0

1
0

文字

分享

0
1
0

黑白花斑貓的遺傳之謎

Gene Ng_96
・2016/05/04 ・821字 ・閱讀時間約 1 分鐘 ・SR值 517 ・六年級

-----廣告,請繼續往下閱讀-----

為何黑白貓身上會有兩種毛色呢?科學家發現,這樣的花斑是動物在子宮內發育時,色素細胞的分裂變慢所造成的。

黑白花斑在一些馬身上也可看見。正常來說,色素細胞該從背部擴散到全身包括肚子。在花斑的哺乳動物身上,色素細胞不足以覆蓋全身,所以留下大片白色的毛髮,一般上肚子和額頭會是白色的

800px-Black_and_white_cat_in_a_park-Hisashi-01
黑白花斑貓。圖/wikipedia

英國牛津大學、巴斯大學、愛丁堡大學的科學家,利用了數學模型結合動物實驗來解釋花斑的形成。過去認為那些黑白的花斑是因為色素細胞的移動太慢了,是因為一種稱作 KIT 的基因突變所導致的。KIT 基因編碼了受體酪氨酸激酶(Receptor Tyrosine Kinase),是一種膜蛋白受體,膜外部分功能為受體,膜內部分為酪氨酸激酶 ,可將目標蛋白的酪胺酸(Tyr)部分磷酸化,藉此傳遞訊號,在細胞生長、增殖、分化中具有重要作用。

可是他們發現,原來 KIT 的突變減緩的是細胞分裂速率,而非移動速率。因為細胞分裂變慢,最終沒有足夠的色素細胞覆蓋全身,所以形成黑白花斑。這個發現發表在《自然通訊》(Nature Communications)。

-----廣告,請繼續往下閱讀-----

除了 KIT 基因,也有其他基因影響花斑的紋路,都可利用數學模型來研究。雖然花斑不會造成疾病,可是更嚴重的突變會造成腸道神經病變(Neurocristopathy)而導致聽力、視覺、消化道和心血管的病變,是神經脊細胞分裂的異常造成的。所以他們的研究方法也可能能夠應用在其他相關疾病的研究上。

原學術論文:

  • Richard L. Mort, Robert J. H. Ross, Kirsten J. Hainey, Olivia J. Harrison, Margaret A. Keighren, Gabriel Landini, Ruth E. Baker, Kevin J. Painter, Ian J. Jackson, Christian A. Yates. Reconciling diverse mammalian pigmentation patterns with a fundamental mathematical model.Nature Communications, 2016; 7: 10288 DOI: 10.1038/NCOMMS10288

參考資料:

  1.  Christian Yates/The Conversation. WHY SOME CATS LOOK LIKE THEY ARE WEARING TUXEDOS. Popular Science. January 7, 2016.
  2.  University of Bath. “How two-tone cats get their patches comes to light in cell study.” ScienceDaily, 6 January 2016.
  3. JACK HARDY , JASPER HAMILL. Scientists crack the mystery of how cats get their cute coloured coats.Mirror. 6 JAN 2016.

本文原出自臺灣大學科學教育發展中心其他單位需經同意始可轉載。

-----廣告,請繼續往下閱讀-----
文章難易度
Gene Ng_96
295 篇文章 ・ 30 位粉絲
來自馬來西亞,畢業於台灣國立清華大學生命科學系學士暨碩士班,以及美國加州大學戴維斯分校(University of California at Davis)遺傳學博士班,從事果蠅演化遺傳學研究。曾於台灣中央研究院生物多樣性研究中心擔任博士後研究員,現任教於國立清華大學分子與細胞生物學研究所,從事鳥類的演化遺傳學、基因體學及演化發育生物學研究。過去曾長期擔任中文科學新聞網站「科景」(Sciscape.org)總編輯,現任台大科教中心CASE特約寫手Readmoo部落格【GENE思書軒】關鍵評論網專欄作家;個人部落格:The Sky of Gene;臉書粉絲頁:GENE思書齋

0

3
2

文字

分享

0
3
2
精子從哪裡進入卵子會影響胚胎發育?——《生命之舞》
商周出版_96
・2023/10/20 ・2697字 ・閱讀時間約 5 分鐘

-----廣告,請繼續往下閱讀-----

當我第一次驚喜瞥見打破對稱性的可能起源時,我驚訝地發現到這段歷程似乎很早就開始了,而這也為我運用綠色螢光蛋白追蹤細胞分化的研究鋪起了大道。卡羅琳娜與我想要進一步探索這個研究發現,所以我們提出了一個有關其終極源頭的簡單問題:精子進入卵子的位置是否對於胚胎一開始失去對稱性有任何影響?在線蟲與青蛙這類動物的胚胎中確實是這樣,但在哺乳動物(例如小鼠)的胚胎中也一樣嗎?

對稱藝術

當我們將生命的起源以動畫演繹出時,常常看到的影像就是精子設法進入沒有任何特徵的圓形卵子上,並融入其中。若情況是這樣的話,就很難看出精子進入卵子的位置是要如何對未來一切發育有所影響。在這個理想化的卵子上,任一處表面都與其他表面沒有任何差異。不過,當然還是存在有個參考指標,那個等同於「這邊是上面」的指標就是:極體。

圖/pexels

極體是從減數分裂的不對稱過程中所產生,細胞「骨架」在這個過程中會聚集以協助細胞進行分裂。這個細胞骨架稱為紡錘體,它會從細胞中心點往細胞邊緣移動,產生出一個大大的卵子與一個小小的極體。我們可以合理認為,紡錘體與染色體的移動可能打破了卵子的對稱性,也造成了擠壓極體的發育。許多人的確注意到極體最終總是會落在受精卵進行分裂的那個平面上。

理查.加德納這位我們之前見過的科學家,發現極體會附著在卵子上,它不只會確立受精卵首次分裂成兩個細胞的那個平面,它還會在幾天後確立出囊胚的對稱軸。這項發現讓我們有所啟發。這真的是因為卵子中的軸向資訊會一直持續到囊胚階段,還是有其他的因素會影響胚胎發育的對稱性?在我們進行科學研究的過程中,我與卡羅琳娜在當下這個時間點想要知道的是,精子進入卵子的位置是否也會影響胚胎發育,並提供第二個定位線索。

卵子上的座標——精子進入的位置會影響胚胎發育嗎?

就像在地表上某個地點跟北極的相對位置,可以定義所謂的經線,我與卡羅琳娜想要知道,精子進入卵子的位置是否也可以提供相對於極體位置的另一位置資訊。若真的是這樣,我們就能更精準確立進行首次分裂的那個平面。這感覺起來很合理,因為極體的形成與精子的進入位置都會重新排列之後會運用在卵子分裂上的細胞骨架。若不是這樣,分裂的那個平面與精子的進入位置之間就只有隨機的關係。

-----廣告,請繼續往下閱讀-----

以現代科技來說,我們很容易就可以解決這個問題。我們可以將這個過程拍成影片,來看看從精子進入卵子後到後續細胞進行分裂的幾天之間究竟發生了什麼事。但在我們開始研究的那個年代,不存在這樣的選項。我們無法拍攝小鼠胚胎從受精開始進入發育的影片,要等到幾天後胚胎進入囊胚階段才行。我們只能想辦法去標記精子進入的位置,以便可以追蹤它與受精卵在數小時後首次分裂的那個平面之間的關係。

圖/pexels

我一開始想著要用某種自然一點的東西,像是胚胎幹細胞這種非常微小的細胞,在卵子受精後馬上附著在精子進入點上,因為那時還可以看到進入點,但最後我有了更簡單的辦法:我們改用肉眼看不見的微小螢光珠。我們成功了,但我很後悔沒有給這些珠子取個像「微球體」這樣酷炫的科學名稱。當然,同領域人士不認同的不僅僅只是這些珠子要怎麼命名,但「珠子」這個名稱有種簡樸感,所以批評者會用這個名稱來貶低我們的研究,這就是我們得要付出的代價。

一開始很容易就能看到精子是從哪裡進入卵子的。它會留下一個名為受精錐(fertilization cone)的小小凸起。受精錐是由卵子的細胞骨架所建構,並由肌動蛋白的纖維所組成,它大約會凸起半個小時。這時間剛好足夠嵌入一至兩個珠子來標記位置。

我們將這些珠子浸到名為植物血凝素(phytohemagglutinin)的蛋白質混合物中,珠子就會具有黏性。植物血凝素常用於讓細胞聚集在一起。因為人的手不夠穩定,所以卡羅琳娜會以一隻機械手臂來拿取具有黏性的珠子,並將珠子放到卵子的表面上,同時還會以另一隻機械手臂牢牢固定住剛受精的卵子。

-----廣告,請繼續往下閱讀-----
圖/pexels

雖然珠子很小,直徑只有 0.0001 至 0.0002 公分,但在紫外線的照射下看起來大多了,亮綠色的點讓我們很容易就可以追蹤它的命運。觀察受精卵的發育時,我們發現珠子最終會來到細胞首次分裂所產生的兩個細胞之間的邊緣,或者是非常接近這個地方。

受精卵的分裂平面真的是由精子決定的嗎?

我們一直都在挑戰我們的思考與發現。上述情況有可能是任何落在卵子表面的珠子都會掉進分裂溝(cleavage furrow)中。所以為了確認,我們進行了一項對照實驗,卡羅琳娜將另一顆類似的珠子隨機放在卵子表面的其他地方。令我們欣慰的是,這顆珠子最終沒有掉進細胞分裂時所產生的分裂溝中。對我們而言,這表示精子進入卵子的位置以某種方式「被記住」了,並且成為受精卵偏好進行分裂的地點。換句話說,若我們是對的,受精卵之所以會在這個平面進行分裂,是因為偏好(biased)而非隨機(randomly)。

我們持續獲得了各種新發現。在胚胎從兩個細胞發育成四個細胞的階段中,帶有精子進入標記的那個細胞,會傾向於先進行分裂。這個細胞的命運之所以會改變,是因為精子帶入的物質滋養了它嗎?受精的三天後,精子進入標記會留置在囊胚兩部位之間的邊緣處,一個部位是含有會形成胚胎本體的胚胎部分,另一個則是胚外部分。

這表示了,兩細胞胚胎內的其中一個細胞較容易發育成胚胎,另一個則傾向於變成胚外部分。我們感到震驚。我們觀察影像好幾個小時,甚至好幾天。我一開始根本不敢相信這些發現,所以我請卡羅琳娜一再重複進行實驗,打破早期對稱性的證據怎麼這麼簡單,會不會太簡單了?

-----廣告,請繼續往下閱讀-----

可以理解地,對此感到懷疑的人士可能會吹毛求疵地表示,決定分裂平面的不是精子進入點,而是將珠子嵌在進入點的這個動作。為了驗證這個可能性,我們進行了許許多多的對照實驗,我之後會提到。我們已經確認過,將珠子放置在受精錐以外的任何一個地方,都不足以決定分裂的平面。但我們還有諸多其他事項要一而再、再而三的確認,因為我們必須很確定。

這張圖片的 alt 屬性值為空,它的檔案名稱為 0823--300.jpg

——本文摘自《生命之舞》,2023 年 9 月,商周出版,未經同意請勿轉載。

商周出版_96
119 篇文章 ・ 360 位粉絲
閱讀商周,一手掌握趨勢,感受愜意生活!商周出版為專業的商業書籍出版公司,期望為社會推動基礎商業知識和教育。

0

3
1

文字

分享

0
3
1
黔金絲猴物種起源,竟是近親雜交形成?
寒波_96
・2023/08/11 ・3267字 ・閱讀時間約 6 分鐘

-----廣告,請繼續往下閱讀-----

新物種如何誕生,是演化最重要的主題之一,正如達爾文代表作的書名《物種起源》(The Origin of Species,也常譯作《物種源始》)。隨著基因體學帶來愈來愈多新知識,人們對物種的想法也不斷演變。

2023 年發表的一項研究調查多種金絲猴的基因組,意外發現有一種金絲猴,竟然直接由不同物種合體形成。這是靈長類的第一個案例,動物中也相當少見。

黔金絲猴。圖/Current status and conservation of the gray snub-nosed monkey Rhinopithecus brelichi (Colobinae) in Guizhou, China

五種金絲猴的親戚關係

金絲猴(snub-nosed monkey,學名 Rhinopithecus,也稱為仰鼻猴)主要住在中國西南部和東南亞,目前有五個物種。牠們的中文名字依照地名,英文名字則多半根據顏色。

古時候金絲猴的分布範圍更廣,像是台灣也曾經存在過,如今卻只剩下化石。現今五個物種分別為:

-----廣告,請繼續往下閱讀-----

*(雲南)滇金絲猴(black-white 黑白,學名 Rhinopithecus bieti

* 緬甸金絲猴(black 黑,學名 Rhinopithecus strykeri

*(四川)川金絲猴(golden 金,學名 Rhinopithecus roxellana

*(貴州)黔金絲猴(gray 灰,學名 Rhinopithecus brelichi

-----廣告,請繼續往下閱讀-----

* 越南金絲猴(Tonkin 越南東京,學名 Rhinopithecus avunculus

五種金絲猴。圖/參考資料1

比對五款吱吱的 DNA 差異,可知滇、緬甸金絲猴的親戚關係最近,川金絲猴則和黔金絲猴較近,但是黔金絲猴明顯介於兩者之間。黔金絲猴在自己獨特的變異之外,僅管基因組整體更接近川金絲猴,也有不少部分和滇、緬甸金絲猴相似。

見到不同物種之間共享血緣,最直覺的想法是,兩者的祖先發生過遺傳交流。但是詳細比對後,研究猿認為還有機率更高的可能性。

最滑順的劇本是,大約 197 萬年前,滇、緬甸金絲猴的共同祖先,和川金絲猴分家;又經過十幾萬年,約莫 187 萬年前,兩群金絲猴再度合體,形成一個全新的支系,也就是黔金絲猴的祖先;後來滇、緬甸金絲猴再衍生出兩個物種。

-----廣告,請繼續往下閱讀-----

這形成如今我們見到的狀態:黔金絲猴大約 75% 血緣來自川金絲猴,25% 源於滇、緬甸金絲猴的共同祖先。

四種金絲猴的親戚關係,與遺傳交流。圖/參考資料1

靈長類首見,雜交直接形成新物種

或許有人會疑惑,看起來都是共享 DNA 變異,上述說法和「不同物種之間,發生過遺傳交流」有何差別?

差別在於,所謂「不同物種之間」,指的是新物種已經誕生一段時間以後,彼此間又發生 DNA 交流,這個一點都不稀奇。例如 A、B 物種間發生關係,變成 A 的遺傳背景下,又有一點 B 血緣的物種。

但是黔金絲猴的狀況是,新物種之所以誕生,就是不同物種直接合體所致。例如 A、B 物種發生關係,衍生出差異更大,不是 A 也不是 B,足以認定為新物種的 C。

-----廣告,請繼續往下閱讀-----

假如重建的劇本為真,這就是首度在靈長類中觀察到,不同物種直接合體形成新物種的「hybrid speciation」。可以翻譯為「雜交種化」,不過「合體種化」似乎更直觀。

哥倫比亞猛獁,想像畫面。圖/wiki

經由兩個物種雜交,直接產生新物種的方式,植物較為常見,哺乳類動物極少。此前古代 DNA 研究認為,已經滅絕的美洲大象「哥倫比亞猛獁」(Columbian mammoth,學名 Mammuthus columbi)是不同猛獁象合體產生的新物種,但是證據沒那麼充分。

或許沒有那麼罕見?

直接雜交產生新物種,會很難想像嗎?仔細想想,金絲猴的案例可能沒那麼驚悚,或許還有某種程度的普遍性。

回到當初的情境,所謂「兩個物種」在當時其實只分家十萬年而已,差異應該仍很有限。是又累積 180 萬年的分歧到今日,才顯得親戚之間明顯有別。

-----廣告,請繼續往下閱讀-----

這邊 197 萬、187 萬、十萬年都是根據 DNA 變異的估計,實際數字未必如此。不過順序大概差不太多,就是首先分出兩群,很短的時間後又合體產生第三群,再經歷好幾倍的時間直到現在。

假如川金絲猴不幸滅團,缺乏樣本可供比較,那麼黔金絲猴與另外兩種近親,看起來就單純是 187 萬年前分家。

值得注意的是,我們能判斷演化樹上的不同分枝曾經合流,來自對樹形的比對。假如川金絲猴不幸滅團,這棵演化樹中我們只剩下三個物種的樣本,便會判斷黔金絲猴是跟另外兩種親戚分家而成,卻完全不會察覺有過合體種化。

這麼想來,雜交誕生新物種的現象,或許沒那麼罕見,只是時光抹去了許多痕跡。

血緣融合,猴毛也是奇美拉

另一有趣的發現是毛色演化。金絲猴現今四個物種,外表的毛色為一大差異。毛色與深色素有關,深色素愈多,毛色會顯得愈黑,相對則是愈淡,會呈現白毛、黃毛、金毛。

-----廣告,請繼續往下閱讀-----

身為不同演化支系合體的產物,黔金絲猴的毛色也混合兩邊的風格。頭和肩膀的淺色,類似川金絲猴;手腳的深色,則類似滇、緬甸金絲猴。

基因組合體以後,兼具兩群影響毛色的基因,形成混合的毛色搭配。圖/參考資料1

金絲猴毛的顏色深淺,取決於不同色素的相對比例。棕黑色素(pheomelanin)愈高,毛色愈淡;真黑素(eumelanin)愈高,毛色愈深。例如猴毛中含有大量棕黑色素、少量真黑素,便會呈現金毛。

很多基因有機會影響色素與毛色。分析得知金絲猴們有 5 個基因和毛色關係密切,黔金絲猴的基因組來自兩個支系,比對發現,三個基因 SLC45A2MYO7AELOVL4 繼承自川金絲猴,兩個基因 PAHAPC 則源於滇、緬甸金絲猴。

這些基因如何影響毛色,仍有許多不明朗之處。最明確知道的是,SLC45A2 基因表現降低,會使得棕黑色素產量上升,令顏色變淡。PAH 基因表現增加,可以讓顏色加深。

-----廣告,請繼續往下閱讀-----

同一隻金絲猴不同部位的細胞,同一批基因經由不同調控,就能控制毛色深淺。

這篇文章介紹的演化基因體學分析手法,對許多人大概不算容易,但是這些研究帶來的趣味,倒是不難體會。

延伸閱讀

參考資料

  1. Wu, H., Wang, Z., Zhang, Y., Frantz, L., Roos, C., Irwin, D. M., … & Yu, L. (2023). Hybrid origin of a primate, the gray snub-nosed monkey. Science, 380(6648), eabl4997.
  2. The Primate Genome Project unlocks hidden secrets of primate evolution
  3. Biggest ever study of primate genomes has surprises for humanity
  4. Hundreds of new primate genomes offer window into human health—and our past
  5. van der Valk, T., Pečnerová, P., Díez-del-Molino, D., Bergström, A., Oppenheimer, J., Hartmann, S., … & Dalén, L. (2021). Million-year-old DNA sheds light on the genomic history of mammoths. Nature, 591(7849), 265-269.

本文亦刊載於作者部落格《盲眼的尼安德塔石匠》暨其 facebook 同名專頁

寒波_96
193 篇文章 ・ 1019 位粉絲
生命科學碩士、文學與電影愛好者、戳樂黨員,主要興趣為演化,希望把好東西介紹給大家。部落格《盲眼的尼安德塔石器匠》、同名粉絲團《盲眼的尼安德塔石器匠》。

0

12
7

文字

分享

0
12
7
一切都為了快快長大!斑馬魚的「無合成分裂」,「表面」到你難以察覺
研之有物│中央研究院_96
・2022/10/08 ・5419字 ・閱讀時間約 11 分鐘

-----廣告,請繼續往下閱讀-----

本文轉載自中央研究院研之有物,泛科學為宣傳推廣執行單位。

  • 採訪撰文/寒波
  • 責任編輯/簡克志
  • 美術設計/蔡宛潔

不用合成新 DNA 的細胞分裂——無合成分裂

細胞分裂,想來是再簡單不過的事情:一顆細胞先將遺傳物質複製為兩份,再一分為二,分配給兩顆細胞。然而,由中央研究院細胞與個體生物學研究所的陳振輝助研究員領軍,2022 年 4 月發表在《自然》(Nature)的論文,卻報告了過往未知的一種分裂方式:斑馬魚的皮膚細胞,可以直接一變二,再二變四,過程中不用合成新的 DNA!這項未來將改寫教科書的新知識,當初是如何發現、驗證,未來又有什麼衍生方向呢?中研院「研之有物」專訪陳振輝助研究員,請他和我們仔細分享斑馬魚的「表面功夫」。

陳振輝研究團隊發現斑馬魚表皮細胞有「無合成分裂」現象,研究成果於 2022 年 4 月發表在國際頂級期刊《自然》。圖為陳振輝(右)與第一作者陳潔盈(左)合影。圖/研之有物

將顏色植入斑馬魚的每一個細胞

陳振輝實驗室的研究大多著重於「再生生物學」,新研究算是「發育生物學」的領域。不過了解背後細胞行為調控的機制就會知道,這兩個領域其實是共通的。

陳振輝以斑馬魚作為實驗材料,基因改造後讓不同細胞被標記上不同顏色,使得不同細胞的動態行為,能夠被清晰地分辨和追蹤。這個研究方法可以用來探究逆境下複雜組織的再生,也能用來研究正常狀況下動物的發育進程,因為這些過程都涉及大量細胞的動態調控。

-----廣告,請繼續往下閱讀-----
陳振輝以斑馬魚作為實驗材料,基因改造後讓不同細胞被標記上不同顏色,使得不同細胞的動態行為,能夠被清晰地分辨和追蹤。圖片這隻為斑馬魚的仔魚,年齡為受精之後第 8 天。(另開圖片可放大檢視)圖/陳潔盈、陳振輝

發育生物學是生物學研究的熱門領域,投入者眾,大部分的研究者都針對部分細胞或特定基因作探討,陳振輝團隊的技術讓他們能同時追蹤單一活體動物整個組織裡所有的細胞。這項技術除了用在皮膚組織(方法名為「palmskin」),陳振輝也用類似的方法探索肌肉、肝臟等各式器官的發育、再生過程。

創造色彩繽紛的細胞,原理其實很簡單,就是利用紅色、藍色、綠色的三原色不同比例的組合。具體作法是透過基因改造,將能製造紅、藍、綠色螢光蛋白質的基因組,植入斑馬魚的細胞,利用遺傳學的工具,讓表皮、肌肉、肝臟等目標組織的每一顆細胞,隨機表現出不同的顏色組合。

舉例來說,其中一個細胞可以表現「3 個紅色螢光蛋白 + 5 個藍色螢光蛋白 + 4 個綠色螢光蛋白」,隔壁細胞可能是「1 紅 + 2 藍 + 6 綠」,鄰近細胞間便能呈現不同顏色,讓長期追蹤所有不同細胞成為可能。

將能夠製造紅、藍、綠色螢光蛋白質的基因組,植入斑馬魚的細胞,利用遺傳學技術,讓表皮、肌肉、肝臟等目標組織的每一顆細胞,隨機表現出不同的顏色組合。圖/研之有物(資料來源/陳振輝

將調色盤植入細胞的原理看似簡單,做起來卻要耗費不少功夫,尋找適合的基因轉殖魚需要半年到一年的時間。陳振輝解釋用斑馬魚當實驗材料的優點:它們容易繁殖,生長的週期不用等太久,體積小,容易操作;更重要的是魚體扁平,容易拍攝大面積、高解析度的細胞影像,進行系統性的量化分析。搭配讓每一顆細胞,從誕生到凋逝都無所遁形的全面「監控」影像平台,才有機會觀察到前人視而不見的細胞分裂方式。

-----廣告,請繼續往下閱讀-----
圖片為斑馬魚的仔魚(上圖)和成魚(下圖)的透視圖,仔魚年齡為受精之後第 3~21 天。斑馬魚當實驗材料的優點是:容易繁殖,生長週期不長,體積小,容易操作;更重要的是魚體扁平,容易拍攝大面積、高解析度的細胞影像。圖/研之有物(資料來源/J Clin Invest.

隱藏在「表面之中」的無合成分裂

斑馬魚的皮膚和人類的皮膚基本構造類似。唯一不同是人類的皮膚有角質層覆蓋,斑馬魚皮膚的外層是沒有角質化的活細胞,適合拍照觀察。斑馬魚的另一優點是在顯微鏡下活體觀察時不會傷害到魚體,麻醉後可以直接拍照,再放回水中喚醒;如此才能追蹤同一條魚從出生到長大,身上所有皮膚細胞的動態行為。

研究斑馬魚的學者很多,皮膚發育這回事可謂天天在人們的眼前發生,可是其它人為什麼都視而不見,沒有注意到陳振輝團隊發現的無合成分裂呢?事情其實沒有說起來那麼簡單。

斑馬魚皮膚剖面示意圖,從顯微鏡看到的斑馬魚細胞是最上層的表皮細胞。圖/研之有物(資料來源/陳振輝)

斑馬魚的皮膚分為上中下三層,下層的幹細胞,會分裂產生新的細胞,送到上層成為覆蓋身體最外側的皮膚細胞。其它研究人員如果見到表皮細胞的數目變多,直觀的想法會是下層的幹細胞又送上新的細胞,不會想到是上層既有已分化的細胞可以直接進行分裂。

陳振輝表示,一開始見到表皮細胞的數量增加時,直覺也認為是下層幹細胞產生的新細胞,可是連續追蹤後卻發現不是這麼回事。由於他的技術可以對斑馬魚身上 2,000 到 3,000 顆皮膚細胞進行同時監測,才意外察覺到上層已分化的細胞竟然會不用複製遺傳物質,就直接分裂成兩顆,甚至是四顆細胞!

-----廣告,請繼續往下閱讀-----
陳振輝團隊觀察到斑馬魚表皮上層已分化的細胞可以不用複製遺傳物質,直接分裂成兩顆,甚至是四顆細胞。影/陳振輝

顛覆認知:不用合成 DNA 的細胞分裂

外行人聽起來好像沒什麼,上述發現其實開拓了細胞分裂研究的新領域。精子和卵子這類生殖細胞(germline cell),在複製遺傳物質以後會經過 2 次分裂,形成 4 顆細胞,也就是減數分裂(meiosis)。構成身體的體細胞(somatic cell)則會先複製內部的遺傳物質,再分裂 1 次成兩顆細胞,稱為有絲分裂(mitosis)。

還有較少見的狀況,如 DNA 複製後細胞不分裂,變成多套遺傳物質的 1 顆細胞(endoreplication);或是多個細胞融合在一起,成為 1 顆多核細胞(cell-cell fusion,例如骨骼肌細胞)。

然而不管怎麼分裂,過去研究沒有發現不用複製 DNA 就能分裂的細胞!正常細胞分裂的過程有許多監控機制,如果細胞的遺傳物質沒有完整複製,一般情況細胞應該會啟動相關的監控機制,阻止分裂過程的進行。癌症細胞不受控制的分裂,就是相關機制沒有正常運作。

斑馬魚表皮細胞竟然能在沒有複製遺傳物質的情況下,避免細胞凋亡的命運,持續分裂,是一個很特別的例外。

斑馬魚從仔魚到成魚的發育過程中,表皮細胞可以在沒有複製遺傳物質的情況下持續分裂。圖/研之有物

論文投稿到《自然》期刊後,四位同儕審查者一致給予正面評價,但是顛覆認知的新發現仍受到不少質疑,需要陳振輝團隊進行許多額外的實驗來回答。

-----廣告,請繼續往下閱讀-----

有沒有觀察失誤的可能?

陳振輝團隊同時標記下層、上層的細胞,證實進行分裂的細胞確實位於上層。為了證明遺傳物質沒有複製,他們進一步測量細胞內 DNA 的量,包覆 DNA 的組蛋白(histone)的量,以及施加阻止 DNA 複製的藥劑。

結果顯示分裂後的細胞,遺傳物質的含量確實有等比下降,分裂過程不受阻止 DNA 複製藥劑的影響。顯然細胞沒有合成新的 DNA 就直接分開,陳振輝稱之為「無合成分裂」(asynthetic fission)。

所以,究竟是怎麼分裂的?

顯微鏡下看來似乎沒有一定的章法,有些表皮細胞會分裂 2 次成 4 顆細胞,有些分裂 1 次成 2 顆細胞,還有些不會分裂,維持 1 顆細胞;也發現有少數細胞可以逆轉分裂過程,形成雙核細胞。

陳振輝團隊現有的研究技術,尚無法辨明胞器的分配,以及每一條染色體的分配模式;團隊預計使用單細胞定序(single cell DNA sequencing),在無合成分裂後,分別定序每一顆細胞分配到的染色體組成,以釐清細胞的遺傳物質是否有特定的拆分方式。

-----廣告,請繼續往下閱讀-----
斑馬魚表皮上的無合成分裂(影片箭頭處),還有很多細節尚待研究。陳振輝團隊預計要釐清在無合成分裂之後,細胞的遺傳物質是否有特定的拆分方式。影/陳振輝

一切都是為了節省資源!努力長大的表皮細胞

無合成分裂對斑馬魚有什麼意義呢?斑馬魚由受精卵孵化後,仔魚在前 8 天不用吃東西,成長速度緩慢;第 8 天起開始進食,體型也像吹氣球般迅速膨脹,第 14 天時成長速度達到最快。觀察發現從第 8 天 到 21 天,皮膚細胞會發生無合成分裂,團隊推測此一分裂現象與身體表面積的快速延展息息相關。

斑馬魚的仔魚從受精卵孵化之後的第 8 天到第 21 天,表皮細胞會發生無合成分裂,陳振輝團隊推測此一分裂現象與身體表面積的快速延展息息相關。
圖/研之有物(資料來源/Nature

僅管省略掉複製遺傳物質的階段,細胞進行無合成分裂所花費的時間,卻比一般細胞分裂稍慢,所以其優點並非單純的縮短時間,應該是節省資源。斑馬魚仔魚身體的表面積在特定時間迅速增加,體表需要皮膚細胞的完整覆蓋,團隊發現細胞進行 1 次無合成分裂,表面積能增加 26%,兩次能達到 59%,這些細胞能在斑馬魚體表存活 2 到 3 週的時間。

陳振輝團隊發現,斑馬魚表皮細胞進行 1 次無合成分裂,表面積能增加 26%,兩次則能增加到 59%,這些細胞能在斑馬魚體表存活 2 到 3 週的時間。
圖/研之有物(資料來源/陳振輝)

斑馬魚如何啟動無合成分裂呢?目前仍不太清楚,團隊發現其過程受到表面張力變化的影響。皮膚細胞有感應張力變化的特定離子通道,利用藥物影響這些離子通道的活性,無合成分裂也會受到影響,詳細作用機制仍有待更多的研究。

生活數量的密度也會影響斑馬魚長大

另一項十分有趣的發現是,無合成分裂和仔魚生活的密度有關。斑馬魚從仔魚長到成體,最終的體型都差不多,但是生長過程則有很大的差異,個體成長速度有快有慢。假如將許多仔魚養在一起,處於高密度的生活環境,個別仔魚的生長速度會較慢。

-----廣告,請繼續往下閱讀-----

奇妙的是,一旦換到低密度的環境,仔魚的成長速度會瞬間暴增,體表面積快速增加又要維持皮膚細胞的完整覆蓋,會導致更多的無合成分裂。斑馬魚如何感知、在生理上反應周遭環境鄰居密度的變化,是另一個有趣的研究方向。

斑馬魚若處於高密度的生活環境,仔魚的生長速度會較慢。奇妙的是,一旦換到低密度的環境,仔魚的成長速度會瞬間暴增,體表面積快速增加,導致更多的無合成分裂。圖/研之有物(資料來源/陳振輝)

進行無合成分裂的細胞缺乏完整的遺傳物質,還能算是有生命的活細胞嗎?陳振輝提醒我們,多細胞生物的生理機能由各式各樣的細胞一起維持,某些特化的細胞還沒有細胞核。例如紅血球的成熟會經過脫核的過程,完全沒有細胞核的紅血球有重要的生理功能也可以存活超過 100 天。在斑馬魚體表進行無合成分裂的皮膚細胞,或許也有它們短暫卻不可或缺的使命。

有可能其它生物的細胞也會無合成分裂嗎?

無合成分裂目前只在斑馬魚表皮的發育過程中觀察到,其它細胞、其它生物、其它情境下是否也存在呢?事實上陳振輝自己也很好奇。

以人體來舉例,體表的皮膚,口腔內膜、消化道組織,時時刻刻都需要大量的表皮細胞覆蓋,而且耗損甚鉅,有不斷補充的需求。這些必須持續維持完整覆蓋表面的情境,或許無合成分裂也參與在其中。

-----廣告,請繼續往下閱讀-----

然而,無合成分裂不容易在活體動物直接觀察。例如小鼠的模式,就算能引進三原色調色盤的細胞標誌技術,也不像斑馬魚仔魚那般透明容易拍照。話說回來,知道某個現象有可能發生,就是發現的第一步。假如其它細胞或是生物也存在無合成分裂,在陳振輝團隊邁出第一步以後,未來一定有人能克服相關的技術門檻來進行研究。

發現斑馬魚表皮細胞的無合成分裂,像是開啟一扇新的大門,可以通往過去想像不到的研究方向。會有醫學應用的可能嗎?像癌症是細胞的不正常分裂,任何細胞分裂機制的基礎研究,應該有機會對癌症的治療有所啟發。陳振輝同意這是潛在的研究方向之一,但是他也強調從基礎研究到醫學應用,是很漫長的一段路,科學家能做的就是一步一步踏實前進。

對沒預期的發現保持警覺,在探索過程中充分滿足自己的好奇心,將支持陳振輝持續前進,挑戰下一個研究課題。

對沒預期的發現保持警覺,在探索過程中充分滿足自己的好奇心,將支持陳振輝持續前進,挑戰下一個研究課題。圖/研之有物
研之有物│中央研究院_96
296 篇文章 ・ 3419 位粉絲
研之有物,取諧音自「言之有物」,出處為《周易·家人》:「君子以言有物而行有恆」。探索具體研究案例、直擊研究員生活,成為串聯您與中研院的橋梁,通往博大精深的知識世界。 網頁:研之有物 臉書:研之有物@Facebook