1

超級勵志的天才無限家!印度數學家拉馬努金|科學史上的今天:12/22

張瑞棋_96
・2015/12/22 ・1770字 ・閱讀時間約 3 分鐘 ・SR值 507 ・六年級

國小高年級科普文,素養閱讀就從今天就開始!!

1934 年,已經 67 歲的數學大師哈代 (G. H. Hardy) 面對年輕數學家艾狄胥 (Paul Erdős) 的提問:「您自認對數學的最大貢獻是什麼?」哈代腦海中浮現的不是任何數學公式或定理,而是一張永難忘懷的面孔,於是他毫不猶豫的回答:「發現拉馬努金!」隨即再補上:「與他的合作是我人生中的一個浪漫的意外。」哈代不禁嘴角上揚,思緒已飄向從前……。

天才無限家 - 拉馬努金逝世96週年紀念日
拉馬努金天分之高,被譽為第二位牛頓。圖/電影《天才無限家》劇照

那是 1913 年 1 月,哈代收到一封來自印度的信,一個作記帳工作的印度青年自稱沒上過大學,但利用閒暇時間自學數學,得出了一些定理,請他過目指教。所附的數學定理洋洋灑灑寫滿九張信紙,多是各種無窮級數的等式,絢麗璀璨令人目眩。他從未見過這樣的數學式,宛如在他熟悉的數學森林裡突然冒出許多新品種的花朵,令人不禁懷疑是人工拼湊的偽造品。例如:

image

哈代把信擱在一旁,本想置之不理,但愈想愈覺得它們不可能是假的,因為沒有人可以如此憑空想像捏造出這些式子。他約了同僚李托伍德 (J. E. Littlewood) 一起檢視這些定理,判定這位名不見經傳的拉馬努金根本是位具有卓越創造力的天才數學家。羅素給他女友的一封信就提到:「在餐廳裡我發現哈代與李托伍德欣喜若狂,因為他們自認發現了第二個牛頓──一個年薪 20 磅的印度職員。」

在哈代的安排下,拉馬努金於 1914 年來到劍橋。哈代相當驚訝於拉馬努金對當代數學的無知,原來他的數學知識來自 16 歲時從一本出版已超過 20 年的數學著作自學得來,裡面整理了五千多條數學定理和公式,但沒有詳細證明與說明。拉馬努金自 1904 年起開始自己衍生出新的定理,但因為沒再跟外面的世界接觸,他不知道該嚴謹地證明他所發現的定理,還自創一些數學符號,難怪他寄給哈代的數學式宛如奇花異草。

哈代教導拉馬努金如何以正統的方式表述數學,同時盡量不去阻礙他的創意。拉馬努金在 1915 年間發表了 39 篇論文,1916 年拿到博士學位,1918 年入選為英國皇家學會會士,同年十月成為第一位獲選為三一學院院士的印度人。

657px-Srinivasa_Ramanujan_-_OPC_-_1
拉馬努金照片。圖/public domain

天妒英才

表面看起來,拉馬努金在英國的生活似乎一帆風順,但其實他早就身心俱疲。他抵達英國那年就爆發第一次世界大戰,他因宗教信仰吃素,但戰時食物配給有限,以致營養不良。他工作過勞又不適應英國寒冷的天氣,加以思鄉心切卻因戰爭無法回印度,終於在 1917 年病倒了。在兩年的療養過程中,拉馬努金先被以為是胃潰瘍,後來被診斷為肺結核;期間換過八位醫生、五間療養院。

有一次哈代坐計程車去療養院探望他,不經意提到:「今天搭計程車的車牌號碼是 1729,這個數字沒啥意思,希望不是不祥之兆。」拉馬努金答道:「不會啊,這是個很有趣的數字,它是可以用兩種方法表達為兩立方和的數字中最小的(即 1729 = 13 + 123 = 93 + 103)。」

1919 年 2 月拉馬努金終於可以回印度,但健康狀況仍未好轉,於隔年四月過世,享年 33 歲。哈代得知後大受打擊,因為拉馬努金去世前兩個月還以愉悅的語氣寫信給他,報告他新的研究成果。哈代深感悲傷與遺憾的表示對拉馬努金虧欠許多,與他共事的五年當中,拉馬努金一直都是他創意與靈感的泉源。

24TH_RAMANUJAN_MANU_294879f
拉馬努金手稿,翻拍自其筆記本。圖/ V. Ganesan @hindu

拉馬努金留下來的筆記本中仍然藏有很多尚待挖掘的寶藏。除了對於純數學本身的貢獻,他的一些定理已廣泛地被應用在各種不同領域,包括統計力學、粒子物理、密碼學、弦論等等。每個知道他的人都不由得設想:如果拉馬努金不是如此英年早逝,他那具有神秘直覺的大腦還會為人類埋下多少超越時代的種子。

本文轉自 科科史上的今天

本文同時收錄於《科學史上的今天:歷史的瞬間,改變世界的起點》,由究竟出版社出版。

文章難易度
張瑞棋_96
423 篇文章 ・ 753 位粉絲
1987年清華大學工業工程系畢業,1992年取得美國西北大學工業工程碩士。浮沉科技業近二十載後,退休賦閒在家,當了中年大叔才開始寫作,成為泛科學專欄作者。著有《科學史上的今天》一書;個人臉書粉絲頁《科學棋談》。

0

10
1

文字

分享

0
10
1
宇宙到底是什麼樣子?——宇宙觀的發展史(上篇)| 20 世紀前
賴昭正_96
・2023/04/19 ・6261字 ・閱讀時間約 13 分鐘

國小高年級科普文,素養閱讀就從今天就開始!!
  • 文/賴昭正|前清大化學系教授、系主任、所長;合創科學月刊

根本沒有理由假設世界有一個開始。認為事物必須有開始的想法實際上是由於我們思想的貧乏。
—— Bertrand Russell(1950 年諾貝爾文學獎)

「天上的星星千萬顆,世上的妞兒比星多,啊,傻孩子,想一想,為什麼失眠只為⋯⋯」(註一)不!世上的妞兒不會比星多,為什麼失眠也不是只為「她一個」,而是遐想著天空這麼多的星星是哪裡來的?為什麼不停地對著我咪咪地微笑?⋯⋯沉靜晴朗的夜晚,仰望著天空,有多少人不會為閃耀的星空沈思著迷呢?因此相信人類很早就在思考這個問題:在中國有盤古開天闢地,其身形化為日月星辰、山川河流,逝世時將精靈魂魄變成了人類之傳說。

而古希臘人(公元前 750-650 年) 則認為起初世界處於一種虛無混沌狀態,突然從光中誕生了蓋亞(Gaia,地球母親)以及其「他」具有人性的諸神,在沒有男性幫助的情況下,蓋亞生下了烏拉諾斯(Ouranos,天空),後者使她受精,生出了第一批泰坦(Titan)。泰坦後代普羅米修斯(Prometheus) 用泥塑人,雅典娜(Athena)為泥人注入了生命,宙斯(Zeus) 創造出一個擁有驚人美貌、財富、欺騙心、和撒謊舌頭的女人潘多拉(Pandora),給了她一個盒子,令永遠不要打開,但好奇心最後戰勝了,她終於打開盒子釋放出各種邪惡、瘟疫、悲傷、不幸、和在盒子底部的希望——現今打開「潘多拉盒子」的來源。

1881年,英國畫家勞倫斯.阿爾瑪-塔德瑪爵士(Sir Lawrence Alma-Tadema)的《矛盾的潘朵拉》。圖/Wikipedia

除了神話和傳說外,宗教在宇宙觀的發展上也佔了重要的地位。西方的宗教如基督教主要認為宇宙是一個由超自然力量之神創造出來的,人死後會上永生天堂。而東方的宗教如佛教則認為宇宙是無始無終的,沒有起點或終點,因此無所謂宇宙的起源與創造,人會以不同的面貌和形式,不斷生死輪迴。歐洲宗教在十六世紀前一直認為人與地球在這宇宙中佔了一個特殊的中心地位,因此深深影響了基於證據、推理、和辯論的宇宙觀發展。

中國古代的天文學

中國古代的宇宙觀有蓋天說、宣夜說、渾天說三學派,蓋天說認為「天圓地方」,天覆蓋著地,但由於地是方的,故而有四個角是無法覆蓋的,因此這四個角上有八根柱子支撐著整個天空。宣夜說則認為「日月眾星,自然浮生於虛空之中,其行其止,皆須氣焉」,即整個天體漂浮於氣體之中。渾天說雖然也認為「天圓地方」,但天是一個圓球,而不是蓋天說中的半圓,地球在天之中,類似於雞蛋黃在雞蛋內部一樣。東漢張衡(78-139 年)將「渾天說」發展成為一套系統的理論,並透過其所製作的「渾天儀」來加以演示,使渾天說成了中國宇宙結構的權威理論。渾天說的基本觀點認為日月星辰都佈於一個「天球」之上,不停地運轉著。

清代的渾天儀。圖/Wikipedia

中國帝王自稱為「天子」,因此天文觀測的目的是為了帝王預測天下的禍福,用以指導治國理政、風水地理、農業民生、中醫人文的;天命如果有所改變,就會通過天象昭示天下。因此雖然中國是世界上最早發明曆法的國家之一,也為我們留下了許多寶貴的觀測資料,如記錄了 1054 年 7 月 4 日金牛座超新星的爆發,但古代的天文是皇權統治的一種工具而已,因此中國的天文學難以在民間發展,也不可能出現以科學為目的的天文研究。

地球中心模型

反觀西方世界,天文學在古典希臘則早已經是數學的一個分支。柏拉圖(Plato,公元前 427-347 年)鼓勵年輕的數學家蛇床子(Eudoxus of Cnidus,公元前 410-347 年)發展天文學體系,於公元前 380 年左右提出第一個以地球為中心的宇宙模型,認為一系列包含恆星、太陽、和月亮的宇宙球體都圍繞地球旋轉。

亞里士多德(Aristotle,公元前 384-322 年)識這些宇宙球體為物理實體,裡面充滿了導致球體移動之神聖和永恆的「以太」(ether)。他將這些球體分為陸地(terrestrial) 和天界 (celestial) 兩個領域。陸地領域包括地球、月球、及它們之間的月下區域,以變化和不完美為其標誌。天界是月球上方的領域,在這裡秩序井然,完美無缺。恆星固定在一個天球上,該天球每 24 小時圍繞地球旋轉一次。

最裡面的球體是地球的「陸地」,最外面的球體是「以太」構成的,包含「天界」。圖/Wikipedia

這個模型在接下來的幾個世紀裡得到了進一步的發展:希臘裔埃及天文學家、數學家、和地理學家托勒密(Claudius Ptolemy, 85-165)仔細研究以前所有天文學家的工作,了解到用肉眼觀察夜空中物體的方法後,透過他出色的數學技能開發出自己的天體運動模型,於公元 150 年出版了一本現在稱為《Almagest》(最偉大)的書籍來闡述其論點。

他認為地球是一個靜止的球體,位於一個大得多的天球的中心;這個天球攜帶著恆星、行星、太陽、和月亮以完全均勻的速度圍繞地球旋轉,從而導致它們每天的升起和落下。完美的運動應該是圓周運動,因此托勒密認為這些表面上不規則的天體運動實際上是由規則的、均勻的圓周運動組合成的:運動的中心不但偏離了地球,而且還沿著主要圓形軌道上的點依較小的「本輪」圓圈(epicenter)移動。托勒密在該書目錄後留言謂:

我知道我天生必死,轉瞬即逝; 但當我隨心所欲地描繪天體的曲折軌跡時,我的腳不再接觸大地,而是站在宙斯面前,盡情享受神的美味。

此後的 1500 年,托勒密書中的表常被用來預測天體在夜空中的位置;而其以地球為中心的宇宙觀也幾乎統領了以後 2000 年的天文物理發展!

太陽中心模型

1543 年,波蘭哥白尼(Nicolas Copernicus,1473-1543)在德國紐倫堡出版《De revolutionibus orbium coelestium》 (論天體運轉,註二) 一書,提出日心系統,謂地球不在宇宙中心之特別位置,而是與其他行星一起在圍繞太陽的圓形軌道上運動。不幸的是它表面上不規則的天體運動之複雜並不亞於托勒密地心系統;還有,如果地球在動,為什麼星星總是在同一個地方出現——除非它們離地球很遠(註三)?因此該書出版後從未獲得廣泛支持。儘管如此,在日心系統裡,行星繞日具有地心系統所沒有的周期性

哥白尼的宇宙觀,中心為太陽。圖/Wikipedia

十七世紀初,在新發明之望遠鏡的幫助下,意大利天文、數學、哲學家伽利略(Galileo Galilei,1564-1642)發現了圍繞木星運行的衛星,終於對地球位於宇宙中心的觀念造成致命的打擊:如果衛星可以繞另一顆行星運行,為什麼行星不能繞太陽運行?伽利略因之慢慢地深相地球繞日說,但被羅馬教會禁止「堅持或捍衛」哥白尼理論。晚年於 1630 年出版《Dialogo sopra i due massimi sistemi del mondo, tolemaico e copernicano》(關於兩大世界體系——托勒密和哥白尼——的對話), 在最後一章裡用潮汐現象來證明地球是在動,不是靜止地在宇宙中心(註四)。

大約就在那個時候,德國數學、天文學家開普勒(Johannes Kepler 1571-1630)「盜取」導師丹麥天文學家布拉赫(Tycho Brahe,1546-1601)的豐富實驗資料構建了日心的定量模型,在 1618 年至 1621 年期間出版(立刻成為天主教會禁書的)《Epitome Astronomiae Copernicanae》(哥白尼天文學概要),提出描述行星體如何繞太陽運行的(開普勒)三定律:(1)行星以太陽為焦點在橢圓軌道上運動,(2)無論它在其軌道上的哪個位置,行星在相同的時間內覆蓋相同的空間區域,及(3)行星的軌道周期與其軌道的大小(半長軸)成正比。

開普勒終於解開行星之謎:行星以橢圓形——不是完美的圓形——圍繞太陽運轉。開普勒第三定律謂:行星與太陽的距離與其繞太陽公轉所需的時間存在精確的數學關係。這條定律激發了牛頓(Isaac Newton,1643-1727)的靈感,證明橢圓運動可以用引力與距離的平方反比定律來解釋。

平方反比定律

人類事實上好像很早就注意到了所有物質都互相作用,例如亞里士多德認為物體由於其內在的引力(沉重)而趨向一個點,伽利略則注意到物體被「拉」向地球中心。英國博學士胡克(Robert Hooke,1635-1703)在 1670 年的格雷沙姆演講 (Gresham lecture) 中謂萬有引力適用於「所有天體」,並添加了萬有引力隨距離減小的原理,及在沒有任何這種動力的情況下,物體會直線運動。到 1679 年,胡克認為萬有引力具有「距離平方反比」依賴性(註五),並在給牛頓的一封信中傳達了這一點:「我(胡克)的假設是引力總是與距中心距離成雙倍比例。」

牛頓因為害怕其他科學家和數學家竊取了他的想法,喜歡把他的工作隱藏起來、不發表;因此直到 44 歲才在英國天文學家哈雷(Edmond Halley)說服下,寫了一篇關於他的新物理學及應用在天文學的完整論述;一年多後(1687 年),發表了後來成為物理經典的《Philosophiae Naturalis Principia Mathematica》(自然哲學數學原理)或簡稱為《Principia》(原理)。

儘管牛頓在《原理》中承認胡克曾經提出太陽系中的平方反比定律,但胡克仍然對牛頓聲稱「發明」了這一定律感到不滿。胡克是一位才華橫溢、但是又駝背又矮的科學家:發現彈性定律(胡克定律)、發現有機體基本單位的「細胞」、發明顯微鏡(使他成為細胞理論的早期支持者)。 當胡克要求牛頓承認他已經預料到後者在陽光中顏色的一些研究結果時,牛頓寫了一封諷刺的拒絕信,影射了胡克的小身材謂:「如果我看得更遠,那是因為站在巨人的肩膀上」(事實上,牛頓的許多創見都不是站在巨人之肩膀上的——被譽為是有史以來最偉大的物理學家,不是沒有道理的)。

胡克透過顯微鏡觀察、繪製的細胞壁。圖/Wikipedia

自然哲學數學原理

牛頓在《自然哲學數學原理》裡用同一個定律解釋了一系列以前不相關的現象:太陽-行星運動、行星-衛星運動、軌道物體、拋射體、鐘擺、地球附近的自由落體、彗星的偏心軌道、潮汐變化、以及地球軸的進動等等,具體地證明了「萬有引力」定律:「⋯⋯所有物質吸引所有其它物質的力與它們質量的乘積成正比,與它們之間距離的平方成反比」。這項工作使牛頓成為科學研究的國際領導者,「自然哲學數學原理」被公認為有史以來最偉大的科學著作。

但除了受過幾何學訓練的數學家外,《原理》事實上是一本非常難以理解的書,更糟的是:裡面充滿了矛盾和不一致,而且還點綴著一些令人毛骨悚然的錯誤(一些錯誤是計算和演示中的徹底錯誤,其它則是邏輯上的空白:沒有證明、只是猜測)。在牛頓時代,很少有人能讀懂它,而今天幾乎沒有人嘗試過。牛頓任教之劍橋大學的學生曾這樣諷刺:「有一個人寫了一本他和任何人都無法理解的書」。

《原理》在那個時代還有一個很大的邏輯問題:那時的物理學家認為世界是一部大機械,作用是必須透過物質撞擊或擠壓物質的接觸來達成的;從遠處發出穿過虛空的無形作用力量是魔法、神秘的、非科學的!為了阻止不可避免的批評和挑釁,牛頓先下手為強,在《原理》一書謂:

「我已經用重力解釋了天空和海洋的現象,但我還沒有為重力提出一個原因。 ⋯⋯我還不能推斷⋯⋯這些重力特性的原因。我不需要假設,因為任何不是從現像中推導出來的東西都必須被稱為假設;而假設——無論是形而上學的、還是物理的、基於神秘特性的、或機械的⎯在實驗哲學中都沒有地位⋯⋯。在本哲學中,特定的命題是從現像中推斷出來的,然後通過歸納來概括。」

所以重力不是機械的、不是神秘的、不是假設;牛頓用數學及結果證明了這一點:「重力確實存在,並根據我們制定的定律起了作用,足以解釋天體和海洋的所有運動」,因此即使它的本質不能被理解,但我們不能否認它。牛頓認為這就「夠了」。

牛頓的著作《原理》被其任教之劍橋大學的學生諷刺為一本「任何人都無法理解的書」。圖/Wikipedia

靜態的宇宙

當牛頓抬頭仰望月亮、太陽、和行星以外的天空時,他沒有發現任何物體的運動,因此宇宙應該是靜止的。而如果萬有引力可以用在所有的天體上,科學家再沒有任何理由認為人類很特別,我們所處在的地方在宇宙中佔了一個很獨特的地位。這在現代物理宇宙學中被稱為「宇宙學原理(Cosmology principle)」的概念,認為這些力會在整個宇宙中均勻地作用,因此從足夠大的尺度上觀察時,宇宙中物質的空間分佈應該是均勻的、沒有方向性的。同樣地,我們現在所處在的時刻也沒理由是個很特殊的時刻。顯然地,宇宙永遠就是那樣地存在,它沒有開始,也不會有終結—因為如果有開始,那顯然就應有創造者,這不是太宗教了嗎?

牛頓的引力理論實際上需要一個持續的奇蹟來防止太陽和恆星被拉到一起。在 1666 年至 1668 年之間之手稿《De Gravitatione》 (引力)中,牛頓闡述對空間和宇宙的看法:一種「無限而永恆」的神力與空間共存,它「向各個方向無限延伸」。牛頓設想了一個無限大的宇宙,上帝在其中將星星放置在正確的距離上,因此它們的吸引力抵消了,就像平衡針在它們的點上一樣精確。所以宇宙可以保持靜態,不會崩潰到無任何一點(無限大的宇宙沒有中心點)。

有限的宇宙

但是此一充滿著星球的無限宇宙在羅輯上是有幾個很嚴重的問題。例如雖然兩物體間的作用力與距離的平方成反比(收斂系列),但作用的星球數卻是與距離的平方成正比,正好抵消了前者的效應;因此,

(1)宇宙中的任何一點均應感受到無限大、往四面八方外拉的重力,所以物體不可能存在的!

(2)宇宙中的任何一點均應看到無限多的星光,所以夜晚的天空不應是黑暗的(註六)。

在你心中宇宙長什麼樣子呢? 圖/Pixabay

事實上亞里士多德早就回答了這個問題:物質宇宙在空間上一定是有限的,因為如果恆星延伸到無限遠,它們就無法在 24 小時內繞地球旋轉一圈。1610 年,開普勒也提出既然夜晚的天空是黑暗的,所以宇宙中的恆星數量必須是有限的!這有限宇宙的觀點一直到二十世紀初期還是被歐洲宗教及大部分科學家所接受(註三),造成了愛因斯坦犯下他一生最大的錯誤(詳見愛因斯坦的最大錯誤——宇宙論常數)。

如何解決牛頓之無限宇宙論與宗教之有限宇宙論間的衝突呢?請待下回分解吧。

註解

  • 註一:高山(作曲沈炳光之夫人黄任芳?):《牧童情歌》。
  • 註二:該書非常複雜難懂,科學歷史學家稱它為一本沒有人讀的書。
  • 註三:Giodano Bruno(1548-1600),意大利哲學家、天文學家、數學家、和神秘學家;因為堅持非正統的想法——包括宇宙是無邊緣的,恆星是離地球很遠的太陽、有它們自己在上面可能存在生命的行星,而付出被羅馬天主教酷刑,在火刑柱上燒死的代價——為一有名的宗教迫害案件例。
  • 註四:晚年被羅馬天主教強迫收回(在審判庭上寫了悔過書),因此不像註三的 Bruno,只被軟禁在家到逝世。說來有點可笑,伽利略之「證明」地球在動的理論完全是錯誤的:例如潮汐每天應該出現兩次,但他的證明只出現一次而已。但伽利略發現相對論原理,正確地解釋了為什麼我們沒感覺地球在動。
  • 註五:引力與距離的平方反比定律最早由布利亞爾杜斯(Ismael Bullialdus)於 1645 年提出;但他不但不接受開普勒的第二和第三定律,也認為太陽的力量在近日點是排斥的。
  • 註六:為紀念十九世紀的德國天文學家歐博耳(Heinrich Olbers, 1758-1840) 在這方面的深入研究,現在被稱為「歐博耳悖論(Olbers paradox)」 。
賴昭正_96
37 篇文章 ・ 41 位粉絲
成功大學化學工程系學士,芝加哥大學化學物理博士。在芝大時與一群留學生合創「科學月刊」。一直想回國貢獻所學,因此畢業後不久即回清大化學系任教。自認平易近人,但教學嚴謹,因此穫有「賴大刀」之惡名!於1982年時當選爲 清大化學系新一代的年青首任系主任兼所長;但壯志難酬,兩年後即辭職到美留浪。晚期曾回台蓋工廠及創業,均應「水土不服」而鎩羽而歸。正式退休後,除了開始又爲科學月刊寫文章外,全職帶小孫女(半歲起);現已成七歲之小孫女的BFF(2015)。首先接觸到泛科學是因爲科學月刊將我的一篇文章「愛因斯坦的最大的錯誤一宇宙論常數」推薦到泛科學重登。

2

2
2

文字

分享

2
2
2
買樂透真的可以賺錢?大數法則揭示了賭博的真相!——《統計,讓數字說話》
天下文化_96
・2023/03/05 ・2394字 ・閱讀時間約 4 分鐘

國小高年級科普文,素養閱讀就從今天就開始!!
  • id S. Moore、諾茨 William I. Notz
  • 譯者:鄭惟厚、吳欣蓓

什麼是大數法則?

期望值的定義是:它是可能結果的一種平均,但在計算平均時,機率大的結果占的比重較高。我們認為期望值也是另一種意義的平均結果,它代表了如果我們重複賭很多次,或者隨機選出很多家戶,實際上會看到的長期平均。這並不只是直覺而已。數學家只要用機率的基本規則就可以證明,用機率模型算出來的期望值,真的就是「長期平均」。這個有名的事實叫做大數法則。

大數法則
大數法則(law of large numbers)是指,如果結果為數值的隨機現象,獨立重複執行許多次,實際觀察到的結果的平均值,會趨近期望值。

大數法則和機率的概念密切相關。在許多次獨立的重複當中,每個可能結果的發生比例會接近它的機率,而所得到的平均結果就會接近期望值。這些事實表達了機遇事件的長期規律性。正如我們在第 17 章提過的,它們是真正的「平均數定律」。

大數法則解釋了:為什麼對個人來說是消遣甚至是會上癮的賭博,對賭場來說卻是生意。經營賭場根本就不是在賭博。大量的賭客贏錢的平均金額會很接近期望值。賭場經營者事先就算好了期望值,並且知道長期下來收入會是多少,所以並不需要在骰子裡灌鉛或者做牌來保證利潤。

賭場只要花精神提供不貴的娛樂和便宜的交通工具,讓顧客川流不息進場就行了。只要賭注夠多,大數法則就能保證賭場賺錢。保險公司的運作也很像賭場,他們賭買了保險的人不會死亡。當然有些人確實會死亡,但是保險公司知道機率,並且依賴大數法則來預測必須給付的平均金額。然後保險公司就把保費訂得夠高,來保證有利潤。

  • 在樂透彩上做手腳

我們都在電視上看過樂透開獎的實況轉播,看到號碼球上下亂跳,然後由於空氣壓力而隨機彈跳出來。我們可以怎麼樣對開出的號碼做手腳呢? 1980 年的時候,賓州樂透就曾被面帶微笑的主持人以及幾個舞台工作人員動了手腳。

他們把 10 個號碼球中的 8 顆注入油漆,這樣做會把球變重,因此可保證開出中獎號碼的 3 個球必定有那 2 個沒被注入油漆的號碼。然後這些傢伙就下注買該 2 個號碼的所有組合。當 6-6-6 跳出來的時候,他們贏了 120 萬美元。是的,他們後來全被逮到。

歷史上曾有主持人在樂透上做手腳,後來賺了 120 萬美元隨後被逮捕。圖/envatoelements

深入探討期望值

跟機率一樣,期望值和大數法則都值得再花些時間,探討相關的細節問題。

  • 多大的數才算是「大數」?

大數法則是說,當試驗的次數愈來愈多,許多次試驗的實際平均結果會愈來愈接近期望值。可是大數法則並沒有說,究竟需要多少次試驗,才能保證平均結果會接近期望值。這點是要看機結果的變異性決定。

結果的變異愈大,就需要愈多次的試驗,來確保平均結果接近期望值。機遇遊戲一定要變化大,才能保住賭客的興趣。即使在賭場待上好幾個鐘頭,結果也是無法預測的。結果變異性極大的賭博,例如累積彩金數額極大但極不可能中獎的州彩券,需要極多次的試驗,幾乎要多到不可能的次數,才能保證平均結果會接近期望值。

(州政府可不需要依賴大數法則,因為樂透彩金不像賭場的遊戲,樂透彩用的是同注分彩系統。在同注分彩系統裡面,彩金和賠率是由實際下注金額決定的。舉例來說,各州所辦的樂透彩金,是由全部賭金扣除州政府所得部分之後的剩餘金額來決定的。賭馬的賠率則是決定於賭客對不同馬匹的下注金額。)

雖然大部分的賭博遊戲不及樂透彩這樣多變化,但要回答大數法則的適用範圍,較實際的答案就是:賭場的贏錢金額期望值是正的,而賭場玩的次數夠多,所以可以靠著這個期望值贏錢。你的問題則是,你贏錢金額的期望值是負的。全體賭客玩的次數合起來算的話,當然和賭場一樣多,但因為期望值是負的,所以以賭客整體來看,長期下來一定輸錢。

然而輸的金額並不是由賭客均攤。有些人贏很多錢,有些人輸很多,而有些人沒什麼輸贏。賭博帶給人的誘惑,大部分是來自賭博結果的無法預測。而賭博這門生意仰賴的則是:對賭場來說,結果並非不可測的。

對賭場來說,贏錢金額期望值為正。圖/envatoelements
  • 有沒有保證贏錢的賭法?

把賭博很當回事的賭客常常遵循某種賭法,這種賭法每次下注的金額,是看前幾次的結果而定。比如說,在賭輪盤時,你可以每次把賭注加倍,直到你贏為止—或者,當然,直到你輸光為止。即使輪盤並沒有記憶,這種玩法仍想利用你有記憶這件事來贏。

你可以用一套賭法來戰勝機率嗎?不行,數學家建立的另一種大數法則說:如果你沒有無窮盡的賭本,那麼只要遊戲的各次試驗(比如輪盤的各次轉動)之間是獨立的,你的平均獲利(期望值)就會是一樣的。抱歉啦!

  • 高科技賭博

全美國有超過 700,000 台吃角子老虎(拉霸)。從前,你丟硬幣進去再拉下把手,轉動三個輪子,每個輪子有 20 個圖案。但早就不是這樣了。現在的機器是電動遊戲,會閃出許多很炫的畫面,而結果是由隨機數字產生器決定的。

機器可以同時接受許多硬幣,有各種讓你眼花撩亂的中獎結果,還可以多台連線,共同累積成連線大獎。賭徒仍在尋找可以贏錢的賭法,但是長期下來,隨機數字產生器會保證賭場有 5% 的利潤。

——本文摘自《統計,讓數字說話》,2023 年 1 月,天下文化出版,未經同意請勿轉載。

所有討論 2
天下文化_96
129 篇文章 ・ 611 位粉絲
天下文化成立於1982年。一直堅持「傳播進步觀念,豐富閱讀世界」,已出版超過2,500種書籍,涵括財經企管、心理勵志、社會人文、科學文化、文學人生、健康生活、親子教養等領域。每一本書都帶給讀者知識、啟發、創意、以及實用的多重收穫,也持續引領台灣社會與國際重要管理潮流同步接軌。

0

5
1

文字

分享

0
5
1
莫比烏斯把紙帶轉了幾圈——《數學,這樣看才精采》
天下文化_96
・2022/05/21 ・2870字 ・閱讀時間約 5 分鐘

國小高年級科普文,素養閱讀就從今天就開始!!
莫比烏斯環。圖/David Benbennick, CC BY-SA 3.0

記得 2018 年初我在谷歌搜尋引擎裡打入「莫比烏斯」,出乎我意料之外第一頁跳出的全是關於電影《莫比烏斯》的訊息。我本來對此電影毫無所知,瞄了一下摘要文字,原來是一部沒有臺詞,內容又涉及閹割和亂倫的韓國電影,真是有點讓人感覺噁心。

再用英文 Mobius 打入谷歌,結果出來的都是電玩《莫比烏斯 Final Fantasy》的訊息。這是一款可以在手機上單打獨鬥的遊戲,需要操作喪失記憶的主角與各種魔物在未知世界裡廝殺。其實我想找的是數學家莫比烏斯(August Ferdinand Möbius),哪裡知道他的大名已經移植到與數學不相干的場域。

天文學家的數學遺產

數學家莫比烏斯(August Ferdinand Möbius)。圖/Adolf Neumann, 公有領域

日爾曼地區在莫比烏斯出生的時候,還沒有一位國際知名的數學家。但當他過世時,日爾曼的數學家已經發揮強大的影響力,吸引各國年輕人紛紛前來學習。這種巨大轉變的產生,關鍵性因素是高斯的橫空而出,徹底革新了數學的面貌。

1815 年莫比烏斯曾去哥廷根跟隨高斯學習理論天文學,次年進入萊比錫(Leipzig)天文臺擔任觀察員。十九世紀初的日爾曼世界,當天文學家遠比數學家有更良好的聲譽和安穩的待遇。高斯跟莫比烏斯同樣是寒門出身,不也在 1807 年開始終身領導哥廷根天文臺嗎?

莫比烏斯雖然最終成為萊比錫大學的天文學正教授,但是時至今日他所留下的學術遺產,卻是在數學裡多方面的貢獻,最有趣的是他晚年所發現的一條極簡單又美妙的環帶:莫比烏斯環帶。

請讀者拿一張長紙條,把一端轉 180 度與另一端黏在一起,便完成了神奇的莫比烏斯環帶。這個環帶突出的特性是它只有單面,不像原來的紙帶有正反兩面。那麼有一個面到哪裡去了?當你沿著紙帶表面向前走到原來的一端時,因為已經做過半圈的旋轉,你現在就滑入了原來紙帶的背面。於是在莫比烏斯環帶上走啊,走啊,永遠不需要翻過側緣,也永遠碰不到盡頭。

在空間裡看起來扭曲的莫比烏斯環帶壓扁到桌面上,就得到圖 17-1 左邊的平面摺疊圖形。此圖與右邊谷歌雲端硬碟的商標(2012–2014)很相似,相異之處在於商標左側的那段紙帶是在底側紙帶的上面。

其實,我們可以用摺紙方法製作這個商標。首先拿出一張長條紙,我們要在一端摺出一個60度底角。

在圖 17-2 裡,先把長條紙上下邊緣對齊,產生一條中線。然後把左邊緣的線段 DO 往中線摺疊,使得點 D 碰觸到中線上的點 A,於是角 BOC 就剛好是60度。為什麼呢?讓我們從 A 作垂直線段 AB,假設 AB 的長度是 1,則 AO = DO 便為長度 2。從三角關係便知角 AOB 為 30 度,從而角 AOD 就等於 60 度;但因角 AOC 與角 COD 相等,所以角 AOC 也是 30 度,那麼角 BOC 只好是 60 度了。

在長條紙上摺出了 CO 這條摺痕,接著我們用剪刀沿著 CO 剪下去,把三角形 COD 丟掉。然後把 O 點摺到上緣,使得線段 CO 與上緣邊線重合,就會產生一個正三角形。下一階段用這個正三角形做為模板,把長條紙反復摺疊,打開後修剪掉右邊多餘的紙條,就成為具有 15 個正三角形摺痕的紙條,如圖 17-3。

最後沿兩條粗摺線(在摺紙的術語裡,左邊的虛線稱為谷摺、右邊的點虛線稱為山摺),把左段摺在前面,右段摺到背面,右端放在左端上面,用膠紙黏合,就得到谷歌雲端硬碟的商標。如果仿照旋轉紙帶製作莫比烏斯環帶的方法,我們可以抓緊長條紙帶一端,把另一端同方向旋轉三個 180 度後黏合,然後壓扁到平面上,也會得到商標的圖形,只是邊的長度也許沒那麼整齊。

環帶的靈感何處來?

有人說莫比烏斯是偶然間發現了這樣的環帶,其實這是有點戲劇化的講法。莫比烏斯在研究如何構成多面體時,使用了一種基本的想法,就是以黏合三角形來逐步形成多面體。為了準備參加巴黎科學院有關多面體幾何理論的競賽,莫比烏斯也研究了非封閉型(也就是會有邊界)的多面體,他從操作類似圖 17-1 的摺疊圖發現了單面曲面。在莫比烏斯身後出版的著作全集裡,收錄了一篇未曾發表的 1858 年文稿,其中包含了旋轉 3、4、5 個半圈的環帶,如圖 17-4。

可見莫比烏斯有系統的分析了這類環帶,發現旋轉半圈的次數如果是奇數,產生的環帶只有單面;但如果次數是偶數,則環帶仍然保有正反兩面。他更深刻的察覺,這些單面曲面上無法賦予明確的方向,也就是說你從一點出發,也知道當時的順時針方向為何,而當你沿著環帶遊歷一周後,雖然處處你都覺得延續了正確的順時針方向,可是返回出發點時,卻與原始的方向背反。莫比烏斯環帶破壞了所謂的可定向性,這是屬於曲面的拓撲性質,是比度量長度、角度、面積、體積更寬鬆的幾何性質。

1858 年莫比烏斯寫下單面曲面研究成果前幾個月,另外一位現在少為人知的數學家李斯廷(Johann Benedict Listing)已經作出同樣的環帶。莫比烏斯要到 1865 年才在公開發表的著作裡披露單面環帶,而李斯廷在 1861 年出版的專著裡,便公布了單面環帶的存在。李斯廷甚至在 1847 年出版有史以來第一本使用「拓撲學」這個名稱的書(德文書名為Vorstudien zur Topologie)。不過,今日即使想替李斯廷討個公道,把莫比烏斯環帶改名為李斯廷環帶,恐怕也無能為力了。

製作莫比烏斯環帶是如此的簡單,很難不讓人懷疑為什麼沒有人更早發現它呢?在李斯廷之前的數學文獻裡,到目前為止沒有發現有關莫比烏斯環帶的記載。那麼我們探索的對象何不轉移到各種藝術圖像呢?結果在義大利的古跡山提農(Sentinum)羅馬別墅中,發現西元前 200 年至西元前 250 年期間的地板馬賽克,正中央描繪了永恆時間之神艾永(Aion)站在一條代表黃道諸星辰的環帶之中(如圖 17-5)。當我們仔細沿著環帶移動時,能夠毫無疑義分辨出是在一條莫比烏斯環帶上游走。現在還可在多處看見古羅馬遺留下艾永的繪像、浮雕、馬賽克,然而唯有在山提農的別墅中,艾永所踩的環帶是莫比烏斯環帶。

山提農的馬賽克在 1828 年送進慕尼黑的博物館,三十年後李斯廷與莫比烏斯先後研究這個特殊的環帶,他們是否曾經去慕尼黑參觀過博物館,因而受到古羅馬人的啟示呢?我們恐怕永遠也無法確知,然而要寫一本《莫比烏斯密碼》之類的書,也許有可能編織出充滿懸疑的故事。

天下文化_96
129 篇文章 ・ 611 位粉絲
天下文化成立於1982年。一直堅持「傳播進步觀念,豐富閱讀世界」,已出版超過2,500種書籍,涵括財經企管、心理勵志、社會人文、科學文化、文學人生、健康生活、親子教養等領域。每一本書都帶給讀者知識、啟發、創意、以及實用的多重收穫,也持續引領台灣社會與國際重要管理潮流同步接軌。